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Abstract For solving unsteady hyperbolic conservation laws on cut cell meshes, the
so called small cell problem is a big issue: one would like to use a time step that
is chosen with respect to the background mesh and use the same time step on the
potentially arbitrarily small cut cells as well. For explicit time stepping schemes this
leads to instabilities. In a recent preprint [arXiv:1906.05642], we propose penalty
terms for stabilizing a DG space discretization to overcome this issue for the unsteady
linear advection equation. The usage of the proposed stabilization terms results in
stable schemes of first and second order in one and two space dimensions. In one
dimension, for piecewise constant data in space and explicit Euler in time, the
stabilized scheme can even be shown to be monotone. In this contribution, we will
examine the conditions for monotonicity in more detail.

1 A stabilized DG cut cell scheme for the unsteady advection
equation

We consider the time dependent linear advection problem on a cut cell mesh. In
[1], we propose new stabilization terms for a cut cell discontinuous Galerkin (DG)
discretization in two dimensions with piecewise linear polynomials. In the following
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we will refer to this as Domain-of-Dependence stabilization, abbreviated by DoD
stabilization.

While the usage of finite element schemes on embedded boundary or cut cell
meshes has become increasingly popular for elliptic and parabolic problems in
recent years, only very little work has been done for hyperbolic problems. The
general challenge is that cut cells can have various shapes and may in particular
become arbitrarily small. Special schemes have been developed to guarantee stability.
Perhaps the most prominent approach for elliptic and parabolic problems is the ghost
penalty stabilization [2], which regains coercivity, independent of the cut size.

For hyperbolic conservation laws the problems caused by cut cells are partially of
different nature. One major challenge is that standard explicit schemes are not stable
on the arbitrarily small cut cells when the time step is chosen according to the cell
size of the background mesh. This is what is often called the small cell problem.
Adapting the time step size to the cut size is infeasible, as there is no lower bound on
the cut size. An additional complication is the fact that there is typically no concept
of coercivity that could serve as a guideline for constructing stabilization terms.

In [1], we consider the small cell problem for the unsteady linear advection
equation. We propose a stabilization of the spatial discretization, which uses a
standard DG scheme with upwind flux, that makes explicit time stepping stable
again. Our penalty terms are designed to restore the correct domains of dependence
of the cut cells and their outflow neighbors (therefore the name DoD stabilization),
similar to the idea behind the h-box scheme [4] but realized in a DG setting using
penalty terms. In one dimension, we can prove L1-stability, monotonicity, and TVD
(total variation diminishing) stability for the stabilized scheme of first order using
explicit Euler in time. For the second-order scheme, we can show a TVDM (TVD in
the means) result if a suitable limiter is used.

In this contribution, we will focus on the monotonicity properties in one dimen-
sion for the first-order scheme and examine them in more detail. In particular, we
will show that a straight-forward adaption of the ghost-penalty approach [2] to the
unsteady transport problem, as proposed in [3] for the steady problem, cannot en-
sure monotonicity. Further, we will examine the parameter that we use in our new
DoD stabilization in more detail than done in [1].

2 Problem setup for piecewise constant polynomials

For the purpose of a theoretical analysis with focus onmonotonicity, wewill consider
piecewise constant polynomials in 1D. We use the interval I = [0, 1] and assume the
velocity β > 0 to be constant. The time dependent linear advection equation reads
as

ut (x, t) + βux(x, t) = 0 in I × (0,T), (1)

with initial data u(x, 0) = u0(x) and periodic boundary conditions. We discretize the
interval I in N equidistant cells Ij = [xj− 1

2
, xj+ 1

2
] with cell length h. Then, we split
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one cell, the cell k, into a pair of two cut cells using the volume fraction α ∈ (0, 1
2 ],

see figure 1: The first cut cell, which we call k1, has length αh, the second cut cell,
which we call k2, has length (1 − α)h. Therefore, cell k1 corresponds to a small cut
cell, which induces instabilities, if α � 1

2 .
We define the function space

V0
h (I) :=

{
vh ∈ L2(I) vh |Ij ∈ P0, j = 1, . . . , N

}
, (2)

with P0 being the function space of constant polynomials. The semidiscrete scheme,
which uses the standard DG scheme with an upwind flux in space and is not yet
discretized in time, is given by: Find uh ∈ V0

h
(I) such that∫

I

dtuh(t) wh dx + aupw
h
(uh(t),wh) = 0, ∀wh ∈ V0

h (I), (3)

with the bilinear form defined as

aupw
h
(uh,wh) =

N∑
j=1

βuh(x−j+ 1
2
) nwhoj+ 1

2
,

and the jump being given by

nwhoj+ 1
2
= wh(x−j+ 1

2
) − wh(x+j+ 1

2
), x±

j+ 1
2
= lim
ε→0+

xj+ 1
2
± ε.

We use explicit Euler in time. Then, (3) results in the global system

Mun+1 = Bun. (4)

Here, un = [un
1, . . . , u

n
N ]T is the vector of the piecewise constant solution at time tn

andM is the global mass matrix. Note thatM is a diagonal matrix with positive
diagonal entries. Finally, the global system matrix B is given by B =M−∆tA with
Aun corresponding to the discretization of the bilinear form aupw

h
at time tn.

