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Abstract. At Crypto ’99, Nguyen and Stern described a lattice based
algorithm for solving the hidden subset sum problem, a variant of the
classical subset sum problem where the n weights are also hidden. While
the Nguyen-Stern algorithm works quite well in practice for moderate
values of n, we argue that its complexity is actually exponential in n;
namely in the final step one must recover a very short basis of a n-
dimensional lattice, which takes exponential-time in n, as one must apply
BKZ reduction with increasingly large block-sizes.

In this paper, we describe a variant of the Nguyen-Stern algorithm that
works in polynomial-time. The first step is the same orthogonal lattice
attack with LLL as in the original algorithm. In the second step, instead
of applying BKZ, we use a multivariate technique that recovers the short
lattice vectors and finally the hidden secrets in polynomial time. Our
algorithm works quite well in practice, as we can reach n � 250 in a few
hours on a single PC.

1 Introduction

The hidden subset-sum problem. At Crypto ’99, Nguyen and Stern de-
scribed a lattice based algorithm for solving the hidden subset sum problem
[NS99], with an application to the cryptanalysis of a fast generator of random
pairs (x, gx (mod p)) from Boyko et al. from Eurocrypt ’98 [BPV98]. The hidden
subset sum problem is a variant of the classical subset sum problem where the
n weights αi are also hidden.

Definition 1 (Hidden Subset Sum Problem). Let M be an integer, and let
α1, . . . , αn be random integers in ZM . Let x1, . . . ,xn ∈ Z

m be random vectors
with components in {0, 1}. Let h = (h1, . . . , hm) ∈ Z

m satisfying:

h = α1x1 + α2x2 + · · · + αnxn (mod M) (1)

Given M and h, recover the vector α = (α1, . . . , αn) and the vectors xi’s, up to
a permutation of the αi’s and xi’s.

Recall that the classical subset sum problem with known weights αi’s can be
solved in polynomial time by a lattice based algorithm [LO85], when the density
d = n/ log M is O(1/n). Provided a shortest vector oracle, the classical subset
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sum problem can be solved when the density d is less than � 0.94. The algorithm
is based on finding a shortest vector in a lattice built from h, α1, . . . , αn,M ; see
[CJL+92]. For the hidden subset sum problem, the attack is clearly not applicable
since the weights αi’s are hidden.

The Nguyen-Stern algorithm. For solving the hidden subset-sum prob-
lem, the Nguyen-Stern algorithm relies on the technique of the orthogonal lat-
tice. This technique was introduced by Nguyen and Stern at Crypto ’97 for
breaking the Qu-Vanstone cryptosystem [NS97], and it has numerous applica-
tions in cryptanalysis, for example cryptanalysis of the Ajtai-Dwork cryptosys-
tem [NS98b], cryptanalysis of the Béguin-Quisquater server-aided RSA protocol
[NS98a], fault attacks against RSA-CRT signatures [CNT10,BNNT11], attacks
against discrete-log based signature schemes [NSS04], and cryptanalysis of vari-
ous homomorphic encryption schemes [vDGHV10,LT15,FLLT15] and multilin-
ear maps [CLT13,CP19,CN19].

The orthogonal lattice attack against the hidden subset sum problem is based
on the following technique [NS99]. If a vector u is orthogonal modulo M to the
public vector of samples h, then from (1) we must have:

〈u,h〉 ≡ α1〈u,x1〉 + · · · + αn〈u,xn〉 ≡ 0 (mod M)

This implies that the vector pu = (〈u,x1〉, . . . , 〈u,xn〉) is orthogonal to the
hidden vector α = (α1, . . . , αn) modulo M . Now, if the vector u is short enough,
the vector pu will be short (since the vectors xi have components in {0, 1} only),
and if pu is shorter than the shortest vector orthogonal to α modulo M , we must
have pu = 0, and therefore the vector u will be orthogonal in Z to all vectors
xi. The orthogonal lattice attack consists in generating with LLL many short
vectors u orthogonal to h; this reveals the lattice of vectors orthogonal to the
xi’s, and eventually the lattice Lx generated by the vectors xi’s. In a second
step, by finding sufficiently short vectors in the lattice Lx, one can recover the
original vectors xi’s, and eventually the hidden weight α by solving a linear
system.

Complexity of the Nguyen-Stern algorithm. While the Nguyen-Stern al-
gorithm works quite well in practice for moderate values of n, we argue that its
complexity is actually exponential in the number of weights n. Namely in the
first step we only recover a basis of the lattice Lx generated by the binary vectors
xi, but not necessarily the original vectors xi’s, because the basis vectors that
we recover can be much larger than the xi’s. In order to recover the xi’s, in a
second step one must therefore compute a very short basis of the n-dimensional
lattice Lx, and in principle this takes exponential-time in n, as one must ap-
ply BKZ reduction [Sch87] with increasingly large block-sizes. In their practi-
cal experiments, the authors of [NS99] were able to solve the hidden subset sum
problem up to n = 90; for the second step, they used a BKZ implementation
from the NTL library [Sho] with block-size β = 20. In our implementation of
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their algorithm, with more computing power and thanks to the BKZ 2.0 [CN11]
implementation from [fpl16], we can reach n = 170 with block-size β = 30, but
we face an exponential barrier beyond this value.

Our contributions. Our first contribution is to provide a more detailed anal-
ysis of both steps of the Nguyen-Stern algorithm. For the first step (orthogonal
lattice attack with LLL), we first adapt the analysis of [NS99] to provide a rigor-
ous condition under which the hidden lattice Lx can be recovered. In particular,
we derive a rigorous lower bound for the bitsize of the modulus M ; we show that
the knapsack density d = n/ log M must be O(1/(n log n)), and heuristically
O(1/n), as for the classical subset-sum problem.

We also provide a heuristic analysis of the second step of Nguyen-Stern. More
precisely, we provide a simple model for the minimal BKZ block-size β that can
recover the secret vectors xi, based on the gap between the shortest vectors
and the other vectors of the lattice. While relatively simplistic, our model seems
to accurately predict the minimal block-size β required for BKZ reduction in
the second step. We show that under our model the BKZ block-size must grow
almost linearly with the dimension n; therefore the complexity of the second step
is exponential in n. We also provide a slightly simpler approach for recovering
the hidden vectors xi from the shortest lattice vectors. Eventually we argue that
the asymptotic complexity of the full Nguyen-Stern algorithm is 2Ω(n/ log n).

Our main contribution is then to describe a variant of the Nguyen-Stern
algorithm for solving the hidden subset sum problem that works in polynomial-
time. The first step is still the same orthogonal lattice attack with LLL. In
the second step, instead of applying BKZ, we use a multivariate technique that
recovers the short lattice vectors and finally the hidden secrets in polynomial
time, using m � n2/2 samples instead of m = 2n as in [NS99]. Our new second
step can be of independent interest, as its shows how to recover binary vectors
in a lattice of high-dimensional vectors. Asymptotically the heuristic complexity
of our full algorithm is O(n9). We show that our algorithm performs quite well
in practice, as we can reach n � 250 in a few hours on a single PC.

Cryptographic applications. As an application, the authors of [NS99] showed
how to break the fast generator of random pairs (x, gx (mod p)) from Boyko,
Peinado and Venkatesan from Eurocrypt ’98. Such generator can be used to
speed-up the generation of discrete-log based algorithms with fixed base g, such
as Schnorr identification, and Schnorr, ElGamal and DSS signatures. We show
that in practice our polynomial-time algorithm enables to break the Boyko et al.
generator for values of n that are beyond reach for the original Nguyen-Stern
attack; however, we need more samples from the generator, namely m � n2/2
samples instead of m = 2n.
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Source code. We provide in

https://pastebin.com/ZFk1qjfP

the source code of the Nguyen-Stern attack and our new attack in SageMath
[Sag19], using the L2 [NS09] implementation from [fpl16].

2 Background on Lattices

Lattices and bases. In this section we recall the main definitions and prop-
erties of lattices used throughout this paper; we refer to the full version of this
paper [CG20] for more details. Let b1, . . . ,bd ∈ Z

m be linearly independent
vectors. The lattice generated by the basis b1, . . . ,bd is the set

L(b1, . . . ,bd) =

{
d∑

i=1

aibi | a1, . . . , ad ∈ Z

}
.

We say that a matrix B is a base matrix for the lattice generated by its rows
b1, . . . ,bd. Two basis B,B′ generate the same lattice if and only if there exists
an unimodular matrix U ∈ GL(Z, d) such that UB = B′. Given any basis B we
can consider its Gram-determinant d(B) =

√
det(BBᵀ); this number is invariant

under base change. The determinant of a lattice L is the Gram-determinant of
any of its basis B, namely det(L) = d(B).

