Skip to main content

Adaptive Predictive Energy Management Strategy Example for Electric Vehicle Long Distance Trip

  • Conference paper
  • First Online:
Systems, Software and Services Process Improvement (EuroSPI 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1251))

Included in the following conference series:

Abstract

In this paper the factors that influence the energy consumption of electric vehicles are examined. The main factors affecting the driving resistance such as load, grades, vehicle speed, and additional factors are considered. For example the climate control system and the influence of ambient temperature on the electric vehicle range. The impact of the electric drive efficiency map is also taken into account. The impact of each of the factors was evaluated through a numerical study. Recommendations are given for the strategy of an adaptive predictive model for the energy management of an electric vehicle. To be planned the point of next recharge for a long distance trip, the travel conditions must be taken into account. This is done by measuring some parameters before and during the trip. The information from GPS navigation for the intended trip must also be taken into account. It could give information for road inclines and the location of the charging stations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battery University, BU-502: Discharging at High and Low Temperatures. https://batteryuniversity.com/learn/article/discharging_at_high_and_low_temperatures. Accessed 06 Apr 2020

  2. Břoušek, J., Zvolský, T.: Experimental study of electric vehicle gearbox efficiency. In: Gigov, B., Nikolov, N., Stoilova, S., Kralov, I., Todorov, M., Stoilov, V. (eds.) BulTrans-2018, MATEC Web of Conferences, vol. 234, p. 02004 (2018). https://doi.org/10.1051/matecconf/2018234004

  3. Dimitrova, Z.: Vehicle propulsion systems design methods. In: Gigov, B., Nikolov, N., Stoilov, V., Todorov, M. (eds.) BulTrans-2017, MATEC Web of Conferences, vol. 133, p. 02001 (2017). https://doi.org/10.1051/matecconf/201713302001

  4. Dimitrova, Z.: Optimal designs of electric vehicles for long-range mobility. In: Gigov, B., Nikolov, N., Stoilova, S., Kralov, I., Todorov, M., Stoilov, V. (eds.) BulTrans-2018, MATEC Web of Conferences, vol. 234, p. 02001 (2018). https://doi.org/10.1051/matecconf/201823402001

  5. Dobrev, I., Massouh, F., Danlos, A., Todorov, M., Punov, P.: Experimental and numerical study of the flow field around a small car. In: Gigov, B., Nikolov, N., Stoilov, V., Todorov, M. (eds.) BulTrans-2017, MATEC Web of Conferences, vol. 133, p. 02004 (2017). https://doi.org/10.1051/matecconf/201713302004

  6. ERTRAC, European Road Map, Electrification of Road Transport, 3rd edn. (2017). https://www.ertrac.org/uploads/documentsearch/id50/ERTRAC_ElectrificationRoadmap2017.pdf. Accessed 10 Apr 2020

  7. European Commission. CO2 emission performance standards for cars and vans (2020 onwards). https://ec.europa.eu/clima/policies/transport/vehicles/regulation_en. Accessed 10 Apr 2020

  8. Evtimov, I., Ivanov, R., Stanchev, H., Kadikyanov, G., Staneva, G., Sapundzhiev, M.: Energy efficiency and ecological impact of the vehicles. In: Sładkowski, A. (ed.) Ecology in Transport: Problems and Solutions. LNNS, vol. 124, pp. 169–250. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42323-0_4

    Chapter  Google Scholar 

  9. Farrington, R., Rugh, J.: Impact of Vehicle Air Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range. Earth Technologies Forum Washington, D.C, 31 October 2000

    Google Scholar 

  10. https://dv.parliament.bg/DVWeb/showMaterialDV.jsp?idMat=129951. Accessed 08 Apr 2020

  11. Macher, G., Armengaud, E., Schneider, D., Brenner, E., Kreiner, C.: Towards dependability engineering of cooperative automotive cyber-physical systems. In: Stolfa, J., Stolfa, S., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2017. CCIS, vol. 748, pp. 205–215. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64218-5_16

    Chapter  Google Scholar 

  12. Messnarz, R., Ekert, D., Grunert, F., Blume, A.: Cross-cutting approach to integrate functional and material design in a system architectural design – example of an electric powertrain. In: Walker, A., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2019. CCIS, vol. 1060, pp. 322–338. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28005-5_25

    Chapter  Google Scholar 

  13. PSA GROUPE. https://www.groupe-psa.com/en/automotive-group/innovation. Accessed 10 Apr 2020

  14. Reddy, T.: Linden’s Handbook of Batteries, 4th edn. McGraw-Hill Education, New York (2010)

    Google Scholar 

  15. https://2020.eurospi.net/index.php/manifesto. Accessed 02 Apr 2020

  16. The SPI Manifesto: EuroSPI 2009, Alcala (2009). https://2019.eurospi.net/images/eurospi/spi_manifesto.pdf

  17. Korsaa, M., et al.: The people aspects in modern process improvement management approaches. J. Softw.: Evol. Process 25(4), 381–391 (2013)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the ECEPE project. The ECQA Certified Electric Powertrain Engineer project (ECEPE) is co-funded by the Erasmus+ Call 2019 Round 1 KA203 Programme of the European Union under the agreement 2019-1-CZ01-KA203-061430.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Pavlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pavlov, N., Gigov, B., Stefanova-Pavlova, M., Dimitrova, Z. (2020). Adaptive Predictive Energy Management Strategy Example for Electric Vehicle Long Distance Trip. In: Yilmaz, M., Niemann, J., Clarke, P., Messnarz, R. (eds) Systems, Software and Services Process Improvement. EuroSPI 2020. Communications in Computer and Information Science, vol 1251. Springer, Cham. https://doi.org/10.1007/978-3-030-56441-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56441-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56440-7

  • Online ISBN: 978-3-030-56441-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics