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Scalable Pseudorandom Quantum States

Zvika Brakerski∗ Omri Shmueli†

Abstract

Efficiently sampling a quantum state that is hard to distinguish from a truly random quantum
state is an elementary task in quantum information theory that has both computational and
physical uses. This is often referred to as pseudorandom (quantum) state generator, or PRS
generator for short.

In existing constructions of PRS generators, security scales with the number of qubits in
the states, i.e. the (statistical) security parameter for an n-qubit PRS is roughly n. Perhaps
counter-intuitively, n-qubit PRS are not known to imply k-qubit PRS even for k < n. Therefore
the question of scalability for PRS was thus far open: is it possible to construct n-qubit PRS
generators with security parameter λ for all n, λ. Indeed, we believe that PRS with tiny (even
constant) n and large λ can be quite useful.

We resolve the problem in this work, showing that any quantum-secure one-way function
implies scalable PRS. We follow the paradigm of first showing a statistically secure construction
when given oracle access to a random function, and then replacing the random function with a
quantum-secure (classical) pseudorandom function to achieve computational security. However,
our methods deviate significantly from prior works since scalable pseudorandom states require
randomizing the amplitudes of the quantum state, and not just the phase as in all prior works.
We show how to achieve this using Gaussian sampling.

1 Introduction

Quantum mechanics asserts that the state of a physical system is characterized by a vector in
complex Hilbert space, whose dimension corresponds to the number of degrees of freedom of the
system. Specifically, a system with 2n possible degrees of freedom (such as an n-qubit system, the
quantum analogue to an n bit system) is represented as a unit vector over C2n . The ability to sample
a random state of a system is a fundamental task when attempting to provide a computational
description of the physical world.

Since the description length of a quantum state is infinite (and very long even when taken to a
finite precision), relaxed notions for random state sampling are considered in the literature. Most
commonly (and in this work) we consider restricting the number of copies of the sampled state that
are given to the adversary.1 The notion of quantum t-designs [AE07] considers computationally
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1Recall that in the quantum setting, due to the no-cloning property, providing additional copies of the same
state allows to recover more information about it. In utmost generality, any additional copy provides additional
information, and a complete recovery of a quantum state requires infinitely many copies.
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unbounded adversaries that are given t copies of the sampled state, and the requirement is that
this input is (statistically) indistinguishable from t copies of a true random state. The resources
of generating t-designs scale at least linearly with t, and therefore if efficient generation is sought,
t designs can only be constructed for polynomial t.2 Recently, a computational variant known as
Pseudorandom Quantum State (PRS) was proposed by Ji, Liu and Song [JLS18]. In a PRS, the
adversary is allowed to request an a-priori unbounded polynomial number of samples t, but the
guarantee of indistinguishability only holds against computationally bounded adversaries. PRS have
applications in quantum-cryptography (e.g. quantum money [JLS18]) and computational physics
(e.g. simulation of thermalized quantum states [PSW06]).

It was shown in [JLS18, BS19] that PRS can be constructed from any quantum-secure one-
way function. The design paradigm in both works is as follows. First, assume you are given
(quantum) oracle access to a (classical) random function, and show how to efficiently construct
a PRS which is secure even against computationally unbounded adversaries, a notion that [BS19]
calls Asymptotically Random State (ARS). Then, replace the random function with a post-quantum
pseudorandom function (PRF) to obtain computational security. Since only a fixed number of calls
to the PRF is required in order to generate each PRS copy, this paradigm also leads to new
constructions of t-designs, as observed in [BS19].

The previous works [JLS18, BS19] showed how to construct an n-qubit PRS, which is secure
against any poly(n) time adversary. To be more precise, they constructed ARS whose distinguishing
advantage is bounded by 4t2 · 2−n, and converted it into a PRS using a PRF as described above.
We can therefore say that the statistical security parameter of the scheme is (essentially) n, and
there is an additional computational security parameter that comes from the hardness of the PRF.
Indeed, a security parameter of n seems quite sufficient since the complexity of the construction is
poly(n) so it is possible to choose n as large as needed in order to provide sufficient security. Alas
it is not possible to convert an n-qubit state generator into one that produces a random state over
a smaller number of qubits, say k < n. This may be quite surprising as one would imagine that
we can simply generate an n-qubit state, and just take its k-qubit prefix. However, recall that the
n-qubits are in superposition, and taking a prefix is equivalent to measurement of the remaining
(n − k) qubits. For each of the t copies, this measurement has a different outcome and therefore
each of the t copies will produce a different k-qubit states, as opposed to t copies of the same state
as we wanted.

This peculiar state of affairs means that prior to this work it was not known, for example, how
to construct ARS/PRS of n qubits, but with adversarial advantage bounded by 2−2n. This issue is
also meaningful when considering the concrete (non-asymptotic) security guarantees of PRS, where
we wish to obtain for example 128 bits of security against an adversary that obtains at most 220

copies of a PRS over 70 qubits.

This Work: Scalable ARS/PRS. In this light, it is desirable to introduce ARS/PRS con-
structions where the security parameter is in fact a parameter which is tunable independently of
the length of the generated state. We call this notion scalable ARS/PRS. We notice that the ap-
proaches of [JLS18, BS19] are inherently not scalable since they can only generate states in which all
computational-basis elements have the same amplitude, and the randomness only effects the phase.

2As usual, we use the notion of security parameter λ that indicates the power of honest parties and of adversaries.
We assume that honest parties run in time poly(λ) for a fixed polynomial, whereas the advantage of the adversary
needs to scale super-polynomially, and preferably exponentially, with λ.
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Such vectors are inherently distinguishable from uniform unless the dimension is very large (hence
their dependence between length and security). In this work, we present new techniques for con-
structing ARS/PRS and in particular present a scalable construction under the same cryptographic
assumptions as previous works.

1.1 Our Results

Our main technical result, as in all previous works, is concerned with constructing an ARS generator
which is efficient given oracle access to a random function.3

Lemma 1.1 (Main Technical Lemma). There exists a scalable ARS generator.
Furthermore, for every length n of a quantum state and security parameter λ, running the

generator t times (for any t) produces an output distribution that is O
(
t
eλ

)
-indistinguishable from

t copies of a random quantum state of n qubits.

We note that in previous works that construct ARS generators [JLS18, BS19] the dependence
on t in the bound on the trace distance is quadratic, that is, previous ARS generators are known to
achieve a bound of t2

2n on the trace distance between t-copies of the ARS and a random quantum
(n-qubit) state, whereas in this work the trace distance bound only scales up linearly with t.

As immediate corollaries and similarly to [JLS18, BS19], we derive the existence of a scalable
PRS generator (assuming post-quantum one-way functions) and scalable t-design generators (un-
conditionally). Unlike scalable PRS generators, scalable state t-design generators were known to
exist before this work, however their depth was known to scale up linearly with t (and polynomially
in n), and in our construction the depth scales logarithmically with t (and polynomially in n, λ).

Corollary 1.2. If post-quantum one-way functions exist, then scalable PRS generators exist.

Corollary 1.3. For any polynomial t(·) : N→ N, scalable state t(λ)-design generators exist where
the circuit depth is poly(n, λ, log t).

Our ARS construction requires a random oracle with n bits of input (where n is the length of
the generated state) and poly(λ) bits of output, it therefore follows that if n = O(log λ), then it is
possible to instantiate the construction with a completely random string of length 2n · poly(λ) =
poly(λ), and obtain statistically secure PRS. We view this consequence as not very surprising in
hindsight.

Recently Alagic, Majenz and Russell [AMR19] proposed the notion of random state simulators.
Simulators are stateful, and their local state grows with the number of copies t, however, there
is no a-priori bound on the number of copies that the simulator can produce, and the guarantee
is information-theoretic rather than computational. One can observe that a scalable ARS gen-
erator also implies efficient state simulators, by using the random-oracle simulation technique of
Zhandry [Zha19]. The state simulators of [AMR19] follow a different approach, which is not known
to imply ARS, and achieve simulators with perfect security (and thus straightforwardly scalable),
but our ARS provides a different avenue for scalable random quantum state simulators as well.

3Note that this is not the quantum random oracle model since the random oracle is “private” and the adversary
does not get access to it.
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1.2 Paper Organization

We provide a detailed technical overview of our results in Section 2. Preliminaries appear in
Section 3, and in particular we formally state the derivation of the corollaries from the main theorem
(which were implicit in previous work) in Section 3.3.5. Our technical results are presented in the
following two sections. In Section 4 we present quantum information-theoretic tools which are
required for our construction but may also find other uses. Then Section 5 contains our actual
construction.