The dimension dim(L), or rank, of a lattice is the dimension as vector space
of EL := Span

R
(L), namely the cardinality of its bases. We say that a lattice is

full rank if it has maximal dimension. We say that M ⊆ L is a sublattice of a
lattice L if it is a lattice contained in L, further we say that L is a superlattice
of M. If dim(M) = dim(L), we say that M is a full-rank sublattice of L, and
we must have det(L) ≤ det(M).

Orthogonal lattice. Consider the Euclidean norm ‖·‖ and the standard scalar
product 〈·, ·〉 of Rm. The orthogonal lattice of a lattice L ⊆ Z

m is

L⊥ := {v ∈ Z
m | ∀b ∈ L, 〈v,b〉 = 0} = E⊥

L ∩ Z
m

We define the completion of a lattice L as the lattice L̄ = EL ∩ Z
m = (L⊥)⊥.

Clearly, L is a full rank sublattice of L̄. We say that a lattice is complete if it
coincides with its completion, i.e. L̄ = L. One can prove that dimL+dim L⊥ = m
and det(L⊥) = det(L̄) ≤ det(L); we recall the proofs in the full version of this
paper [CG20]. By Hadamard’s inequality, we have det(L) ≤ ∏d

i=1 ‖bi‖ for any
basis b1, . . . ,bd of a lattice L; this implies that det(L⊥) ≤ ∏d

i=1 ‖bi‖ for any
basis b1, . . . ,bd of L.

Lattice minima. The first minimum λ1(L) of a lattice L is the minimum of
the norm of its non-zero vectors. Lattice points whose norm is λ1(L) are called
shortest vectors. The Hermite constant γd, in dimension d, is the supremum of

https://pastebin.com/ZFk1qjfP
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λ1(L)2/det(L)
2
d over all the lattices of rank d. Using Minkowski convex body

theorem, one can prove that for each d ∈ N
+, 0 ≤ γd ≤ d/4 + 1.

More generally, for each 1 ≤ i ≤ dim L, the i-th minimum λi(L) of a lat-
tice L is the minimum of the maxj {‖vj‖} among all sets {vj}j≤i of i linearly
independent lattice points. Minkowski’s Second Theorem states that for each
1 ≤ i ≤ d ⎛

⎝ i∏
j=1

λi(L)

⎞
⎠

1
i

≤ √
γd det(L)

1
d .

Lattice reduction. LLL-reduced bases have many good properties. In partic-
ular the first vector b1 of an LLL-reduced basis is not much longer than the
shortest vector of the lattice.

Lemma 1 (LLL-reduced basis). Let b1, . . . ,bd an LLL-reduced basis of a lat-
tice L. Then ‖b1‖ ≤ 2

d−1
2 λ1(L), and ‖bj‖ ≤ 2

d−1
2 λi(L) for each 1 ≤ j ≤ i ≤ d.

The LLL algorithm [LLL82] outputs an LLL-reduced basis of a rank-d lat-
tice in Z

m in time O(d5m log3 B), from a basis of vectors of norm less than
B. This was further improved by Nguyen and Stehlé in [NS09] with a variant
based on proven floating point arithmetic, called L2, with complexity O(d4m(d+
log B) log B) without fast arithmetic. In this paper, when we apply LLL, we al-
ways mean the L2 variant. We denote by log the logarithm in base 2.

Heuristics. For a “random lattice” we expect λ1(L) ≈ √
d det(L)

1
d by the Gaus-

sian Heuristic and all lattice minima to be approximately the same. Omitting
the

√
d factor, for a lattice L generated by a set of d “random” vectors in Z

m for
d < m, we expect the lattice L to be of rank d, and the short vectors of L⊥ to have
norm approximately (detL⊥)1/(m−d) � (det L)1/(m−d) � (

∏d
i=1 ‖bi‖)1/(m−d).

3 The Nguyen-Stern Algorithm

In this section we recall the Nguyen-Stern algorithm for solving the hidden subset
sum problem. We explain why the algorithm has complexity exponential in n and
provide the result of practical experiments. Then in Sect. 4 we will describe
our polynomial-time algorithm.

Recall that in the hidden subset sum problem, given a modulus M and h =
(h1, . . . , hm) ∈ Z

m satisfying

h = α1x1 + α2x2 + · · · + αnxn (mod M) (2)

we must recover the vector α = (α1, . . . , αn) ∈ Z
n
M and the vectors xi ∈ {0, 1}m.

The Nguyen-Stern algorithm proceeds in 2 steps:

1. From the samples h, determine the lattice L̄x, where Lx is the lattice gen-
erated by the xi’s.

2. From L̄x, recover the hidden vectors xi’s. From h, the xi’s and M , recover
the weights αi.



8 J.-S. Coron and A. Gini

3.1 First Step: Orthogonal Lattice Attack

The orthogonal lattice attack. The goal of the orthogonal lattice attack is
to recover the hidden lattice L̄x, where Lx ⊂ Z

m is the lattice generated by the
n vectors xi. Let L0 be the lattice of vectors orthogonal to h modulo M :

L0 := Λ⊥
M (h) = {u ∈ Z

m | 〈u,h〉 ≡ 0 (mod M)}
Following [NS99], the main observation is that if 〈u,h〉 ≡ 0 (mod M), then from
(2) we obtain:

〈u,h〉 ≡ α1〈u,x1〉 + · · · + αn〈u,xn〉 ≡ 0 (mod M)

and therefore the vector pu = (〈u,x1〉, . . . , 〈u,xn〉) is orthogonal to the vector
α = (α1, . . . , αn) modulo M . Now, if the vector u is short enough, the vector pu

will be short (since the vectors xi have components in {0, 1} only), and if pu is
shorter than the shortest vector orthogonal to α modulo M , then we must have
pu = 0 and therefore u ∈ L⊥

x .
Therefore, the orthogonal lattice attack consists in first computing an LLL-

reduced basis of the lattice L0. The first m − n short vectors u1, . . . ,um−n will
give us a generating set of the lattice L⊥

x . Then one can compute a basis of the
lattice L̄x = (L⊥

x )⊥. This gives the following algorithm, which is the first step of
the Nguyen-Stern algorithm; we explain the main steps in more details below.

Algorithm 1. Orthogonal lattice attack [NS99]
Input: h, M, n, m.
Output: A basis of L̄x.
1: Compute an LLL-reduced basis u1, . . . ,um of L0.
2: Extract a generating set of u1, . . . ,um−n of L⊥

x .
3: Compute a basis (c1, . . . , cn) of L̄x = (L⊥

x )⊥.
4: return (c1, . . . , cn)

Constructing a basis of L0. We first explain how to construct a basis of
L0. If the modulus M is prime we can assume h1 �= 0, up to permutation of
the coordinates; indeed the case h = 0 is trivial. More generally, we assume
gcd(h1,M) = 1. We write u = [u1,u′] where u′ ∈ Z

m−1. Similarly we write
h = [h1,h′] where h′ ∈ Z

m−1. Since h1 is invertible modulo M , we get:

u ∈ L0 ⇐⇒ u1 · h1 + 〈u′,h′〉 ≡ 0 (mod M)

⇐⇒ u1 + 〈u′,h′〉 · h−1
1 ≡ 0 (mod M)

Therefore, a basis of L0 is given by the m × m matrix of row vectors:

L0 =
[

M
−h′ · h−1

1 [M ] Im−1

]
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To compute a reduced basis u1, . . . ,um of the lattice L0 we use the L2 algo-
rithm. The complexity is then O(m5(m+log M) log M) without fast arithmetic.
We show in Sect. 3.2 below that for a sufficiently large modulus M , the first
m − n vectors u1, . . . ,um−n must form a generating set of L⊥

x .

Computing a basis of L̄x = (L⊥
x )⊥. From the vectors u1, . . . ,um−n forming

a generating set of the lattice L⊥
x , we can compute its orthogonal L̄x = (L⊥

x )⊥

using the LLL-based algorithm from [NS97]. Given a lattice L, the algorithm
from [NS97] produces an LLL-reduced basis of L⊥ in polynomial time; we refer
to the full version of this paper [CG20] for a detailed description of the algorithm.
Therefore we obtain an LLL-reduced basis of L̄x = (L⊥

x )⊥ in polynomial-time.

3.2 Rigorous Analysis of Step 1

We now provide a rigorous analysis of the orthogonal lattice attack above. More
precisely, we show that for a large enough modulus M , the orthogonal lattice
attack recovers a basis of L̄x in polynomial time, for a significant fraction of the
weight αi’s.

Theorem 1. Let m > n. Assume that the lattice Lx has rank n. With probability
at least 1/2 over the choice of α, Algorithm 1 recovers a basis of L̄x in polynomial
time, assuming that M is a prime integer of bitsize at least 2mn log m. For
m = 2n, the density is d = n/ log M = O(1/(n log n)).