For a standard equidistant mesh, the scheme (4) is stable for 0 < λ < 1 with the
CFL number λ being given by

λ =
β∆t
h
. (5)

Our goal is to make the scheme stable for the mesh containing the cut cell pair for
0 < λ < 1

2 , independent of α. The reduced CFL condition is due to the fact that we
will only stabilize cut cell k1, and not the bigger cut cell k2.

To illustrate one interpretation of the small cell problem that we need to overcome,
we refer to figure 1. There, we determine the exact solution at time tn+1, based on
piecewise constant data at time tn, by tracing back characteristics. For standard
cells j, such as k − 1, the domain of dependence of un+1

j only includes cells j
and j − 1. For the outflow neighbor of the small cut cell k1, the cell k2, however,
un+1
k2

depends on un
k−1, un

k1
, and un

k2
. The issue is that standard DG schemes such as

(3) only provide information from direct neighbors. We will see that the proposed
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stabilization that ensures monotonicity will also fix this problem. We will return to
this specific interpretation of the small cell problem in section 4, when discussing
the proper choice of the penalty parameter in the stabilization.

k − 2 k − 1 k1 k2 k + 1

kcut

αh (1 − α)hh

tn

tn+1

Fig. 1 Domains of dependence for the solution at time tn+1 for the considered model problem for
a time step with length ∆t = λ

β h with λ = 1
3 and β = 1.

3 Monotonicity considerations for two different stabilization
terms

In the following, we will examine the monotonicity properties of different stabiliza-
tions. A monotone scheme guarantees in particular that minj u0

j ≤ un ≤ maxj u0
j for

all times tn. We will use the following definition of a monotone scheme.

Definition 1. Amethod un+1
j = H(un

j−iL , u
n
j−iL+1, ..., u

n
j+iR
) is called monotone, if for

all j there holds for every l with −iL ≤ l ≤ iR

∂H
∂u j+l

(u j−iL , ..., u j+iR ) ≥ 0. (6)

For the linear scheme (4) this implies that all coefficients of B need to be non-
negative. This is due to the fact that M is a non-negative diagonal matrix. On an
equidistant mesh, the scheme (4) is monotone for 0 < λ < 1.

We will compare the entries of the matrix B for three different cases: the un-
stabilized case, a stabilization in the spirit of the ghost-penalty method [2], and the
DoD stabilization [1] that we propose.

Unstabilized case

In this case, the matrix B is given by
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B =

©«

h−τ 0 · · · · · · 0 τ
τ h−τ 0 0

0
. . .

. . .
...

... τ αh − τ

τ (1 − α)h − τ
...

...
. . .

. . . 0

0 · · · · · · 0 τ h−τ

ª®®®®®®®®®®®¬
,

with τ := β∆t > 0. We therefore focus on the diagonal entries. On standard cells,
and on cell k2, the entries h − τ and (1 − α)h − τ are non-negative due to the CFL
condition β∆t = λh if the reduced CFL condition 0 < λ ≤ 1

2 is used. On the small
cut cell k1, the entry αh − τ is clearly negative for α < λ, which is the case that we
are interested in.

Ghost-penalty stabilization

We first consider the option of using the ghost penalty method for stabilization, an
approach that is, e.g., used in [3] for stabilizing the steady advection equation. Adapt-
ing the stabilization to our model mesh (compare figure 1) changes the formulation
of (3) to: Find uh ∈ V0

h
(I) such that∫

I

dtuh(t) wh dx + aupw
h
(uh(t),wh) + JGP

h (uh,wh) = 0, ∀wh ∈ V0
h (I), (7)

with
JGP
h = βη1 nuhok− 1

2
nwhok− 1

2
+ βη2 nuhokcut nwhokcut . (8)

As a result, the matrix B in (4) is modified in the following way

BGP =

©«

h−τ 0 · · · · · · 0 τ
τ h−τ 0 0

0
. . .

. . .
. . .

...

τ h − τ(1 − η1) −τη1

... 0 τ(1−η1) αh − τ + τη1 + τη2 −τη2

0 τ(1−η2) (1 − α)h − τ(1 − η2)
...

...
. . .

. . . 0

0 · · · · · · 0 τ h−τ

ª®®®®®®®®®®®®®®®®®¬

.

Our goal is to determine the parameters η1 and η2 such that every entry of BGP is
non-negative. The two entries on the first superdiagonal prescribe the restriction

η1 ≤ 0 and η2 ≤ 0. (9)
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Next, we consider the entry BGP(k1, k1).This results in the condition

αh − τ + τη1 + τη2
!
≥ 0.

Since αh − τ is negative for α < λ, we need to choose η1 or η2 to be positive. This
is a contradiction to (9). Therefore, it is not possible to create a monotone scheme
using this setup.

Domain-of-Dependence stabilization

We now consider the DoD stabilization , which we introduced in [1]. The resulting
scheme is of the same form as (7), but instead of adding JGP

h
we use the term

JDoDh (uh,wh) := βη nuhok− 1
2
nwhokcut . (10)

One big difference between (8) and (10) is that the locations of the jump terms were
moved. As a result, the position of the stabilization terms in the matrix B changed:

BDoD =

©«

h−τ 0 · · · · · · 0 τ
τ h−τ 0 0

0
. . .