2 Technical Overview

We now provide a technical outline of how we achieve our main result in Lemma 1.1. Deriving the
corollaries is straightforward using known techniques.4

As Lemma 1.1 states, we design an algorithm that has oracle access to a random function f ,
takes as input a bit length n and a security parameter λ, runs in time poly(n, λ), and produces a
quantum state over n-qubits |ψf,n,λ〉 (note that even though our algorithm is randomized, it can
either output the state |ψf,n,λ〉 or ⊥ and will never output the “wrong” state). It furthermore holds
that the distribution that samples a random function f and outputs |ψf,n,λ〉⊗t (i.e. t copies of the
state |ψf,n,λ〉), is within trace distance at most poly(t)/2λ from the distribution that produces t
copies of a truly randomly sampled n-qubit state.

We recall the standard Dirac notation for vectors in Hilbert space. An n-qubit state is generically
denoted by a unit vector in C2n of the form |α〉 =∑x∈{0,1}n αx|x〉. Throughout this overview we
wish to refer to normalized as well as non-normalized vectors. We will use the convention that a
vector |α〉 is not necessarily normalized unless explicitly noted that it represents a quantum state
(or a unit vector), and will denote its normalization

|α̂〉 =
∑

x∈{0,1}n
α̂x|x〉 :=

1
√

〈α|α〉
∑

x∈{0,1}n
αx|x〉 ,

where 〈α|α〉 =∑x |αx|2.
As explained above, prior works generated quantum states where in the standard basis all

coefficients had the same amplitude, i.e. their ARS could be represented by |α〉 s.t. |αx| = 1 for all
x. We abandon this approach, which as we explained cannot lead to a scalable ARS construction.
Instead, we will show how to interpret a random function f as an implicit representation of a
random unit vector in C2n . Moreover, we want this interpretation to be locally computable in the
sense that the value αx only depends on f(x). Our approach, therefore, is more direct and also
more involved than the approach taken in previous works, since we will try to sample from a space
that most closely resembles the uniform distribution over quantum states.

2.1 Our Approach: Implicit Random Gaussian Vector

Assume that we had an efficiently computable classical function g(·) s.t. if we set vx = g(f(x)) and
consider the vector |v〉 =∑x vx|x〉, then the distribution on |v〉 (induced by sampling the function
f randomly) is spherically symmetric, i.e. invariant to unitary transformations (“rotations” in C2n).

4We note that this standard transition from ARS with oracle to PRS and to t-designs was not formally stated in
its generic form in previous works. In this work we also provide the generic derivations in Section 3.3.5.
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In this case, the normalized vector |v̂〉 is a uniform unit vector. In other words, we will show how
to use the random function f as an implicit representation of a vector |v〉 such that for all x, vx
can be efficiently locally computed given x (and oracle access to f).

Our solution, therefore, needs to address two challenges. The first is to properly define a locally
efficiently computable function g with the desirable properties. The second is to efficiently generate
the quantum state |v̂〉 given oracle access to the values vx. Let us describe how we handle each one
of these challenges at a high level, and then expand on the parts that contain the bulk of technical
novelty.

First Technique: Multivariate Gaussian Sampling. For the first challenge, we use the mul-
tivariate Gaussian distribution, whose spherical symmetry has proven useful for many applications
in the literature. Our function g will simply be a Gaussian sampler (or more accurately, a two-
dimensional Gaussian sampler, for the real and imaginary parts of vx). That is, we use the entries
of the random function f as random tape for a Gaussian sampling procedure g. Since the Gaussian
distribution is spherically symmetric, such a g has the properties that we need.

This approach indeed seems quite suitable but achieving (perfect) spherical symmetry is at odds
with achieving computational efficiency, simply because the Gaussian distribution is continuous and
has infinite support. Indeed, we will need to show a truncated discretized Gaussian distribution
which on one hand can be sampled efficiently, and on the other hand provides approximate spherical
symmetry. Note that the notion of approximation we are interested in here is with respect to the
trace distance between the quantum state |v̂〉⊗t and a t-repetition of a random unit vector. This
requires us to develop tools in order to relate this notion to standard notions such as Euclidean
distance. These tools are not particularly complicated but we view them as fundamental and of
potential to be used elsewhere.5 We elaborate more on this in Section 2.2 below, and the full details
appear in Section 4.

Second Technique: Rejection Sampling. The second challenge is addressed using a quantum
analog of the rejection sampling technique. Recall that in standard probability theory, if it is
possible to sample from a distribution p where Pr[x] = px, then we can consider the experiment
of first sampling from p, and then either outputting the sample received x with probability qx, or
aborting and restarting the process with probability 1− qx. This process constitutes a sampler for
the distribution pxqx

∑

x pxqx
. The probability of not aborting is

∑

x pxqx, and therefore the expected

running time of the new sampler is 1
∑

x pxqx
. In the quantum setting, a similar technique can be

used for superpositions (Indeed, extensions of these technique were used e.g. in [ORR13]).
In this work we use quantum rejection sampling to generate quantum states from scratch. To

create our state |v〉 we will start with the uniform superposition |u〉 =∑x |x〉, and via a rejection
process we can obtain (not necessarily with good pobability), any desired superposition |v〉. The

probability of success in the quantum case is 1
d2
· 〈v|v〉〈u|u〉 , where d is an a-priori bound on maxx |vx|

that needs to be given as a parameter to the rejection sampling procedure. (The algorithm and
success probability are analogous to the classical version described above, when replacing qx with
vx
d and considering ℓ2 norm instead of ℓ1.)

On the face of it, the rejection sampling procedure can work to create any state |v〉 when a

5We will not be surprised if they were already discovered and used in the literature, but we were unable to find a
relevant reference.
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bound d is known. However, the probability of success can still be very small (e.g. negligible), so
if we wish to use repetition to obtain |v〉, the expected running time will become very large (e.g.
super-polynomial). Fortunately, our vectors |v〉 are (approximately) Gaussian, which means that
they have strong concentration properties that guarantee that with high probability two properties
are satisfied. The first is that all entries vx have roughly the same magnitude, up to a factor of
poly(n, λ).6 This allows us to choose the value d in such a way that the rejection sampling algorithm
will operate correctly. The second property is that 〈v|v〉 ≈ 2n (formally, 〈v|v〉 is a constant factor
away from 2n), this makes the probability of success noticeable (i.e. 1/poly(n, λ)). We informally
call a vector that maintains the combination of these two properties ”balanced”. By running in time
poly(n, λ) and repeating the process as needed we can amplify the success probability to 1 − 2−λ.
We generalize these properties and provide a state generator for any oracle vx which satisfied the
balance property, see Section 4.

Lastly, we note that while the first property above (bound on d) can be made to hold for any n,
the second one (lower bound on 〈v|v〉) might not hold with high enough probability. Special care
needs to be taken in the case where n is very small, since in that case concentration properties are
insufficient to imply that 〈v|v〉 does not fall far below its expected value with small yet significant
probability (we wish to succeed with all but 2−λ probability, so anything higher than that is already
significant). In such a case, the success probability of the rejection sampler might become negligibly
small, which will lead to failure in generating a state.7 Luckily, since the dimension of the vector
|v〉 is 2n, good concentration kicks in already at n & log(λ), so we only need to worry about this
issue when n < log(λ). For such small n, the sampling algorithm can store the vector |v〉 in its
entirety, and check whether the norm 〈v|v〉 is sufficiently close to its expectation (which happens
with constant probability). If the norm is not in the required range, we sample a new Gaussian.8

Repeating this roughly λ times guarantees that we generate a “balanced” vector from a spherically
symmetric distribution with all but 2−λ probability.