The proof is based on the following two lemmas. We denote by Λ⊥
M (α) the

lattice of vectors orthogonal to α = (α1, . . . , αn) modulo M .

Lemma 2. Assume that the lattice Lx has rank n. Algorithm 1 computes a basis
of the lattice L̄x in polynomial time under the condition m > n and

√
mn · 2

m
2 · λm−n

(L⊥
x

)
< λ1

(
Λ⊥

M (α)
)
. (3)

Proof. As observed previously, for any u ∈ L0, the vector

pu = (〈u,x1〉, . . . , 〈u,xn〉)
is orthogonal to the vector α modulo M ; therefore if pu is shorter than the
shortest non-zero vector orthogonal to α modulo M , we must have pu = 0, and
therefore u ∈ L⊥

x ; this happens under the condition ‖pu‖ < λ1

(
Λ⊥

M (α)
)
. Since

‖pu‖ ≤ √
mn‖u‖, given any u ∈ L0 we must have u ∈ L⊥

x under the condition:
√

mn‖u‖ < λ1

(
Λ⊥

M (α)
)
. (4)

The lattice L0 is full rank of dimension m since it contains MZ
m. Now,

consider u1, . . . ,um an LLL-reduced basis of L0. From Lemma 1, for each j ≤
m − n we have

‖uj‖ ≤ 2
m
2 · λm−n(L0) ≤ 2

m
2 · λm−n

(L⊥
x

)
(5)
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since L⊥
x is a sublattice of L0 of dimension m − n. Combining with (4), this

implies that when
√

mn · 2
m
2 · λm−n

(L⊥
x

)
< λ1

(
Λ⊥

M (α)
)

the vectors u1, . . . ,um−n must belong to L⊥
x . This means that 〈u1, . . . ,um−n〉

is a full rank sublattice of L⊥
x , and therefore 〈u1, . . . ,um−n〉⊥ = L̄x. Finally,

Algorithm 1 is polynomial-time, because both the LLL reduction step of L0 and
the LLL-based orthogonal computation of L⊥

x are polynomial-time. ��
The following Lemma is based on a counting argument; we provide the proof

in the full version of this paper [CG20].

Lemma 3. Let M be a prime. Then with probability at least 1/2 over the choice
of α, we have λ1(Λ⊥

M (α)) ≥ M1/n/4. ��
Combining the two previous lemmas, we can prove Theorem 1.

Proof (of Theorem 1). In order to apply Lemma 2, we first derive an upper-
bound on λm−n

(L⊥
x

)
. The lattice L⊥

x has dimension m − n and by Minkowski’s
second theorem we have

λm−n

(L⊥
x

) ≤ √
γm−n

m−n det
(L⊥

x

) ≤ mm/2 det
(L⊥

x

)
. (6)

From det L⊥
x = det L̄x ≤ det Lx and Hadamard’s inequality with ‖xi‖ ≤ √

m,
we obtain:

det L⊥
x ≤ det Lx ≤

n∏
i=1

‖xi‖ ≤ mn/2 (7)

which gives the following upper-bound on λm−n

(L⊥
x

)
:

λm−n

(L⊥
x

) ≤ mm/2mn/2 ≤ mm.

Thus, by Lemma 2, we can recover a basis of L̄x when
√

mn · 2
m
2 · mm < λ1

(
Λ⊥

M (α)
)
.

From Lemma 3, with probability at least 1/2 over the choice of α we can therefore
recover the hidden lattice L̄x if:

√
mn · 2

m
2 · mm < M1/n/4.

For m > n ≥ 4, it suffices to have log M ≥ 2mn log m. ��

3.3 Heuristic Analysis of Step 1

In the previous section, we have shown that the orthogonal lattice attack prov-
ably recovers the hidden lattice L̄x in polynomial time for a large enough mod-
ulus M , namely we can take log M = O(n2 log n) when m = 2n. Below we show
that heuristically we can take log M = O(n2), which gives a knapsack density
d = n/ log M = O(1/n). We also give the concrete bitsize of M used in our
experiments, and provide a heuristic complexity analysis.
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Heuristic size of the modulus M . In order to derive a heuristic size for the
modulus M , we use an approximation of the terms in the condition (3) from
Lemma 2.

We start with the term λm−n

(L⊥
x

)
. For a “random lattice” we expect the

lattice minima to be balanced, and therefore λm−n

(L⊥
x

)
to be roughly equal to

λ1

(L⊥
x

)
. This means that instead of the rigorous inequality (6) from the proof

of Theorem 1, we use the heuristic approximation:

λm−n

(L⊥
x

) � √
γm−n det(L⊥

x )
1

m−n .

Using (7), this gives:

λm−n

(L⊥
x

)
� √

γm−nm
n

2(m−n) . (8)

For the term λ1

(
Λ⊥

M (α)
)
, using the Gaussian heuristic, we expect:

λ1

(
Λ⊥

M (α)
) � √

γnM
1
n .

Finally the 2m/2 factor in (3) corresponds to the LLL Hermite factor with δ =
3/4; in practice we will use δ = 0.99, and we denote by 2ιm the corresponding
LLL Hermite factor. Hence from (3) we obtain the heuristic condition:

√
mn · 2ι·m · √

γm−n · m
n

2(m−n) <
√

γnM1/n.

This gives the condition:

2ι·m√
γm−n · n · m

m
2(m−n) <

√
γnM1/n

which gives:

log M > ι · m · n +
n

2
log(n · γm−n/γn) +

mn

2(m − n)
log m. (9)

If we consider m = n + k for some constant k, we can take log M = O(n2 log n).
If m > c ·n for some constant c > 1, we can take log M = O(m ·n). In particular,
for m = 2n we obtain the condition:

log M > 2ι · n2 +
3n

2
log n + n (10)

which gives log M = O(n2) and a knapsack density d = n/ log M = O(1/n). In
practice for our experiments we use m = 2n and log M � 2ιn2 + n log n with
ι = 0.035. Finally, we note that smaller values of M could be achieved by using
BKZ reduction of L0 instead of LLL.

Heuristic complexity. Recall that for a rank-d lattice in Z
m, the complex-

ity of computing an LLL-reduced basis with the L2 algorithm is O(d4m(d +
log B) log B) without fast integer arithmetic, for vectors of Euclidean norm less
than B. At Step 1 we must apply LLL-reduction twice.
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The first LLL is applied to the rank-m lattice L0 ∈ Z
m. Therefore the com-

plexity of the first LLL is O(m5(m + log M) log M). If m = n + k for some
constant k, the heuristic complexity is therefore O(n9 log2 n). If m > c · n for
some constant c, the heuristic complexity is O(m7 · n2).

The second LLL is applied to compute the orthogonal of L(U) where U is
the matrix basis of the vectors u1, . . . ,um−n ∈ Z

m. From (5) and (8), we can
heuristically assume ‖U‖ ≤ 2m/2 ·√m·m n

2(m−n) . For m = n+k for some constant
k, this gives log ‖U‖ = O(n log n), while for m > c·n for some constant c > 1, we
obtain log ‖U‖ = O(m). The heuristic complexity of computing the orthogonal
of U is O(m5(m + (m/n) log ‖U‖)2) (see the full version of this paper [CG20]).
For m = n + k, the complexity is therefore O(n7 log2 n), while for m > c · n, the
complexity is O(m9/n2).

We summarize the complexities of the two LLL operations in Table 1; we
see that the complexities are optimal for m = c · n for some constant c > 1,
so for simplicity we take m = 2n. In that case the heuristic complexity of the
first step is O(n9), and the density is d = n/ log M = O(1/n), as in the classical
subset-sum problem.

Table 1. Modulus size and time complexity of Algorithm 1 as a function of the param-
eter m.

m log M LLL L0 LLL (L⊥
x )⊥

� n O(n · m) O(m7 · n2) O(m9/n2)

n2 O(n3) O(n16) O(n16)

2n O(n2) O(n9) O(n7)

n + 1 O(n2 log n) O(n9 log2 n) O(n7 log2 n)

3.4 Second Step of the Nguyen-Stern Attack

From the first step we have obtained an LLL-reduced basis (c1, . . . , cn) of the
completed lattice L̄x ⊂ Z

m. However this does not necessarily reveal the vectors
xi. Namely, because of the LLL approximation factor, the recovered basis vectors
(c1, . . . , cn) can be much larger than the original vectors xi, which are among the
shortest vectors in Lx. Therefore, to recover the original vectors xi, one must
apply BKZ instead of LLL, in order to obtain a better approximation factor;
eventually from h, the xi’s and M , one can recover the weights αi by solving a
linear system; this is the second step of the Nguyen-Stern algorithm.