. . .
...

... τ(1−η) αh − τ (1 − η) 0

τη τ(1−η) (1 − α)h − τ
...

...
. . .

. . . 0

0 · · · · · · 0 τ h−τ

ª®®®®®®®®®®®¬
.

In [1], we examined the monotonicity conditions of the stabilized scheme for the
theta-scheme in time and a fixed value of η. Here, we will focus on using explicit
Euler in time and vary η instead. Requiring that all entries become non-negative
results in the following three inequalities:

I αh − τ(1 − η) ≥ 0,
II τη ≥ 0,
III τ(1 − η) ≥ 0.

Short calculations show that this implies the following restrictions on η

η
II
≥ 0, 1 − α

λ

I
≤ η

III
≤ 1, i.e., we need to choose η ∈

[
1 − α

λ
, 1

]
and should not stabilize for α > λ. In other words, for α � λ < 1

2 , the resulting
scheme using explicit Euler in time is monotone for η ∈

[
1 − α

λ , 1
]
, despite the CFL

condition on the cut cell k1 being violated. Next, we will discuss how to best choose
η within the prescribed range.
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4 Choice of η in DoD stabilization

We denote the discrete solution on cell j at time tn by un
j . Resolving the system

Mun+1 = BDoDun for the update on the two cut cells under the condition α < λ < 1
2 ,

we get

un+1
k1
= un

k1
− λ
α
(1 − η)

(
un
k1
− un

k−1

)
,

un+1
k2
= un

k2
− λ

1 − α

(
un
k2
− un

k1

)
− λ

1 − αη
(
un
k1
− un

k−1

)
.

For monotonicity, we need to choose η ∈
[
1 − α

λ , 1
]
. We will now examine the two

extreme choices, η = 1 − α
λ and η = 1, in more detail.

For η = 1 − α
λ , the two update formulae reduce to

un+1
k1
= un

k−1 and un+1
k2
=

(
1 − λ

1 − α

)
un
k2
+

α

1 − αun
k1
+
λ − α
1 − α un

k−1.

We observe, comparing with figure 1, that the new update formulae now use the
correct domains of dependence. In particular, un+1

k1
now coincides with un

k−1 and un+1
k2

now includes information from un
k−1, which is the neighbor of its inflow neighbor.

Actually, the resulting updates correspond to exactly advecting a piecewise constant
solution at time tn to time tn+1 and to then averaging. Therefore, thanks to the
stabilization, we have implicitly restored the correct domains of dependence. In that
sense, the new stabilization has a certain similarity to the h-box method [4].

For the choice η = 1 the update formulae have the following form:

un+1
k1
= un

k1
and un+1

k2
= un

k2
− λ

1 − α

(
un
k2
− un

k−1

)
.

We observe that in this case the smaller cut cell k1 will not be updated. Instead, it just
keeps its old value. In addition, the update of the solution on cell k2 does not include
information of its inflow neighbor k1. Therefore choosing η = 1 can be interpreted
as skipping the small cut cell and let the information flow directly from its inflow
neighbor into its outflow neighbor.

Remark 1. In [1], we propose to use η = 1 − α
2λ ∈

[
1 − α

λ , 1
]
as this produces better

results for piecewise linear polynomials than η = 1 − α
λ .

5 Numerical results

Wewill now compare the different choices of η for theDoD stabilization numerically.
We consider the grid described in figure 1 and place cell k such that xk− 1

2
= 0.5.



8 Florian Streitbürger, Christian Engwer, Sandra May, and Andreas Nüßing

We use discontinuous initial data

u0(x) =
{

1 0.1 ≤ x ≤ 0.5,
0 otherwise,

(11)

with the discontinuity being placed right in front of the small cut cell k1. We set
β = 1, α = 0.001, λ = 0.4, and h = 0.1, and use V0

h
(I) as well as periodic boundary

conditions. We test four different values for η: the extreme cases η = 1 and η = 1− α
λ

as well as η = 1 − α
2λ and a value, η = 1 − 2α

λ , that violates the monotonicity
considerations.

0.0 0.5 1.0

0

1

2 η = 1
η = 1− α

λ

0.0 0.5 1.0

0

1

2 η = 1− 2α
λ

η = 1− α
2λ

Fig. 2 Results after one time step for the DoD stabilization for different values of η.

In figure 2 we show the different solutions after one time step. For η = 1 we
observe that the solution on cell k1 has not been updated, while the updates on the
other cells are correct. Obviously, cell k1 has simply been skipped. The solution
for η = 1 − α

λ corresponds to exactly advecting the initial data and to then apply
averaging. If we choose η = 1 − α

2λ , we observe that u1
k1

lies between u1
k−1 and u1

k2
.

Finally, for η = 1− 2α
λ , which is not included in the suggested interval, we observe a

strong overshoot on the small cut cell. This cannot happen for a monotone scheme.
Therefore, the numerical results confirm our theoretical considerations above.
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