2.2 Approximate Gaussians Under Tensored Trace Distance

We wish to do approximate sampling from the continuous Gaussian distribution using an efficiently
locally sampleable distribution. If we wish to be fully precise, we need to consider Gaussian
distributions over the complex regime. However, for the purpose of sampling, one can think of each
complex coordinate just as two real-valued coordinates. For the purpose of this overview we will
simplify things even further and assume that we wish to sample from a real-valued Gaussian, i.e. a
vector in R2n instead of C2n . Everything we discuss here be extended to the complex regime in a
natural manner. From this point and on, our goal is to find an efficient sampler g s.t. when sampling
vx i.i.d from the distribution generated by g, and sampling wx from a continuous Gaussian, it holds
that the trace distance (quantum optimal distinguishing probability) between the quantum states

6Note that, e.g. tail bounds on the norm of a Gaussians asserts that the probability that its amplitude is beyond

k times standard deviation is at most e−c·k2

for some constant c. This means that if we want to find a tail bound
that applies to all 2n components of the vector |v〉 at the same time via union bound, it suffices to use k ≈

√
n+ λ.

7We stress again that if the success probability becomes negligible with only negligible probability, e.g. 2−
√

λ, this
is still a problem since the state generator will simply fail with this probability and therefore we cannot hope to be
2−λ close to uniform.

8Recall that we think of the values of the function f(x) as the random tape of a Gaussian sampler g. We can
consider a function f with output length which is λ times the number of random bits used by the sampler g, so that
we have sufficient randomness to re-run g as needed.
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|v̂〉⊗t and |ŵ〉⊗t, is at most poly(t) · 2−λ for all t. For any vectors |v〉, |w〉, we refer to the trace
distance between |v̂〉⊗t and |ŵ〉⊗t as the “t-tensored trace distance” between |v〉 and |w〉.

An efficiently sampleable distribution is necessarily discrete and supported over a finite segment,
whereas the Gaussian distribution is continuous and supported over (−∞,∞). Indeed, even in the
classical setting Gaussian samplers need to handle this discrepancy. Usually, when one says that
it is efficient to sample from the Gaussian distribution, they mean that it is possible to sample to
within any polynomial precision and from a Gaussian truncated far enough away from the standard
deviation that the probability mass that is chopped off is negligible.9 We adopt a similar approach
here. Formally, sampling to within a fixed precision is equivalent to sampling from a rounded
Gaussian distribution, i.e. the distribution obtained by sampling from a continuous Gaussian and
then rounding the result to the nearest multiple of ǫ, where ǫ indicates the required precision.
Truncation means that we sample from the distribution obtained by sampling a Gaussian, and if
the absolute value of the sampled value x is at most some bound B, then return x, otherwise return
0. Setting B to be sufficiently larger than the standard deviation, say by roughly a factor of k,
would imply that the resulting distribution only distorts the Gaussian by e−k

2
in total variation

distance. We set our sampler g therefore to be a sampler from the B-truncated ε-rounded Gaussian
distribution. It is possible to sample from a distribution that’s within ε statistical distance from
this distribution in time poly(log(1/ǫ), log(B)) by standard Gaussian sampling techniques, and
therefore we can set 1/ǫ to be a sufficiently large exponential function in λ, n and maintain the
efficient sampling property.

The challenge, as already mentioned above, is to translate this intuitive notion of “approximate
Gaussian” to one that is provable under tensored trace distance. In fact, we present a general
analysis of the effects of truncation and rounding on tensored trace distance. We do this using a
two-phase proof.

Part I: Tensored Trace Distance Respects Statistical Distance. We show that truncating
a continuous Gaussian introduces negligible trace distance for any number of copies t. This follows
quite straightforwardly from the classical total variation distance bound between the distributions.
In fact, we show a more general claim (Lemma 4.3): Let |v〉 and |w〉 be distributions over n-
qubit states, such that their classical distributions as 2n-dimensional vectors are within classical
statistical distance (total variation distance) δ. Then their t-tensored trace distance is at most δ
for all t. The intuition here (which can also be translated to a formal proof), is that even given
an infinite number of repetitions, a quantum state does not contain more information than its 2n-
dimensional coefficient vector. Therefore, a (computationally unbounded) adversary that attempts
to distinguish |v̂〉⊗t and |ŵ〉⊗t as quantum states cannot do better than a classical (computationally
unbounded) adversary which receives |v〉, |w〉 as explicit vectors.

Part II: Tensored Trace Distance Respects Rounding. We say that a distribution |v〉 is a
rounding of a distribution |w〉 if |v〉 can be described as first sampling an element from |w〉 and then
applying some mapping ϕ s.t. for all w, ‖ϕ(w) − w‖ is bounded (say be some value δ).10 We wish
to show that if |v〉 is a rounding of |w〉 then these vectors are close under tensored trace distance.

9An alternative to chopping the ends of the distribution is to construct a sampler that runs only in expected
polynomial time and might run for a very long superpolynomial time with small probability. This approach is less
suitable for our purposes.

10Note that we call this “rounding” but in general this can be applied in other situations.
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Let us start by considering the case t = 1, i.e. the distinguisher needs to distinguish between the
quantum states |v̂〉 and |ŵ〉. It is well established that if |v̂〉 and |ŵ〉 are close in Euclidean distance,
then they are also close in trace distance. However, this does not complete the proof since we only
have a bound on the Euclidean distance between the unnormalized vectors |v〉 and |w〉. Indeed, the
notion we care about is the Euclidean distance when projected onto the unit sphere, or in other
words the angular distance induced by ϕ. In our case, our distribution |w〉 (the Gaussian) is such
that the norm is quite regular with high probability, and this is preserved also for the rounded
version (some straightforward yet fairly elaborate calculation is required in order to establish the
exact parameters).11

Once we formalize the right notion of approximation (i.e. angular distance), it is possible to
state a general lemma (Lemma 4.5) that shows that if ϕ is s.t. the angular distance between its
input and output (over the support of |v〉) is bounded, then the t-tensored trace distance degrades
moderately with t. Therefore, if we start with a short enough angular distance, our trace distance
will indeed be bounded by poly(t)/2λ.

3 Preliminaries

3.1 Standard Notions and Notations

During this paper we use standard notations from the literature. For n ∈ N,

• We denote [n] := {1, · · · , n}.

• We denote by [n]2 the ⌈log2(n)⌉-bit binary representation of n.

• We denote by ωn the complex root of unity of order n: ωn := e
2πi
n .

• We denote by S(n) the set of n-qubit pure quantum states, by D(n) the set of n-qubit mixed
quantum states and by U(n) the set of n-qubit quantum unitary circuits.

• We sometimes denote 2n with N , when we do that, we explicitly note it.

Vectors and Quantum States. We use standard Dirac notation throughout this paper, vectors
are not assumed to be normalized unless explicitly mentioned. Specifically, for a column vector
u ∈ Cm, we denote |u〉 := u, 〈u| := u†, where u† is the conjugate transposed of u. We usually let û
denote the normalized version of the vector u, namely: û := 1

‖u‖ · u (where u is a nonzero complex

vector). Vectors that represent quantum states have unit norm and therefore are normalized by
default.

We make a distinction between a vector in a Hilbert space, and the quantum state corresponding
to this vector. The two objects are related as a complete characterization of a (pure) quantum state
over n-qubits is characterized by a vector in a 2n-dimensional Hilbert space (up to normalization and
global phase). However, the vector is not necessarily (and almost always is not) recoverable given
the n-qubit state, and quantum states that correspond to different vectors can be indistinguishable

11This introduces an additional layer of complication into our proof, as we will need to apply the rounding tool to
a restriction of the Gaussian distribution for which the norm is well behaved. Since the “regular norm” variant is
close in statistical distance to the standard Gaussian, this can be handled by our first technique above.
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(even perfectly).12 In terms of vector notation, the symbol |u〉 can refer either to the vector in the
Hilbert space of to the quantum state that corresponds to this vector, we will explicitly mention
which of the two we refer to when using this notation.

Distributions Over Quantum States as Density Matrices. Density matrices are a mathe-
matical tool to describe mixed quantum states, that is, distributions over quantum states. Formally,
let µ a (possibly continuous) probability distribution over n-qubit quantum states, µ : S(2n) →
[0, 1],

∫

|ψ〉∈S(2n) 1dµ(|ψ〉) = 1, then the density matrix induced by µ is denoted ρµ and defined as:

ρµ = E|ψ〉←µ
[(
|ψ〉〈ψ|

)]

:=

∫

|ψ〉∈S(2n)

(
|ψ〉〈ψ|

)
dµ(|ψ〉) . (1)

Statistical Distance. We use basic properties of the statistical distance metric (also known as
total variation distance). Statistical distance can be described in terms of operations, that is, for
two (possibly continuous) distributions D1, D2 with corresponding supports S1, S2, the statistical
distance between D1,D2 is the maximal advantage,

∣
∣
∣
∣
Pr

x←D1

[A(x) = 1]− Pr
x←D2

[A(x) = 1]

∣
∣
∣
∣

taken over all functions A : S1 ∪ S2 → {0, 1}. We note that we can allow A to be randomized
and obtain an equivalent definition. The statistical distance between two random variables is the
statistical distance between their associated distributions.