The authors of [NS99] did not provide a time complexity analysis of their
algorithm. In the following, we provide a heuristic analysis of the second step of
the Nguyen-Stern algorithm, based on a model of the gap between the shortest
vectors of Lx (the vectors xi), and the “generic” short vectors of Lx. While
relatively simplistic, our model seems to accurately predict the minimal block-
size β required for BKZ reduction; we provide the result of practical experiments
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in the next section. Under this model the BKZ block-size β must increase almost
linearly with n; the complexity of the attack is therefore exponential in n. In
our analysis below, for simplicity we heuristically assume that the lattice Lx is
complete, i.e. L̄x = Lx.

Short vectors in Lx. The average norm of the original binary vectors xi ∈
Z

m is roughly
√

m/2. If we take the difference between some xi and xj , the
components remain in {−1, 0, 1}, and the average norm is also roughly

√
m/2.

Therefore, we can assume that the vectors xi and xi − xj for i �= j are the
shortest vectors of the lattice Lx.

We can construct “generic” short vectors in Lx by taking a linear combination
with {0, 1} coefficients of vectors of the form xi −xj . For xi −xj , the variance of
each component is 1/2. If we take a linear combination of n/4 such differences
(so that roughly half of the coefficients with respect to the vectors xi are 0), the
variance for each component will be n/4 · 1/2 = n/8, and for m components the
norm of the resulting vector will be about

√
nm/8. Therefore heuristically the

gap between these generic vectors and the shortest vectors is:√
nm/8√
m/2

=
√

n

2
.

Running time with BKZ. To recover the shortest vectors, the BKZ approxi-
mation factor 2ι·n should be less than the above gap, which gives the condition:

2ι·n ≤
√

n

2
(11)

which gives ι ≤ (log(n/4))/(2n). Achieving an Hermite factor of 2ιn heuris-
tically requires at least 2Ω(1/ι) time, by using BKZ reduction with block-size
β = ω(1/ι) [HPS11]. Therefore the running time of the Nguyen-Stern algorithm
is 2Ω(n/ log n), with BKZ block-size β = ω(n/ log n) in the second step.

Recovering the vectors xi. It remains to show how to recover the vectors xi.
Namely as explained above the binary vectors xi are not the only short vectors
in Lx; the vectors xi−xj are roughly equally short. The approach from [NS99] is
as follows. Since the short vectors in Lx probably have components in {−1, 0, 1},
the authors suggest to transform the lattice Lx into a new one L′

x = 2Lx + eZ,
where e = (1, . . . , 1). Namely in that case a vector v ∈ Lx with components in
{−1, 0, 1} will give a vector 2v ∈ L′

x with components in {−2, 0, 2}, whereas a
vector x ∈ Lx with components in {0, 1} will give a vector 2x − e ∈ L′

x with
components in {−1, 1}, hence shorter. This should enable to recover the secret
vectors xi as the shortest vectors in L′

x.
Below we describe a slightly simpler approach in which we stay in the lattice

Lx. First, we explain why for large enough values of m, we are unlikely to obtain
vectors in {0,±1} as combination of more that two xi’s. Namely if we take a
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linear combination of the form xi −xj +xk, each component will be in {−1, 0, 1}
with probability 7/8; therefore for m components the probability will be (7/8)m.
There are at most n3 such triples to consider, so we want n3 · (7/8)m < ε,
which gives the condition m ≥ 16 log n − 6 log ε. With m = 2n and ε = 2−4,
this condition is satisfied for n ≥ 60; for smaller values of n, one should take
m = max(2n, 16 log n + 24).

Hence after BKZ reduction with a large enough block-size β as above, we
expect that each of the basis vectors (c1, . . . , cn) is either equal to ±xi, or equal
to a combination of the form xi − xj for i �= j. Conversely, this implies that all
rows of the transition matrix between (c1, . . . , cn) and (x1, . . . ,xn) must have
Hamming weight at most 4. Therefore while staying in the lattice Lx we can
recover each of the original binary vectors xi from the basis vectors (c1, . . . , cn),
by exhaustive search with O(n4) tests. In the full version of this paper [CG20] we
describe a greedy algorithm that recovers the original binary vectors xi relatively
efficiently.

Recovering the weights αi. Finally, from the samples h, the vectors xi’s and
the modulus M , recovering the weights αi is straightforward as this amounts to
solving a linear system:

h = α1x1 + α2x2 + · · · + αnxn (mod M)

Letting X′ be the n × n matrix with the first n components of the column
vectors xi and letting h′ be the vector with the first n components of h, we have
h′ = X′ · α where α = (α1, . . . , αn) (mod M). Assuming that X′ is invertible
modulo M , we get α = X′−1h′ (mod M).

3.5 Practical Experiments

Running times. We provide in Table 2 the result of practical experiments.
The first step is the orthogonal lattice attack with two applications of LLL. For
the second step, we receive as input from Step 1 an LLL-reduced basis of the
lattice Lx. We see in Table 2 that for n = 70 this is sufficient to recover the
hidden vectors xi. Otherwise, we apply BKZ with block-size β = 10, 20, 30, . . .
until we recover the vectors xi. We see that the two LLLs from Step 1 run in
reasonable time up to n = 250, while for Step 2 the running time of BKZ grows
exponentially, so we could not run Step 2 for n > 170. We provide the source code
of our SageMath implementation in https://pastebin.com/ZFk1qjfP, based on
the L2 [NS09] and BKZ 2.0 [CN11] implementations from [fpl16].

Hermite factors. Recall that from our heuristic model from Sect. 3.4 the
target Hermite factor for the second step of the Nguyen-Stern algorithm is γ =√

n/2, which can be written γ = an with a = (n/4)1/(2n). We provide in Table 2
above the corresponding target Hermite factors as a function of n.

In order to predict the Hermite factor achievable by BKZ as a function of the
block-size β, we have run some experiments on a different lattice, independent

https://pastebin.com/ZFk1qjfP
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Table 2. Running time of the [NS99] attack, under a 3,2 GHz Intel Core i5 processor.

Step 1 Step 2

n m logM LLL L0 LLL L⊥
x Hermite Reduction Total

70 140 772 3 s 1 s 1.021n LLL ε 6 s

90 180 1151 10 s 4 s 1.017n BKZ-10 1 s 18 s

110 220 1592 28 s 12 s 1.015n BKZ-10 3 s 50 s

130 260 2095 81 s 24 s 1.013n BKZ-20 10 s 127 s

150 300 2659 159 s 44 s 1.012n BKZ-30 4 min 8 min

170 340 3282 6 min 115 s 1.011n BKZ-30 438 min 447 min

190 380 3965 13 min 3 min 1.010n − − −
220 440 5099 63 min 29 min 1.009n − − −
250 500 6366 119 min 56 min 1.008n − − −

from our model of Sect. 3.4. For this we have considered the lattice L ∈ Z
n of

row vectors:

L =

⎡
⎢⎢⎢⎢⎢⎣

p
c1 1
c2 1
...

. . .
cn−1 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

for some prime p, with random ci’s modulo p. Since det L = p, by applying LLL
or BKZ we expect to obtain vectors of norm 2ιn(det L)1/n = 2ιn ·p1/n, where 2ιn

is the Hermite factor. We summarize our results in Table 3 below. Values up to
β = 40 are from our experiments with the lattice L above, while for β ≥ 85 the
values are reproduced from [CN11], based on a simulation approach.

Table 3. Experimental and simulated Hermite factors for LLL (β = 2) and for BKZ
with block-size β.

Block-size β 2 10 20 30 40 85 106 133

Hermite factor 1.020n 1.015n 1.014n 1.013n 1.012n 1.010n 1.009n 1.008n

In summary, the minimal BKZ block-sizes β required experimentally in Table 2
to apply Step 2 of Nguyen-Stern, seem coherent with the target Hermite factors
from our model, and the experimental Hermite factors from Table 3. For example,
for n = 70, this explains why an LLL-reduced basis is sufficient, because the
target Hermite factor is 1.021n, while LLL can achieve 1.020n. From Table 3,
BKZ-10 can achieve 1.015n, so in Table 2 it was able to break the instances
n = 90 and n = 110, but not n = 130 which has target Hermite factor
1.013n. However we see that BKZ-20 and BKZ-30 worked better than expected; for
example BKZ-30 could break the instance n = 170 with target Hermite factor
1.011n, while in principle from Table 3 it can only achieve 1.013n. So it could
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be that our model from Sect. 3.4 underestimates the target Hermite factor.
Nevertheless, we believe that our model and the above experiments confirm that
the complexity of the Nguyen-Stern algorithm is indeed exponential in n.

4 Our Polynomial-Time Algorithm for Solving
the Hidden Subset-Sum Problem

Recall that the Nguyen-Stern attack is divided in the two following steps.

1. From the samples h, determine the lattice L̄x, where Lx is the lattice gen-
erated by the xi’s.

2. From L̄x, recover the hidden vectors xi’s. From h, the xi’s and M , recover
the weights αi.

In the previous section we have argued that the complexity of the second step
of the Nguyen-Stern attack is exponential in n. In this section we describe an
alternative second step with polynomial-time complexity. However, our second
step requires more samples than in [NS99], namely we need m � n2/2 samples
instead of m = 2n. This means that in the first step we must produce a basis of
the rank-n lattice L̄x ⊂ Z

m, with the much higher vector dimension m � n2/2
instead of m = 2n.

For this, the naive method would be to apply directly Algorithm 1 from
Sect. 3.1 to the vector h of dimension m � n2/2. But for n � 200 one would
need to apply LLL on a m × m matrix with m � n2/2 � 20 000, which is
not practical; moreover the bitsize of the modulus M would need to be much
larger due to the Hermite factor of LLL in such large dimension (see Table 1).
Therefore, we first explain how to modify Step 1 in order to efficiently generate
a lattice basis of L̄x ⊂ Z

m for large m. Our technique is as follows: instead of
applying LLL on a square matrix of dimension n2/2, we apply LLL in parallel
on n/2 square matrices of dimension 2n, which is much faster. Eventually we
show in Sect. 5 that a single application of LLL is sufficient.

4.1 First Step: Obtaining a Basis of L̄x for m � n

In this section, we show how to adapt the first step, namely the orthogonal lattice
attack from [NS99] recalled in Sect. 3.1, to the case m � n. More precisely,
we show how to generate a basis of n vectors of L̄x ⊂ Z

m for m � n2/2, while
applying LLL on matrices of dimension t = 2n only. As illustrated in Fig. 1,
this is relatively straightforward: we apply Algorithm 1 from Sect. 3.1 on 2n
components of the vector h ∈ Z

m at a time, and each time we recover roughly
the projection of a lattice basis of L̄x on those 2n components; eventually we
recombine those projections to obtain a full lattice basis of L̄x.

More precisely, writing h = [h0, . . . ,hd] where m = (d + 1) · n and hi ∈ Z
n,

we apply Algorithm 1 on each of the d sub-vectors of the form (h0,hi) ∈ Z
2n

for 1 ≤ i ≤ d. For each 1 ≤ i ≤ d this gives us C(i)
0 ‖Ci ∈ Z

n×2n, the completion



A Polynomial-Time Algorithm for Solving the Hidden Subset Sum Problem 17

h h0 h1 h2 · · · hd

↓
L̄x C(1)

0 C1 − → C0 C1 −

L̄x C(2)
0 − C2 − → C0 − C′

2 −
...

...

L̄x C(d)
0 − Cd → C0 − C′

d

↓
L̄x C0 C1 C′

2 · · · C′
d

Fig. 1. Computation of a lattice basis of L̄x.

of the projection of a lattice basis of Lx. To recover the m components of the
basis, we simply need to ensure that the projected bases C(i)

0 ‖Ci ∈ Z
n×2n always

start with the same matrix C0 on the first n components; see Fig. 1 for an
illustration. This gives Algorithm 2 below. We denote Algorithm 1 from Sect. 3.1
by OrthoLat.

Algorithm 2. Orthogonal lattice attack with m = d · n samples
Input: h ∈ Z

m, M, n, m = d · n.
Output: A base matrix of L̄x.
1: Write h = [h0, . . . ,hd] where hi ∈ Z

n for all 0 ≤ i ≤ d.
2: for i ← 1 to d do
3: yi ← [h0, hi]

4: C
(i)
0 ‖Ci ← OrthoLat(yi, M, n, 2n)

5: Qi ← C
(1)
0 · (C

(i)
0 )−1

6: C′
i ← Qi · Ci

7: end for
8: return [C0,C1,C

′
2, · · · ,C′

d]

A minor difficulty is that in principle, when applying OrthoLat (Algorithm 1)
to a subset yi ∈ Z

2n of the sample h ∈ Z
m, we actually recover the com-

pletion of the projection of Lx over the corresponding coordinates, rather than
the projection of the completion L̄x of Lx. More precisely, denote by π a generic
projection on some coordinates of a lattice Lx. It is always true that π(Lx) ⊆
π(L̄x) ⊆ π(Lx). Thus applying Algorithm 1 with a certain projection π we re-
cover the completion π(Lx). Assuming that the projection π(Lx) is complete, we
obtain π(Lx) = π(Lx) = π(L̄x). Therefore, to simplify the analysis of Algo-
rithm 2, we assume that the projection over the first n coordinates has rank n, and
that the projection over the first 2n coordinates is complete. This implies that
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the transition matrices Qi ← C(1)
0 · (C(i)

0 )−1 for 2 ≤ i ≤ d must be integral;
in our practical experiments this was always the case.

Theorem 2. Let m = d · n for d ∈ N and d > 1. Assume that the projection
of the lattice Lx ∈ Z

m over the first n components has rank n, and that the
projection of Lx over the first 2n coordinates is complete. With probability at
least 1/2 over the choice of α, Algorithm 2 recovers a basis of L̄x in polynomial
time, assuming that M is a prime of bitsize at least 4n2(log n + 1).

Proof. From Theorem 1, we recover for each 1 ≤ i ≤ d a basis C(i)
0 ‖Ci corre-

sponding to the completed projection of Lx to the first n coordinates and the
i + 1-th subset of n coordinates, with probability at least 1/2 over the choice
of α. Let us denote by X the base matrix whose rows are the vectors xi’s. By
assumption the vectors xi are linear independent, the first n × n minor X0 is
invertible and the matrices C(i)

0 for i = 1, . . . , d must generate a superlattice
of X0. In particular, there exists an invertible integral matrix Qi such that
Qi · C(i)

0 = C(1)
0 for each i = 1, . . . , d. So, applying Qi = C(1)

0 (C(i)
0 )−1 to Ci we

find C′
i, which contains the i + 1-th subset of n coordinates of the vectors in a

basis having C0 := C(1)
0 as projection on the first n coordinates. This implies

that [C0,C1,C′
2, · · ·C′

d] is a basis of L̄x. ��

Heuristic analysis. For the size of the modulus M , since we are working with
lattices in Z

2n, we can take the same modulus size as in the heuristic analysis
of Step 1 from Sect. 3.3, namely

log M � 2ιn2 + n log n

with ι = 0.035. The time complexity of Algorithm 2 is dominated by the cost of
applying OrthoLat (Algorithm 1) to each yi, which is heuristically O(n9) from
Sect. 3.3. Therefore, the heuristic complexity of Algorithm 2 is d · O(n9) =
O(m · n8). In particular, for m � n2/2, the heuristic complexity of Algorithm 2
is O(n10), instead of O(n16) with the naive method (see Table 1). In Sect. 5 we
will describe an improved algorithm with complexity O(n9).

4.2 Second Step: Recovering the Hidden Vectors xi’s

By the first step we recover a basis C = (c1, . . . , cn) of the hidden lattice
L̄x ∈ Z

m. The goal of the second step is then to recover the original vectors
x1, . . . ,xn ∈ L̄x, namely to solve the following problem:

Problem 1. Let X ← {0, 1}n×m. Given C ∈ Z
n×m such that WC = X for

some W ∈ Z
n×n ∩ GL(Q, n), recover W and X.

We show that for m � n2/2 the above problem can be solved in heuristic
polynomial time, using a multivariate approach. Namely we reduce the prob-
lem to solving a system of multivariate quadratic equations and we provide an
appropriate algorithm to solve it.
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Heuristically we expect the solution to be unique up to permutations of the
rows when m � n. Indeed for large enough m we expect the vectors xi to be the
unique vectors in L̄x with binary coefficients. More precisely, consider a vector
v = xi + xj or v = xi − xj for i �= j. The probability that all components of v
are in {0, 1} is (3/4)m, so for n2/2 possible choices of i, j the probability is at
most n2 · (3/4)m, which for m � n2/2 is a negligible function of n. Therefore we
can consider the equivalent problem:

Problem 2. Given C ∈ Z
n×m of rank n, suppose there exist exactly n vectors

wi ∈ Z
n such that wi · C = xi ∈ {0, 1}m for i = 1, . . . , n, and assume that the

vectors wi are linearly independent. Find w1, . . . ,wn.