Additionally, throughout the proof of Theorem 5.1 we will use the following fact about the
statistical distance between a distribution and a conditional version of it.

Fact 3.1. Let X be a random variable and E some probabilistic event. Denote Y = X|Ē, i.e. the
conditional variable of X conditioned on E not happening. Then

SD(X,Y ) ≤ Pr[E] .

Trace Distance. The trace distance, defined below, is a generalization of statistical distance to
the quantum setting and represents the maximal distinguishing probability between distributions
over quantum states.

Definition 3.2 (Trace Distance). Let ρ0, ρ1 ∈ D(2n) be two density matrices of n-qubit mixed
states. For a projective measurement A with output in {0, 1} define

∆A,ρ0,ρ1 :=
∣
∣
∣Pr
[

A
(
ρ0
)
= 0
]

− Pr
[

A
(
ρ1
)
= 0
]∣
∣
∣ .

The trace distance between ρ0, ρ1 is

TD(ρ0, ρ1) := max
{0,1} projective measurement A

∆A,ρ0,ρ1 .

12Information theoretically, in the general case, one requires an infinite number of copies of a quantum state in
order to precisely recover the vector in the Hilbert space that characterizes this state.
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We note that the trace distance is often equivalently defined as 1
2 ‖ρ0 − ρ1‖1, where ‖·‖1 refers

to the ℓ1 norm of the vector of eigenvalues of the operand matrix.
A standard fact about trace distance is the following.

Fact 3.3. Let D0, D1 be two distributions over n-qubit states and let ρ0, ρ1 ∈ D(2n) be the corre-
sponding density matrices. For a projective measurement A with output in {−1, 1} define

∆̃A,ρ0,ρ1 :=

∣
∣
∣
∣
E |ψ〉←D0,
Measurement

[

A
(
|ψ〉
)]

− E |ψ〉←D1,
Measurement

[

A
(
|ψ〉
)]
∣
∣
∣
∣
.

Then,
2 · TD(ρ0, ρ1) = max

{−1,1} projective measurement A

∆̃A,ρ0,ρ1 .

The trace distance between pure states is given by the following expression.

Fact 3.4. For n-qubit pure quantum states |ψ〉, |φ〉, the trace distance between them is:

TD
(

|ψ〉〈ψ|, |φ〉〈φ|
)

=

√

1− |〈ψ|φ〉|2 .

Trace distance is an operator on density matrices. In this work we will sometimes use it
directly on distributions, that is we denote TD(D1,D2), where D1,D2 are distributions over n-
qubit quantum states. This notation refers to the trace distance between the two density matrices
induced by D1 and D2 (as per Eq. (1)). That is,

TD(D1,D2) := TD(ρD1 , ρD2) = TD

(

E|ψ〉←D1

[(
|ψ〉〈ψ|

)]

, E|ψ〉←D2

[(
|ψ〉〈ψ|

)]
)

.

Quantum Unitary for a Classical Function. Let f : {0, 1}n → {0, 1}m be a function. The
unitary of f is denoted by Uf , it is a unitary over n+m qubits defined as

∀x ∈ {0, 1}n, y ∈ {0, 1}m : Uf |x, y〉 := |x, y ⊕ f(x)〉 .

Quantum Rejection Sampling. Quantum Rejection Sampling (QRS) is a known efficient pro-
cedure for taking one quantum state |α〉 and outputting with some probability a different quantum
state |β〉, given black box access to a circuit that describes their closeness. Formally, the algorithm
QRS gets as input an n-qubit quantum state |α〉 and quantum oracle access to a unitary U on n+k
qubits (where k is related to the binary description length for complex numbers that is being used)
and have the following correctness and time complexity guarantees.

Theorem 3.5 (Quantum Rejection Sampling). Let |α〉, |β〉 be two n-qubit quantum states and let
U be an (n+ k)-qubit unitary. Assume there exists a positive real number d such that the following
hold

• d ≥ maxx∈{0,1}n
∣
∣
∣
βx
αx

∣
∣
∣.

• ∀x ∈ {0, 1}n, the complex number (βx/αx)
d can be described with full precision in k bits.

• U is the unitary of the classical function f : {0, 1}n → {0, 1}k such that f(x) := (βx/αx)
d .

Then QRSU (|α〉) outputs (success, |β〉) with probability at least 1
d2

and otherwise outputs (fail, |0n〉).
The algorithm makes a single query to U , and assuming this query takes a single time step, the

time complexity of QRSU (|α〉) is poly(n, k).
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3.2 Pseudorandom Functions and m-Wise Independent Functions

We define pseudorandom functions with quantum security (QPRFs).

Definition 3.6 (Quantum-Secure Pseudorandom Function (QPRF)). Let K = {Kn}n∈N be an
efficiently samplable key distribution, and let PRF = {PRFn}n∈N, PRFn : Kn×{0, 1}n → {0, 1}poly(n)
be an efficiently computable function, where poly(·) is some polynomial. We say that PRF is a
quantum-secure pseudorandom function if for every efficient non-uniform quantum algorithm A =
{An}n∈N (with quantum advice) that can make quantum queries there exists a negligible function
negl(·) s.t. for every n ∈ N,

∣
∣
∣
∣
Pr

k←Kn

[APRFk
n = 1]− Pr

f←({0,1}n)({0,1}n)
[Afn = 1]

∣
∣
∣
∣
≤ negl(n) .

In [Zha12], QPRFs were proved to exist under the assumption that post-quantum one-way
functions exist.

We define m-wise independent functions as keyed functions s.t. when the key is sampled from
the key distribution, then any m different inputs to the function generate m-wise independent
random variables.

Definition 3.7 (m-Wise Independent Function). Let n,m, p ∈ N, let K be a key distribution, and
let f , f : K × {0, 1}n → {0, 1}p a function. (f,K) is an m-wise independent function if for every
distinct m input values x1, · · · , xm ∈ {0, 1}n,

∀y1, · · · , ym ∈ {0, 1}p : Pr
k←K

[f(k, x1) = y1 ∧ · · · ∧ f(k, xm) = ym] = 2−p·m .

Based on m-wise independent functions we define efficiently samplable m-wise independent
function families.

Definition 3.8 (Efficient m(n)-Wise Independent Function). Let m(n), p(n) : N→ N be functions,
let K = {Kn}n∈N be an efficiently samplable key distribution, and let f = {fn}n∈N, fn : Kn ×
{0, 1}n → {0, 1}p(n) be an efficiently computable function. Then, if for every n ∈ N, (fn,Kn) is an
m(n)-independent function, then (f,K) is an efficient m(n)-wise independent function.

3.3 Quantum Randomness and Pseudorandomness

3.3.1 The Haar Measure

The Haar measure on quantum states is the quantum analogue of the classical uniform distribution
over classical bit strings. That is, it is the uniform (continuous) probability distribution on quantum
states. Recall that an n-qubit quantum state can be viewed as a unit vector in C2n , thus the Haar
measure on n qubits is the uniform distribution over all unit vectors in C2n . In this work we denote
the n-qubit Haar distribution with µn. From this point forward we refer to the uniform distribution
over quantum states simply as “random”, and don’t mention specifically that it is with respect to
the Haar distribution.
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3.3.2 Scalable Asymptotically Random State Generators

We propose a scalable variant to the notion of Asymptotically Random State (ARS) generators
which was implicitly defined in [JLS18] and explicitly in [BS19]. Previous works consider an ARS
generator to be an efficient quantum algorithm Gen that gets quantum oracle access to Uf : |x, y〉 →
|x, y ⊕ f(x)〉 for a random classical function f , along with a parameter n ∈ N that denotes the
number of desired output qubits. The guarantee of the ARS generator is that for any polynomial
t(n) in n, t(n) outputs from GenUf (executed with the same function f) have negligible trace
distance (in n) from t(n)-copies of a random n-qubit state This means that n plays two roles, it
denotes the number of qubits in the output state but also the security parameter that determines
the quality of randomness (i.e. how indistinguishable it is from random).