We denote by c̃1, . . . , c̃m the column vectors of C, which gives:⎡
⎢⎣

w1

...
wn

⎤
⎥⎦

⎡
⎢⎣ c̃1 · · · c̃m

⎤
⎥⎦ =

⎡
⎢⎣

x1

...
xn

⎤
⎥⎦

Multivariate approach. The crucial observation is that since all components
of the vectors xi are binary, they must all satisfy the quadratic equation y2−y =
0. Therefore for each i = 1, . . . , n we have:

wi · C ∈ {0, 1}m ⇐⇒ ∀j ∈ [1,m], (wi · c̃j)2 − wi · c̃j = 0
⇐⇒ ∀j ∈ [1,m], (wi · c̃j)(wi · c̃j)ᵀ − wi · c̃j = 0
⇐⇒ ∀j ∈ [1,m], wi · (c̃j · c̃ᵀ

j ) · wᵀ
i − wi · c̃j = 0

Given the known column vectors c̃1, . . . , c̃m, the vectors w1, . . . ,wn and 0 are
therefore solutions of the quadratic polynomial multivariate system⎧⎪⎪⎨

⎪⎪⎩
w · c̃1c̃ᵀ

1 · wᵀ − w · c̃1 = 0
...

w · c̃mc̃ᵀ
m · wᵀ − w · c̃m = 0

(12)

In the following we provide a heuristic polynomial-time algorithm to solve this
quadratic multivariate system, via linearization and computation of eigenspaces.
More precisely, as in the XL algorithm [CKPS00] we first linearize (12); then we
prove that the wi’s are eigenvectors of some submatrices of the kernel matrix,
and we provide a method to recover them in polynomial time. We observe that
such approach is deeply related to Gröbner basis techniques for zero dimensional
ideals. Namely, the system (12) of polynomial equations defines an ideal J . If the
homogeneous degree 2 parts of such polynomials generate the space of monomials
of degree 2, a Gröbner basis of J can be obtained via linear transformations, and
the xi’s recovered in polynomial time. We refer to [CLO05] for the Gröbner basis
perspective. For this approach the minimal condition is clearly m = (n2 + n)/2.
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Linearization. Since (c̃j)i = Cij , for all 1 ≤ j ≤ m, we can write:

y · c̃j c̃
ᵀ
j · yᵀ =

n∑
i=1

n∑
k=1

yiykCijCkj =
n∑

i=1

n∑
k=i

yiyk(2 − δi,k)CijCkj

with δi,k = 1 if i = k and 0 otherwise. In the above equation the coefficient of
the degree 2 monomial yiyk for 1 ≤ i ≤ k ≤ n is (2 − δi,k)CijCkj . Thus, we
consider the corresponding vectors of coefficients for 1 ≤ j ≤ m:

rj = ((2 − δi,k)CijCkj)1≤i≤k≤n ∈ Z
n2+n

2 . (13)

We set R ∈ Z
n2+n

2 ×m to be the matrix whose columns are the rj ’s and

E =
[

R
−C

]
∈ Z

n2+3n
2 ×m;

we obtain that (12) is equivalent to{
[ z | y ] · E = 0

z = (yiyk)1≤i≤k≤n ∈ Z
n2+n

2
(14)

For m > (n2 +n)/2 we expect the matrix R to be of rank (n2 +n)/2. In that
case we must have rankE ≥ (n2 + n)/2, and so dim kerE ≤ n. On the other
hand, consider the set of vectors

W = {((wiwk)1≤i≤k≤n,w) ∈ Z
n2+3n

2 | w ∈ {w1, . . . ,wn}}.

Since by assumption the vectors wi’s are linearly independent, Span(W) is a
subspace of dimension n of kerE. This implies that dim kerE = n, and that a
basis of kerE is given by the set W. In the following, we show how to recover
W, from which we recover the matrix W and eventually the n vectors xi.

Kernel computation. Since the set of n vectors in W form a basis of kerE,
the first step is to compute a basis of kerE over Q from the known matrix
E ∈ Z

n2+3n
2 ×m. However this does not immediately reveal W since the n vectors

of W form a privileged basis of kerE; namely the vectors in W have the following
structure: (

(wiwk)1≤i≤k≤n, w1, . . . wn) ∈ Z
n2+3n

2 .

To recover the vectors in W we proceed as follows. Note that the last n
components in the vectors in W correspond to the linear part in the quadratic
equations of (12). Therefore we consider the base matrix K ∈ Q

n×n2+3n
2 of kerE

such that the matrix corresponding to the linear part is the identity matrix:

K =
[
M | In

]
(15)



A Polynomial-Time Algorithm for Solving the Hidden Subset Sum Problem 21

where M ∈ Q
n×n2+n

2 . A vector v = (v1, . . . , vn) ∈ Z
n is then a solution of (14)

if and only if v · K ∈ W, which gives:

v · M = (vivk)1≤i≤k≤n.

By duplicating some columns of the matrix M, we can obtain a matrix M′ ∈
Z

n2×n such that:
v · M′ = (vivk)1≤i≤n,1≤k≤n.

We write M′ = [M1, . . . ,Mn] where Mi ∈ Z
n×n. This gives:

v · Mi = vi · v

for all 1 ≤ i ≤ n.
This means that the eigenvalues of each Mi are exactly all the possible i-th

coordinates of the target vectors w1, . . . ,wn. Therefore the vectors wj ’s are the
intersections of the left eigenspaces corresponding to their coordinates.

Eigenspace computation. Consider for example the first coordinates wj,1 of
the vectors wj . From the previous equation, we have:

wj · M1 = wj,1 · wj .

Therefore the vectors wj are the eigenvectors of the matrix M1, and their first
coordinates wj,1 are the eigenvalues. Assume that those n eigenvalues are dis-
tinct; in that case we can immediately compute the n corresponding eigenvectors
wj and solve the problem. More generally, we can recover the vectors wj that
belong to a dimension 1 eigenspace of M1; namely in that case wj is the unique
vector of its eigenspace such that wj · C ∈ {0, 1}m, and we recover the corre-
sponding xj = wj · C.

Our approach is therefore as follows. We first compute the eigenspaces E1, . . .,
Es of M1. For every 1 ≤ k ≤ s, if dimEk = 1 then we can compute the
corresponding target vector, as explained above. Otherwise, we compute M2,k

the restriction map of M2 at Ek and we check the dimensions of its eigenspaces.
As we find eigenspaces of dimension 1 we compute more target vectors, otherwise
we compute the restrictions of M3 at the new eigenspaces and so on. We iterate
this process until we find all the solutions; see Algorithm 3 below.

In order to better analyze this procedure, we observe that we essentially
construct a tree of subspaces of Qn, performing a breadth-first search algorithm.
The root corresponds to the entire space, and each node at depth i is a son of
a node E at depth i − 1 if and only if it represents a non-trivial intersection of
E with one of the eigenspaces of Mi. Since these non-trivial intersections are
exactly the eigenspaces of the restriction of Mi to E, our algorithm does not
compute unnecessary intersections. Moreover, we know that when the dimension
of the node is 1 all its successors represent the same space; hence that branch of
the algorithm can be closed; see Fig. 2 for an illustration.
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Algorithm 3. Multivariate attack
Input: C ∈ Z

n×m a basis of L̄x.
Output: x1, . . . ,xn ∈ {0, 1}m, such that wi · C = xi for i = 1, . . . , n.

1: Let rj = ((2 − δi,k)CijCkj)1≤i≤k≤n ∈ Z
n2+n

2 for 1 ≤ j ≤ m.

2: E =

[
r1 · · · rm

−C

]
∈ Z

n2+3n
2 ×m

3: K ←Ker E with K =
[
M | In

] ∈ Q
n× n2+3n

2

4: Write M = [m̃ik]1≤i≤k≤n where m̃ik ∈ Q
n.

5: Let Mi ∈ Q
n×n with Mi = [m̃ik]1≤k≤n, using m̃ik := m̃ki for i > k.

6: L ← [In]
7: for i ← 1 to n do
8: L2 ← []
9: for all V ∈ L do

10: if rankV = 1 then
11: Append a generator v of V to L2.
12: else
13: Compute A such that V · Mi = A · V.
14: Append all eigenspaces U of A to L2.
15: end if
16: end for
17: L ← L2

18: end for
19: X ← []
20: for all v ∈ L do
21: Find c �= 0 such that x = c · v · C ∈ {0, 1}m, and append x to X.
22: end for
23: return X

2

1

1

1

0

1

1

1

In

M1

M2

M3

Fig. 2. Example of the tree we obtain for w1 = (2, 1, 1),w2 = (1, 0, 1),w3 = (1, 1, 1).
The matrix M1 has an eigenspace of dimension 1 E1,2 and one of dimension 2 E1,1.
At the first iteration we obtain therefore w1. Then we compute the restriction of
M2 to E1,1; this has two distinct eigenvalues 0 and 1, which enables to recover the
eigenvectors w2 and w3. All the nodes at depth 2 represent dimension one spaces,
hence the algorithm terminates.
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Analysis and reduction modulo p. Our algorithm is heuristic as we must
assume that the matrix R ∈ Z

n2+n
2 ×m has rank (n2 + n)/2. In our experiments

we took m = (n2 + 4n)/2 and this hypothesis was always satisfied. The running
time of the algorithm is dominated by the cost of computing the kernel of a
matrix E of dimension n2+3n

2 × m. For m = (n2 + 4n)/2, this requires O(n6)
arithmetic operations. Thus we have shown:

Lemma 4. Let C ∈ Z
n×m be an instance of Problem 2 and R ∈ Z

n2+n
2 ×m the

matrix whose columns are the ri constructed as in (13). If R has rank n2+n
2 ,

then the vectors xi can be recovered in O(n6) arithmetic operations.

In practice it is more efficient to work modulo a prime p instead of over Q.
Namely Problem 1 is defined over the integers, so we can consider its reduction
modulo a prime p:

WC = X (mod p)

and since X has coefficients in {0, 1} we obtain a system which is exactly the
reduction of (12) modulo p. In particular, we can compute K = kerE modulo
p instead of over Q, and also compute the eigenspaces modulo p. Setting R =
R mod p, if R has rank n2+n

2 , then X can be recovered by O(n6 · log2 p) bit
operations.

Note that we cannot take p = 2 as in that case any vector wi would be a
solution of wi ·C = xi (mod 2), since xi ∈ {0, 1}m. In practice we took p = 3 and
m = (n2 + 4n)/2, which was sufficient to recover the original vectors x1, . . . ,xn.
In that case, the heuristic time complexity is O(n6), while the space complexity
is O(n4). We provide the results of practical experiments in Sect. 7, and the
source code in https://pastebin.com/ZFk1qjfP.

5 Improvement of the Algorithm First Step

The first step of our new attack is the same as in [NS99], except that we need to
produce m−n orthogonal vectors in L⊥

x from m = n(n+4)/2 samples, instead of
only m = 2n samples in the original Nguyen-Stern attack. Therefore, we need to
produce n(n + 2)/2 orthogonal vectors in L⊥

x , instead of only n. In Sect. 4.1,
this required m/n � n/2 parallel applications of LLL to compute those
m − n vectors in L⊥

x , and similarly n/2 parallel applications of LLL to compute
the orthogonal L̄x = (L⊥

x )⊥ ∈ Z
m. Overall the heuristic time complexity was

O(n10).
In this section, we show that only a single application of LLL (with the same

dimension) is required to produce the m − n orthogonal vectors in L⊥
x . Namely

we show that once the first n orthogonal vectors have been produced, we can
very quickly generate the remaining m − 2n other vectors, by size-reducing the
original basis vectors with respect to an LLL-reduced submatrix. Similarly a
single application of LLL is required to recover a basis of L̄x. Eventually the
heuristic time complexity of the first step is O(n9), as in the original Nguyen-
Stern algorithm. This implies that the heuristic complexity of our full algorithm
for solving the hidden subset sum problem is also O(n9).

https://pastebin.com/ZFk1qjfP
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5.1 Closest Vector Problem

Size reduction with respect to an LLL-reduced sub-matrix essentially amounts
to solving the approximate closest vector problem (CVP) in the corresponding
lattice.

Definition 2 (Approximate closest vector problem). Fix γ > 1. Given
a basis for a lattice L ⊂ Z

d and a vector t ∈ R
d, compute v ∈ L such that

‖t − v‖ ≤ γ‖t − u‖ for all u ∈ L.
To solve approximate-CVP, Babai’s nearest plane method [Bab86] induc-

tively finds a lattice vector close to a vector t, based on a Gram-Schmidt basis.
Alternatively, Babai’s rounding technique has a worse approximation factor γ
but is easier to implement in practice.

Algorithm 4. Babai’s rounding method
Input: a basis b1, . . . ,bd of a lattice L ⊂ Z

d. A vector t ∈ Z
d.

Output: a vector v ∈ L.
1: Write t =

∑d
i=1 uibi with ui ∈ R.

2: return v =
∑d

i=1
ui�bi

Theorem 3 (Babai’s rounding [Bab86]). Let b1, . . . ,bd be an LLL-reduced
basis (with respect to the Euclidean norm and with factor δ = 3/4) for a lattice
L ⊂ R

d. Then the output v of the Babai rounding method on input t ∈ R
d

satisfies ‖t − v‖ ≤ (1 + 2d(9/2)d/2)‖t − u‖ for all u ∈ L.

5.2 Generating Orthogonal Vectors in L⊥
x

We start with the computation of the orthogonal vectors in L⊥
x . Consider the

large m×m matrix of vectors orthogonal to h1, . . . , hm modulo M corresponding
to the lattice L0. Our improved technique is based on the fact that once LLL has
been applied to the small upper-left (2n)×(2n) sub-matrix of vectors orthogonal
to (h1, . . . , h2n) modulo M , we do not need to apply LLL anymore to get more
orthogonal vectors; namely it suffices to size-reduce the other rows with respect
to these 2n already LLL-reduced vectors. After size-reduction we obtain short
vectors in L0, and as previously if these vectors are short enough, they are
guaranteed to belong to the orthogonal lattice L⊥

x ; see Fig. 3 for an illustration.
Such size-reduction is much faster than repeatedly applying LLL as in Sect. 4.1.
We describe the corresponding algorithm below.



A Polynomial-Time Algorithm for Solving the Hidden Subset Sum Problem 25

L0 :

M

a2 1
...

. . .
a2n 1

a2n+1 1

...
. . .

am 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a2n+1 1

...
. . .

am 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

. . .

1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3. In the initial basis matrix the components of the first column are big. Then by
applying LLL on the 2n × 2n submatrix the corresponding components become small;
this already gives n orthogonal vectors in L⊥

x . Then by size-reducing the remaining
m − 2n rows, one obtains small components on the 2n columns, and therefore m − 2n
additional orthogonal vectors. In total we obtain m − n orthogonal vectors.

Algorithm 5. Fast generation of orthogonal vectors
Input: h ∈ Z

m, M , n, m.
Output: A generating set of L⊥

x ⊂ Z
m.

1: Let B ∈ Z
m×m be a basis of row vectors of the lattice L0 of vectors orthogonal to

h modulo M , in lower triangular form.
2: Apply LLL to the upper-left (2n) × (2n) submatrix of B.
3: Let a1, . . . , a2n ∈ Z

2n be the 2n vectors of the LLL-reduced basis.
4: for i = 2n + 1 to m do
5: Let ti = [−hih

−1
1 [M ] 0 · · · 0] ∈ Z

2n.
6: Apply Babai’s rounding to ti, with respect to (a1, . . . , a2n). Let v ∈ Z

2n be the
resulting vector.

7: Let a′
i = [(ti − v) 0 1 0] ∈ Z

m where the 1 component is at index i.
8: end for
9: For 1 ≤ i ≤ n, extend the vectors ai to a′

i ∈ Z
m, padding with zeros.

10: Output the n vectors a′
i for 1 ≤ i ≤ n, and the m−2n vectors a′

i for 2n+1 ≤ i ≤ m.

The following Lemma shows that under certain conditions on the lattice L⊥
x ,

Algorithm 5 outputs a generating set of m − n vectors of L⊥
x . More specifi-

cally, we have to assume that the lattice L⊥
x contains short vectors of the form

[ ci 0 . . . 1 . . . 0 ] with ci ∈ Z
2n; this assumption seems to be always verified in

practice. We provide the proof in the full version of this paper [CG20].

Lemma 5. Assume that the lattice L⊥
x contains n linearly independent vectors

of the form c′
i = [ ci 0 · · · 0 ] ∈ Z

m for 1 ≤ i ≤ n with ci ∈ Z
2n and ‖ci‖ ≤ B,

and m − 2n vectors of the form c′
i = [ ci 0 . . . 1 . . . 0 ] ∈ Z

m where the 1
component is at index i, for 2n + 1 ≤ i ≤ m with ci ∈ Z

2n and ‖ci‖ ≤ B. Then
if (γB + 1)

√
mn ≤ λ1

(
Λ⊥

M (α)
)
where γ = 1 + 4n(9/2)n, Algorithm 5 returns a

set of m − n linearly independent vectors in L⊥
x , namely n vectors a′

i ∈ L⊥
x for

1 ≤ i ≤ n, and m − 2n vectors a′
i ∈ L⊥

x for 2n + 1 ≤ i ≤ m.
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Complexity analysis. Since the approximation factor γ for CVP is similar to
the LLL Hermite factor, we use the same modulus size as previously, namely
log M � 2ιn2 +n · log n with ι = 0.035. As in Sect. 3.3 the complexity of the first
LLL reduction with L2 is O(n5 log2 M) = O(n9).