A Scalable ARS generator is one that gets two parameters n, λ instead of one. n, as before,
denotes the number of wanted output qubits, and λ is a security parameter, thus a scalable ARS
generator eliminates the dependence between state size and security.

Definition 3.9 (Asymptotically Random State (ARS) Generator). A quantum polynomial-time al-
gorithm Gen with input (1n, 1λ) for n, λ ∈ N and quantum oracle access to Uf : |x, y〉 → |x, y ⊕ f(x)〉
for f : {0, 1}n → {0, 1}poly(n,λ), is an ARS generator if there exists a negligible function negl(·) s.t.
for every polynomial t : N→ N, for all natural numbers n, λ,

TD
(
D1,D2

)
≤ negl(λ) ,

where the distributions D1,D2 are defined as follows.

• D1 : Sample f ←
(
{0, 1}poly(n,λ)

){0,1}n
, perform t(λ) independent executions of GenUf (1n, 1λ)

and output the t(λ) output quantum states.

• D2 : Sample |ψ〉 ← µn a random n-qubit quantum state, and output t(λ) copies of it: |ψ〉⊗t(λ).
Recall that µn is the Haar measure on n qubits.

We next define (scalable) quantum state t-design generators and (scalable) pseudorandom quan-
tum state (PRS) generators. After defining these, we briefly describe a general and simple reduction
structure that shows how to construct t-designs and PRS generators from any ARS generator.

3.3.3 Approximate Quantum State t-Designs

A quantum state t-design [AE07] is a distribution over quantum states that mimics the uniform
distribution over quantum states when the number of output copies is restricted to t. A (scalable,
approximate) quantum state t-design generator consists of two quantum algorithms K,G. The
key sampler algorithm K samples a classical key k given two parameters 1n, 1λ where n denotes
the number of qubits and λ denotes the security parameter. The state generation algorithm G
gets a key k and outputs an n-qubit state |ψ〉. Informally, the randomness gaurantee of a t-design
generator is that if we sample a key k once from K(1n, 1λ) and then execute G(k) t times and
output the t outputs, then this output distribution is going to be indistinguishable from t copies of
an n-qubit quantum state, for unbounded quantum distinguishers. The formal definition follows.

Definition 3.10 (ε(λ)-Approximate State t(λ)-Design Generator). Let ε(λ) : N → [0, 1], t(λ) :
N → N be functions. We say that a pair of quantum algorithms (K,G) is an ε(λ)-approximate
state t(λ)-design generator if the following holds:

12



• Key Generation. For all n, λ ∈ N, K(1n, 1λ) always outputs a classical key k.

• State Generation. Given k in the support of K(1n, 1λ) the algorithm G(1n, 1λ, k) will
always output an n-qubit quantum state.

• Approximate Quantum Randomness. For all n, λ ∈ N,

TD
(
D1,D2

)
≤ ε(λ) ,

where the distributions D1,D2 are defined as follows.

– D1 : Sample k ← K(1n, 1λ), perform t(λ) independent executions of G(1n, 1λ, k) and
output the t(λ) output quantum states.

– D2 : Sample |ψ〉 ← µn a random n-qubit quantum state, and output t(λ) copies of it:
|ψ〉⊗t(λ).

It is not part of the standard definition, but it is usually the case that the algorithms K,G
execute in time poly(n, λ), which is going to be the case in this work as well.

3.3.4 Pseudorandom Quantum States

We define scalable Pseudorandom State (PRS) generators. Compared to t-designs, Quantum Pseu-
dorandom State Generators have a slight difference, and formally incomparable randomness guar-
antee. Mainly, with a PRS we are guaranteed that the output state is going to be indistinguishable
for any polynomial number of copies t(λ) without knowing in advance t(λ), however this indistin-
guishability is only computational. That is, it is only guaranteed that computationally bounded
distinguishers will be unable to tell the difference between t(λ) executions of the generator and t(λ)
copies of a random quantum state. The scalability property maintains the ability to increase secu-
rity without increasing the state size n. We remind that the notion of scalability in PRS generators
was not considered in previous works [JLS18, BS19] and thus the following definition differs a bit
from the previous definition of a PRS, we view this as the more proper definition.

Definition 3.11 (Scalable Pseudorandom Quantum State (PRS) Generator). We say that a pair
of polynomial-time quantum algorithms (K,G) is a Pseudorandom State (PRS) Generator if the
following holds:

• Key Generation. For all n, λ ∈ N, K(1n, 1λ) always outputs a classical key k.

• State Generation. Given k in the support of K(1n, 1λ) the algorithm G(1n, 1λ, k) will
always output an n-qubit quantum state.

• Quantum Pseudorandomness. For any polynomial t(·) and a non-uniform polynomial-
time quantum algorithm A = {Aλ}λ∈N (with quantum advice) there exists a negligible function
negl(·) such that for all n, λ ∈ N,

∣
∣Pr[Aλ

(
D1

)
= 1]− Pr[Aλ

(
D2

)
= 1]

∣
∣ ≤ negl(λ) ,

where the distributions D1,D2 are defined as follows.

– D1 : Sample k ← K(1n, 1λ), perform t(λ) independent executions of G(1n, 1λ, k) and
output the t(λ) output quantum states.

– D2 : Sample |ψ〉 ← µn a random n-qubit quantum state, and output t(λ) copies of it:
|ψ〉⊗t(λ).
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3.3.5 Scalable PRS and Quantum State t-Design Generators from Scalable ARS Gen-
erators

We recall a generic transformation from previous works that explain how to construct PRS gen-
erators and quantum state t-designs from any ARS generator. We start with the paradigm from
[JLS18, BS19] that explains a simple way to turn any ARS generator into a PRS generator.

Lemma 3.12. If there exists a scalable ARS generator and post-quantum one-way functions exist,
then there exists a scalable PRS generator.

Proof Sketch. The proof follows the same lines as the proof of [BS19, Claim 4, Section 3.1], with the
additional scalability property. The key generator K(1n, 1λ) of the PRS is the key generator of some
quantum-secure pseudorandom function PRF with security parameter n + λ. For a sampled PRF
key k, the state generator algorithm G simply executes the ARS generator with the pseudorandom
function instead of the truly random function, G(1n, 1λ, k) := GenUPRFk (1n, 1λ). For a polynomial
t(·), t(λ) copies of the generated distribution are computationally indistinguishable (by quantum
adversaries) from t(λ) copies of the standard output distribution of the ARS generator, by the
security guarantee of the PRF. Additionally, t(λ) copies of the output distribution of the ARS is
already known to be indistinguishable (by unbounded distinguishers) from t(λ) copies of a random
quantum state, and our proof is concluded.

Also, we follow the observation from [BS19] that explains how an ARS generator implies the
existence of t-designs (with depth that has logarithmic dependence on t).

Lemma 3.13. Assume there exists a scalable ARS generator with the following properties:

• The generator is implemented by a circuit of depth T (n, λ).

• For all n, λ, t its output is ε(n, λ, t)-indistinguishable from a t-tensor of a random n-qubit
state.

Then there exists an ε(n, λ, t)-approximate scalable t-design generator, which is implementable by
circuits of depth

T (n, λ) · log(n) · log(2 · t · T (n, λ)) .

Proof Sketch. The proof is similar to the explanation in [BS19, Section 3.2], with slight differences
and an additional consideration of the scalability property. The key generator K(1n, 1λ) of the
t-design samples an efficient m-wise independent function f̃ , where m := 2t · T (n, λ). The state
generator algorithm G executes the ARS generator with the function f̃ instead with the truly
random function, G(1n, 1λ, f̃) := Gen

U
f̃ (1n, 1λ). By [Zha12, Fact 2], The behavior of any quantum

algorithm making at most m quantum queries to a 2m-wise independent function is identical to
its behavior when the queries are made to a random function. Therefore if we make t executions
of G(1n, 1λ, f̃), each of which makes at most T (n, λ) queries to Uf̃ , then the output distribution

of the algorithm G(1n, 1λ, f̃) is the same as that produced by the ARS generator (when it uses
a truly random function). Since the classical depth of an m-wise independent function on n bits
is log(n) · log(m), the proof follows (see elaboration on the classical depth of m-wise independent
functions in [BS19, Section 3.2]).
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3.4 The Continuous Gaussian and Rounded Gaussian Distributions

In this work we will work with distributions related to the Gaussian distribution over R denoted
N (0, 1), also known as the normal distribution having a mean of 0 and variance of 1. More
specifically we will consider the complex Gaussian distribution over C, denoted NC(0, 1), where
both real and imaginary parts of a complex number are sampled independently from N (0, 1).

Rounded Gaussian Distribution. The true Gaussian distribution is continuous and we cannot
exactly sample from it. Instead, we will use a discrete distribution that we can efficiently sample
from. There are quite a few versions of distributions that are discretezations of the Gaussian distri-
bution. In this work we use the rounded Gaussian distribution, which we denote by NC

R(ε,B)(0, 1).

This distribution is parameterized by ε = 2−m > 0 (for some m ∈ N) and by B ∈ N, where B is
some integer multiple of ε.

To define the distribution NC
R(ε,B)(0, 1) we first define the rounding function R(ε,B)(·). For a

number x ∈ R, if |x| > B then R(ε,B)(x) := 0, and otherwise R(ε,B)(x) rounds x up (in absolute
value) to the nearest multiple of ε. Formally, if |x| ≤ B then R(ε,B)(x) is the number y ∈ R that
has minimal absolute value and s.t. both |x| ≤ |y|, ∃k ∈ Z : y = k · ε. For a complex number z ∈ C,
R(ε,B)(z) is just applying R(ε,B)(·) to both real and imaginary parts of z.

We define NC
R(ε,B)(0, 1) to be the output distribution of the following process: Sample z ←

NC(0, 1) and output R(ε,B)(z). The output of NC
R(ε,B)(0, 1) is specified by a number between 0 and

B with precision ε = 2−m, thus the output length in bits is bounded by m+ ⌈log2(B)⌉.
We use the following standard fact about (classical) Gaussian sampling.

Fact 3.14 (Efficient Rounded Gaussian Sampling). There is a sampling algorithm GC
R() that takes

1m, B (and random tape) as input, runs in polynomial time, i.e. poly(m, logB), and samples from
a distribution that has statistical distance at most 2−m from the rounded Gaussian distribution
NC

R(2−m,B)(0, 1).

4 General Tools for Quantum Information

4.1 State Generation of Balanced Vectors

In this subsection we describe a simple procedure that given quantum oracle access to the entries
of some general, not necessarily normalized vector v ∈ C2n , generates the n-qubit quantum state
|v〉 that corresponds to (the normalization of) v. More formally, the procedure gets two pieces of
information about v:

• Quantum oracle access to Uv, the unitary of the classical function v : {0, 1}n → {0, 1}k
(where k is the description size in bits of each entry of v) that describes the vector v and
maps v(x) := vx.

• An upper bound M ∈ N on any entry of v, that is, maxx∈[N ] |vx| ≤M .

The procedure runs in time poly(n, k, logM) and outputs the quantum state |v〉 as follows.
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BVSUv (M) :

1. Define the quantum unitary Uṽ which is the unitary of the classical function ṽ : {0, 1}n →
{0, 1}k+log(M) that maps ṽ(x) := vx · 1

M .

It’s trivial to simulate Uṽ given Uv: Given a query |x, y〉, we concatenate an ancilla of zeros
and apply Uv to get |x, y, vx〉, then apply a simple unitary that multiplies by 1

M (on the last
register as input and on the second register as output) to obtain |x, y ⊕ vx · 1

M , vx〉, and then
use Uv again to uncompute the last register.

2. Execute quantum rejection sampling, (b , |v̂〉) ← QRSUṽ (|+〉⊗n) (see specification of QRS in
Theorem 3.5). If b = fail then output fail, otherwise output |v̂〉.

Claim 4.1 (BVS Success Probability). If maxi∈[N ] |vi| ≤M then the execution BVSUv(M) always

outputs either fail or the quantum state v · 1
‖v‖ = |v̂〉, furthermore the execution succeeds and

outputs the quantum state |v̂〉 with probability at least ‖v‖
2

M2·N .

Proof. We need to make sure that we execute the quantum rejection sampling algorithm QRS with
correct parameters (specified in Theorem 3.5), and also understand what exactly are the parameters

for QRS. As the starting state |α〉 we input |+〉⊗n, our target state |β〉 is |v̂〉 = |v〉
‖v‖ . As the state

transformation unitary U we use Uṽ, that is, the unitary of the classical function f(x) := vx · 1
M .

It follows that there exists an upper bound d ≥ maxx∈{0,1}n
∣
∣
∣
βx
αx

∣
∣
∣ s.t. ∀x ∈ {0, 1}n : f(x) :=

f(x) := vx · 1
M = βx/αx

d , by taking d := M ·
√
N

‖v‖ .

• d is indeed an upper bound:

∀x ∈ {0, 1}n :

∣
∣
∣
∣

βx
αx

∣
∣
∣
∣
=

∣
∣
∣
∣

vx/ ‖v‖
1/
√
N

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
vx ·
√
N

‖v‖

∣
∣
∣
∣
∣
≤ M ·

√
N

‖v‖ .

• f(·) indeed computes βx
αx
/d:

∀x ∈ {0, 1}n : f(x) := vx ·
1

M

= vx ·
1

M
·
√
N√
N
· ‖v‖‖v‖

=

(
vx
‖v‖ ·

√
N

)

·
(

1

M
· ‖v‖√

N

)

=

(
vx/‖v‖
1/
√
N

)

(
M ·
√
N

‖v‖

)

=
βx/αx
d

.

The conditions for QRS hold, and thus from the correctness guarantee of quantum rejection
sampling we can be sure that the algorithm BVS will always output either fail or |β〉 := |v̂〉.
As for the probability of success in outputting |v̂〉, again from the success guarantees of QRS this

probability is at least 1
d2

= ‖v‖2
M2·N .
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The above procedure tries to generate |v̂〉 once and it will be convenient to have an amplified
version of this algorithm as a black box, this is an option because we can always re-generate the
state |+〉⊗n efficiently and retry. The amplified version of the algorithm is with the same name and
have one more parameter k ∈ N (amplification parameter), that is, BVSUv(M,k).

The amplified version of BVS executes k (parallel) repetitions of BVSUv(M), if all fail it outputs
fail, and if either succeeds it outputs the generated state |v̂〉. The probability of BVSUv(M,k) to
succeed in generating the state |v̂〉 follows.

Claim 4.2 (Amplified BVS Success Probability). If maxi∈[N ] |vi| ≤M then the algorithm BVSUv(M,k)

always outputs either fail or the quantum state v · 1
‖v‖ = |v̂〉, furthermore the algorithm succeeds

and outputs the quantum state |v̂〉 with probability at least 1− e−
k·‖v‖2
M2·N .

Proof.

Pr
[
BVSUv(M,k) = fail

]
= Pr

[
BVSUv(M) failed k times in a row

]

=
(
Pr
[
BVSUv(M) = fail

])k

≤
(

1− ‖v‖2
M2 ·N

)k

≤ e−
k·‖v‖2
M2·N .

4.2 Analytic Tools for Distributions

In this subsection we describe some analytic tools for bounding trace norm between two distri-
butions, for multiple output copies. We start with an elementary property of trace distance and
classical statistical distance that we will use in our construction.

Lemma 4.3 (Classical Statistical Distance Implies Trace Distance). Let n ∈ N and let D1, D2 be
two distributions over unit vectors in C2n . Let D̃1, D̃2 be the quantum-state distributions of D1,
D2, that is, for b ∈ {0, 1}, a sample from D̃b is generated by sampling a vector v from Db, and
outputting an n-qubit register in the state described by v.

Then, if SD(D1,D2) ≤ ε, then for every number of copies t ∈ N,

TD
(

E|v〉←D̃1

[
(|v〉〈v|)⊗t

]
,E|v〉←D̃2

[
(|v〉〈v|)⊗t

])

≤ ε .

Proof. Intuitively, the proof follows from the fact that a computationally unbounded mapping can
always capture the computation of an (even unbounded) quantum process, along with the fact that
when the classical description of a state is available then there is no advantage in having more than
a single copy. Formally, we assume towards contradiction there is a projective measurement A (with
output in {0, 1}) that distinguishes between a t-tensor of D̃1 and a t-tensor of D̃2 with advantage
bigger than ε, and describe a (randomized) distinguisher A′ : C2n → {0, 1} that distinguishes
between D1,D2 with advantage bigger than ε. Let A denote the Hermitian matrix that corresponds
to the projective measurement A.
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The distinguisher A′ is defined as follows. Given an input v ∈ C2n , consider the vector |v′〉 =
|v〉⊗t, and compute the value p = 〈v′|A|v′〉. We note that this value is exactly the probability
that A outputs 1 when input the quantum state |v〉⊗t. The distinguisher A′ then outputs 1 with
probability p and 0 with probability 1− p. By definition, the advantage of A′ in distinguishing D1

and D2 is identical to the advantage of A in distinguishing the t-tensored D̃1 and D̃2.