We now consider the size-reductions with Babai’s rounding. To apply Babai’s
rounding we must first invert a 2n× 2n matrix with log M bits of precision; this
has to be done only once, and takes O(n3 log2 M) = O(n7) time. Then for each
Babai’s rounding we need one vector matrix multiplication, with precision log M
bits. Since the vector has actually a single non-zero component, the complexity
is O(n log2 M) = O(n5). With m = O(n2), the total complexity of size-reduction
is therefore O(n7). In the full version of this paper [CG20], we describe a further
improvement of the size-reduction step, with complexity O(n20/3) instead of
O(n7).

Overall the heuristic complexity of Algorithm 5 for computing a generating
set of L⊥

x is therefore O(n9), instead of O(n10) in Sect. 4.1.

5.3 Computing the Orthogonal of L⊥
x

As in the original [NS99] attack, once we have computed a generating set of
the rank m − n lattice L⊥

x ⊂ Z
m, we need to compute its orthogonal, with

m = n(n+4)/2 instead of m = 2n. As previously, this will not take significantly
more time, because of the structure of the generating set of vectors in L⊥

x . Namely
as illustrated in Fig. 4, the matrix defining the m − n orthogonal vectors in
L⊥
x is already almost in Hermite Normal Form (after the first 2n components),

and therefore once the first 2n components of a basis of n vectors of L̄x = (L⊥
x )⊥

have been computed (with LLL), computing the remaining m − 2n components
is straightforward.

More precisely, from Algorithm 5, we obtain a matrix A ∈ Z
(m−n)×m of row

vectors generating L⊥
x , of the form:

A =
[
U
V Im−2n

]

L⊥
x :

1

. . .

1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 4. Structure of the generating set of L⊥
x .
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where U ∈ Z
n×2n and V ∈ Z

(m−2n)×2n. As in Sect. 3.1, using the LLL-based
algorithm from [NS97], we first compute a matrix basis P ∈ Z

2n×n of column
vectors orthogonal to the rows of U, that is U · P = 0. We then compute the
matrix:

C =
[

P
−VP

]
∈ Z

m×n

and we obtain A ·C = 0 as required. Therefore the matrix C of column vectors
is a basis of L̄x = (L⊥

x )⊥.

6 Cryptographic Applications

In [NS99], the authors showed how to break the fast generator of random pairs
(x, gx (mod p)) from Boyko et al. [BPV98], using their algorithm for solving
the hidden subset-sum problem. Such generator can be used to speed-up the
generation of discrete-log based algorithms with fixed base g, such as Schnorr
identification, and Schnorr, ElGamal and DSS signatures. The generator of ran-
dom pairs (x, gx (mod p)) works as follows. We consider a prime number p and
g ∈ Z

∗
p of order M .

Preprocessing Step: Take α1, . . . , αn ← ZM and compute βj = gαj for each
j ∈ [1, n] and store (αj , βj).

Pair Generation: To generate a pair (g, gx mod p), randomly generate a sub-
set S ⊆ [1, n] such that |S| = κ; compute b =

∑
j∈S αj mod M , if b = 0

restart, otherwise compute B =
∏

j∈S βj mod p. Return (b,B).

In [NS99] the authors described a very nice passive attack against the gener-
ator used in Schnorr’s signatures, based on a variant of the hidden subset-sum
problem, called the affine hidden subset-sum problem; the attack is also appli-
cable to ElGamal and DSS signatures. Under this variant, there is an additional
secret s, and given h, e ∈ Z

m one must recover s, the xi’s and the αi’s such that:

h + se = α1x1 + α2x2 + · · · + αnxn (mod M)

Namely consider the Schnorr’s signature scheme. Let q be a prime dividing
p−1, let g ∈ Zp be a q-th root of unity, and y = g−s mod p be the public key. The
signer must generate a pair (k, gk mod p) and compute the hash e = H(mes, x)
of the message mes; it then computes y = k + se mod q; the signature is the pair
(y, e). We see that the signatures (yi, ei) give us an instance of the affine hidden
subset-sum problem above, with h = (yi), e = (−ei) and M = q.

In the full version of this paper [CG20], we recall how to solve the affine
hidden subset-sum problem using a variant of the Nguyen-Stern algorithm (in
exponential time), and then using our multivariate algorithm (in polynomial
time).
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7 Implementation Results

We provide in Table 4 the result of practical experiments with our new algo-
rithm; we provide the source code in https://pastebin.com/ZFk1qjfP, based on
the L2 implementation from [fpl16]. We see that for the first step, the most
time consuming part is the first application of LLL to the (2n)× (2n) submatrix
of L0; this first step produces the first n orthogonal vectors. The subsequent
size-reduction (SR) produces the remaining m − n � n2/2 orthogonal vectors,
and is much faster; for these size-reductions, we apply the technique described
in Sect. 5, with the improvement described in the full version of this paper
[CG20], with parameter k = 4. Finally, the running time of the second LLL
to compute the orthogonal of L⊥

x has running time comparable to the first LLL.
As explained previously we use the modulus bitsize log M � 2ιn2 +n · log n with
ι = 0.035.

Table 4. Running time of our new algorithm, for various values of n, under a 3,2
GHz Intel Core i5 processor. We provide the source code and the complete timings in
https://pastebin.com/ZFk1qjfP.

Step 1 Step 2

n m logM LLL L0 SR LLL L⊥
x Kernel mod 3 Eigenspaces Total

70 2590 772 3 s 3 s 1 s 8 s 7 s 24 s

90 4230 1151 10 s 8 s 5 s 23 s 17 s 66 s

110 6270 1592 32 s 18 s 11 s 52 s 37 s 153 s

130 8710 2095 87 s 40 s 26 s 112 s 71 s 6 min

150 11550 2659 3 min 70 s 48 s 3 min 122 s 12 min

170 14790 3282 7 min 125 s 81 s 5 min 3 min 20 min

190 18430 3965 23 min 3 min 3 min 9 min 5 min 46 min

220 24640 5099 54 min 7 min 34 min 18 min 8 min 124 min

250 31750 6366 119 min 12 min 65 min 30 min 15 min 245 min

In the second step, we receive as input from Step 1 an LLL-reduced basis of
the lattice L̄x. As described in Algorithm 3 (Step 2), one must first generate a
big matrix E of dimension roughly n2/2×n2/2, on which we compute the kernel
K = kerE; as explained in Sect. 4.2, this can be done modulo 3. As illustrated
in Table 4, computing the kernel is the most time consuming part of Step 2. The
computation of the eigenspaces (also modulo 3) to recover the original vectors
xi is faster.

Comparison with Nguyen-Stern. We compare the two algorithms in Table 5.
We see that our polynomial time algorithm enables to solve the hidden subset-
sum problem for values of n that are beyond reach for the original Nguyen-Stern
attack. Namely our algorithm has heuristic complexity O(n9), while the Nguyen-
Stern algorithm has heuristic complexity 2Ω(n/ log n). However, we need more
samples, namely m � n2/2 samples instead of m = 2n.

https://pastebin.com/ZFk1qjfP
https://pastebin.com/ZFk1qjfP
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Table 5. Timing comparison between the Nguyen-Stern algorithm and our algorithm,
for various values of n, where m is the number of samples from the generator.

n 90 110 130 150 170 190 220 250

Nguyen-Stern m 180 220 260 300 340 − − −
attack [NS99] time 18 s 50 s 127 s 8 min 447 min

Our attack
m 4230 6270 8710 11550 14790 18430 24640 31750

time 66 s 153 s 6 min 12 min 20 min 46 min 124 min 245 min

Reducing the number of samples. In the full version of this paper [CG20]
we show how to slightly reduce the number of samples m required for our attack,
with two different methods; in both cases the attack remains heuristically poly-
nomial time under the condition m = n2/2−O(n log n). We provide the results of
practical experiments in Table 6, showing that in practice the running time grows
relatively quickly for only a moderate decrease in the number of samples m.

Table 6. Running time of our new algorithm for n = 190, for smaller values of m, for
the two methods described in the full version of this paper [CG20].

Method 1 Method 2

n m Eigenspaces Total Eigenspaces Total

190 17 670 13 min 43 min 2 min 39 min

190 17 480 18 min 57 min 4 min 55 min

190 17 290 29 min 71 min 5 min 50 min

190 17 100 68 min 99 min 8 min 54 min

190 16 910 182 min 217 min 15 min 66 min

190 16 720 − − 32 min 80 min

190 16 530 − − 72 min 116 min
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