Robustness to Small Shifts. Lemma 4.3 asserts that distributions on quantum states are
indistinguishable if they are induced by indistinguishable distributions over vectors in the respective
Hilbert space. This is a very strict condition and in fact in many cases distributions on quantum
states can be indistinguishable even if the the respective distributions over vectors are highly
distinguishable.

This will be useful in the context of this work since we wish to show indistinguishability between
the Haar random distribution, which corresponds to a continuous distribution over the sphere, and
an efficiently samplable distribution (with oracle access to a random function), which necessarily
produces a discrete distribution over vectors. Hence, the two distributions over vectors are neces-
sarily distinguishable (with advantage 1), and yet we will be able to bound the distinguishing gap
between the quantum states.

Technically, we rely on the well known property that quantum states that correspond to vectors
with inner product close to 1 are indistinguishable. This is formalized in Lemma 4.5 below, which
considers a distribution over vectors, and a small perturbation of this distribution, that does not
shift the vector by too much. We show that such perturbation, which in particular captures the
case of rounding a continuous distribution into some discrete domain, would be indistinguishable
in terms of the resulting quantum state.

We start with the following simple auxiliary lemma.

Lemma 4.4 (Trace Distance and Diameter of Supports Union). Let ε ∈ [0, 1], and let D1,D2 be
two distributions over unit vectors in C2n and denote their respective supports by S1, S2. Assume
that for every pair |u〉 ∈ S1, |v〉 ∈ S2 we have |〈u|v〉| ≥ 1− ε, then for all t ∈ N,

TD
(

E|v〉←D1

[
(|v〉〈v|)⊗t

]
,E|v〉←D2

[
(|v〉〈v|)⊗t

] )

≤
√

1− (1− ε)2·t .

Proof. By averaging,

TD
(

E|v〉←D1

[
(|v〉〈v|)⊗t

]
,E|v〉←D2

[
(|v〉〈v|)⊗t

] )

≤ max
|u〉∈S1,|v〉∈S2

TD
(

(|u〉〈u|)⊗t , (|v〉〈v|)⊗t
)

,

and due to the simple trace distance formula for pure states, the last expression is exaclty the
following:

√

1− |〈u⊗t|v⊗t〉|2 =
√

1− |〈u|v〉|2·t ≤
√

1− (1− ε)2·t .

Our main lemma now follows.

Lemma 4.5 (Angular Indistinguishability). Let n ∈ N, ε ∈ [0, 1], let D be a distribution over (not
necessarily normalized) vectors in V ⊆ C2n , let ϕ : V → C2n be a function and let ϕ̂ : V → C2n be
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the normalized version of ϕ, ϕ̂(v) := ϕ(v)
‖ϕ(v)‖ . Assume that for every v ∈ V , the normalization of v

and its ϕ̂-image are close on the unit sphere, that is,

|〈v̂|ϕ̂(v)〉| ≥ 1− ε,
then for all t ∈ N,

TD
(

Ev←D
[
(|v̂〉〈v̂|)⊗t

]
, Ev←D

[
(|ϕ̂(v)〉〈ϕ̂(v)|)⊗t

])

≤
√
2tε . (2)

Proof. We will show that for every projective measurement A (with output in {−1, 1}), it holds
that
∣
∣
∣
∣
E v←D,
Measurement

[

A
(
(|v̂〉〈v̂|)⊗t

)]

− E v←D,
Measurement

[

A
(
(|ϕ̂(v)〉〈ϕ̂(v)|)⊗t

)]
∣
∣
∣
∣

︸ ︷︷ ︸

Denote this ∆

≤ 2 ·
√

1− (1− ε)2·t , (3)

where the expectation is over sampling a vector from the distribution D, and over the measurement
outcome. Note that the trace distance in the lemma statement (Eq. (2)) is equal to ∆/2 (for the
measurement A that maximizes this expression, the factor of 2 is because we are now considering
{±1} distinguishers instead of {0, 1}). Therefore, showing that Eq. (3) holds will show that the trace

distance in Eq. (2) is bounded by

√

1− (1− ε)2·t. By Bernoulli’s inequality we have (1− ε)2·t ≥
1− 2tε and therefore proving that Eq. (3) holds will conclude the proof of this lemma.

We use the following notation:

• Img(ϕ)D is the distribution over the image of ϕ, such that the probability for the element
w ∈ Img(ϕ) is the probability to get w = ϕ(v) when choosing v ← D.

• For w ∈ Img(ϕ), PreImg(w)D is the conditional distribution of D, conditioned that ϕ(v) = w.

Observe that sampling v ← D is exactly like sampling w ← Img(ϕ)D and then the output of the
process is a sample v ← PreImg(w)D . It follows that

∆ =

∣
∣
∣
∣
Ew←Img(ϕ)D

[

Ev←PreImg(w)D,
Measurement

[

A
(
(|v̂〉〈v̂|)⊗t

)]
]

− Ew←Img(ϕ)D

[

Ev←PreImg(w)D ,
Measurement

[

A
(
(|ϕ̂(v)〉〈ϕ̂(v)|)⊗t

)]
] ∣
∣
∣
∣

=

∣
∣
∣
∣
Ew←Img(ϕ)D

[

Ev←PreImg(w)D,
Measurement

[

A
(
(|v̂〉〈v̂|)⊗t

)]

− Ev←PreImg(w)D ,
Measurement

[

A
(
(|ϕ̂(v)〉〈ϕ̂(v)|)⊗t

)]
]∣
∣
∣
∣
.

It is clear that the above expectation of a difference is bounded by the difference for the element
w′ ∈ Img(ϕ) that maximizes it:

≤
∣
∣
∣
∣
Ev←PreImg(w′)D ,

Measurement

[

A
(
(|v̂〉〈v̂|)⊗t

)]

− Ev←PreImg(w′)D ,
Measurement

[

A
(
(|ϕ̂(v)〉〈ϕ̂(v)|)⊗t

)]
∣
∣
∣
∣
,

which in turn is bounded by twice the trace distance,

≤ 2 · TD
(

Ev←PreImg(w′)D

[
(|v̂〉〈v̂|)⊗t

]
,Ev←PreImg(w′)D

[
(|ϕ̂(v)〉〈ϕ̂(v)|)⊗t

])

.

Finally, consider the following two distributions:
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• D1: Sample v ← PreImg(w′)D and output the normalization |v̂〉.

• D2: The constant, zero-entropy distribution that always outputs |ŵ′〉.

Note that D1, D2 satisfy the condition that for every |v̂〉 in the support of D1 (which is the set
of normalizations of PreImg(w′)), and every |û〉 in the support of D2 (which is simply {|ŵ′〉}), we
have:

|〈v̂|û〉| =
∣
∣
∣〈v̂|ŵ′〉

∣
∣
∣ = |〈v̂|ϕ̂(v)〉| ≥ 1− ε .

This is a strong condition on the distributionsD1, D2, which basically says that the diameter of their
unified supports is small. This condition is formalized in Lemma 4.4, which in our setting implies

that the trace distance between t copies of D1 and t copies of D2 is bounded by
√

1− (1− ε)2·t,
that is,

2 · TD
(

Ev←PreImg(w′)D

[
(|v̂〉〈v̂|)⊗t

]
,Ev←PreImg(w′)D

[
(|ϕ̂(v)〉〈ϕ̂(v)|)⊗t

])

≤ 2 ·
√

1− (1− ε)2·t .

5 Scalable Asymptotically Random State (ARS) Generator

In this section we describe a procedure that given quantum oracle access to a random classical
function, efficiently samples random quantum states that are arbitrarily random (i.e. we can scale
up the randomness of our sampled state and make it increasingly harder to distinguish from a
random quantum state, for an increasing number of output copies, without increasing the number
of qubits in the state) and can generate multiple copies of a state when executed multiple times
with oracle access to the same function. More formally, we describe a sampling procedure with the
following inputs:

• 1n: Number of wanted qubits in the output state.

• 1λ: Security parameter that measures ”how random” the output state is going to be (i.e. how
hard will it be to distinguish t copies of the sampled state from t copies of a random quantum
state, as a function of λ, t).

• Quantum oracle access to Uf : For a function f : {0, 1}n → {0, 1}poly(n,λ) (for some polynomial
poly(·), specified later), the sampling procedure gets oracle access to the unitary mapping Uf
of f .

The formal statement that explains how to construct a scalable ARS generator follows.

Theorem 5.1 (Scalable ARS Generator Construction). There exists a scalable ARS generator Gen
that for every n ∈ N number of qubits, 5 ≤ λ ∈ N security parameter and t ∈ N number of copies,
satisfies the following trace distance bound,

TD
(

D1,D2

)

≤ (t+ 8) · e−λ +
(

5
√
t+ λ+ 1

)

· 2−λ + 2 ·
(

8

10

)λ

,

where the distributions D1,D2 are defined as follows:
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• D1 : Sample f̃ ←
(
{0, 1}poly(n,λ)

){0,1}n
, execute t times the generation algorithm Gen

U
f̃ (1n, 1λ)

and output the t output states.

• D2 : Sample |ψ〉 a random n-qubit state and output |ψ〉⊗t.

Proof. We start with describing the procedure of Gen
U
f̃ (1n, 1λ). First, we denote ε := 2−n−λ,

B :=
⌈
2
√
n+ λ

⌉
and set the polynomial poly(n, λ) that denotes the output size of f̃ to be λ·r(ε,B),

where r(ε,B) is the randomness complexity of the rounded Gaussian sampler GC
R(ε,B). Given the

oracle access to f̃ ∈
(
{0, 1}λ·r(ε,B)

){0,1}n
, the algorithm starts with deciding on a different function

f ∈
(
{0, 1}r(ε,B)

){0,1}n
that it is going to use.

In what follows, denote N := 2n, for a function h ∈
(
{0, 1}r(ε,B)

){0,1}n
denote by vh the vector

that is created by rounded Gaussian sampling with h, that is, ∀x ∈ {0, 1}n, vhx := GC
R(ε,B)(h(x)).

We think of f̃ , that has an output length of λ · r(ε,B), as λ different functions, each having an

output length of r(ε,B). Specifically, for i ∈ [λ] define the function fi ∈
(
{0, 1}r(ε,B)

){0,1}n
as the

function that for input x ∈ {0, 1}n outputs the i-th packet of r(ε,B) bits from f̃(x).
The procedure of Gen follows.

1. Decide on a function f ∈
(
{0, 1}r(ε,B)

){0,1}n
:

• If N > λ, we actually use only the first r(ε,B) bits of the output of f̃ . That is, f is
simply f1.

• If N ≤ λ, iterate for i ∈ [λ]:

– Compute the vector vfi by applying GC
R(ε,B) to each of the N outputs of fi. If

∥
∥vfi

∥
∥ ≥

√
N
2 , denote f := fi and halt the loop.13

If you executed all iterations and did not get a function fi s.t.
∥
∥vfi

∥
∥ ≥

√
N
2 , halt and

output |0n〉 (as a sign of failure).

2. Given f execute BVSUvf (
√
2 · B, 8 · λ · B2) and output the n-qubit quantum state generated

by BVS.

We now need to show that the distributions D1 and D2 are close in trace, this will be done
by a hybrid argument, that is, we will consider hybrid distributions, starting from the distribution
generated by our construction, and approaching the distribution over truly random quantum states
(that is, t copies of a random state). We will explain why each pair of consecutive distributions are
close and at the end use the triangle inequality of trace distance to bound everything together.

In what follows we will use the fact that process D1 is exactly the following:

1. A first step where we sample vf .

• In the case N > λ, we sample f ←
(
{0, 1}r(ε,B)

){0,1}n
once and vf is determined.

• In the case N ≤ λ, we execute t tries. In each try, we sample f ←
(
{0, 1}r(ε,B)

){0,1}n
,

compute the vector vf and check whether
∥
∥vf
∥
∥ ≥

√
N
2 . If none of the trials succeed, the

output is |0n〉.
13Note that all steps here can be done efficiently in λ, because λ ≥ N = 2n.
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2. A second step where we (try to) generate t copies of the quantum state v̂f , by executing
BVSUvf (

√
2 ·B, 8 · λ · B2), t times.

Consider the following sampling processes.

• P1 : We start with the process D1.

• P2 : We would like to think about a more natural distribution for the vector vf , and move to
the output distribution of the Gaussian sampler algorithm. In this process every sampling of

vf is swapped with a sampling v ←
(

GC
R(ε,B)

)N
, the (multidimensional) output distribution

of the Gaussian sampler. This means in particular that for the case N ≤ λ we repeatedly

sample v ←
(

GC
R(ε,B)

)N
and check that ‖v‖ ≥

√
N
2 (instead of sampling f and check that

∥
∥vf
∥
∥ ≥

√
N
2 ), and if we didn’t get ‖v‖ ≥

√
N
2 in any of our tries then we also output |0n〉. After

obtaining v, we carry on regularly (that is, we perform t executions of BVSUv(
√
2·B, 8·λ·B2)).

This process yields exactly the same distribution as P1.

• P3 : In this step we will move to the actual rounded Gaussian distribution, rather than
the output distribution of the Gaussian sampler (which doesn’t necessarily sample exactly
from the rounded Gaussian distribution). In this process everything is identical to the last

process, with the exception that every sampling v ←
(

GC
R(ε,B)

)N
is swapped to sampling

v ←
(
NC

R(ε,B)(0, 1)
)N

. To move to this distribution we will use the correctness guarantee of

the sampler algorithm GC
R(ε,B).

• P4 : In order to use the correctness guarantee of the algorithm BVS and argue that it generates
copies of the quantum state |v̂〉 correctly, we will need our sampled vector v to have large
norm. In this point we would like to sample a vector that’s always long. Therefore, instead

of performing the first step where we sample v ←
(
NC

R(ε,B)(0, 1)
)N

(once, in case N > λ, or λ

times until v is long enough, in the case N ≤ λ), we sample once, v ← ˜(
NC

R(ε,B)(0, 1)
)N

from

the conditional distribution of
(
NC

R(ε,B)(0, 1)
)N

, with the condition that v is long enough:

‖v‖ ≥
√
N
2 . After the sampling of v we carry on regularly to execute BVS t executions.

• P5 : We now move to a process where after the vector is sampled, it just outputs t copies of its
corresponding quantum state. This process is identical to the last one, with the exception that

after sampling v ← ˜(
NC

R(ε,B)(0, 1)
)N

, instead of executing BVS t times, the process simply

outputs the quantum state |v̂〉⊗t. To move to the process we’ll use the success probability of
the algorithm BVS.

• P6 : We currently manage to sample vectors and generate a t-tensor of their quantum state,
and we would like to start smoothing the distribution that our vector v is coming from,
for it to get closer to a random unit vector. In particular, the distribution over random
quantum states is continuous, and our processes so far yields only a discrete distribution.
This step is a preparation for the next ones, and is intended so that we will consider the
same output distribution as before, but generated by a different process: The sampling v ←
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˜(
NC

R(ε,B)(0, 1)
)N

is swapped to sampling v′ from the conditional distribution of the standard

(and continuous) Gaussian distribution v′ ← NC(0, 1)N with the same condition that the

rounding R(ε,B)(v
′) of v′ satisfies the norm condition

∥
∥R(ε,B)(v

′)
∥
∥ ≥

√
N
2 . We then continue as

before and output a t-tensor of the quantum state of the rounded vector, that is, |R̂(ε,B)(v
′)〉⊗t.

Note that this process samples from a continuous distribution but still outputs a discrete
distribution. These two processes yield identical distributions due to the definition of the
rounded Gaussian distribution.

• P7 : In order move to a continuous distribution we will use Lemma 4.5, and for this we will
need that v′ will not only yield a long rounding R(ε,B)(v

′), but we’ll need v′ to be physically

close to R(ε,B)(v
′). In this process, instead of sampling fromNC(0, 1)N with the only condition

∥
∥R(ε,B)(v

′)
∥
∥ ≥

√
N
2 we add a second condition: ∀i ∈ [N ] : |v′i| ≤ B (recall that for complex

numbers with B-bounded absolute value, their rounding by R(ε,B)(·) will be
√
2 · ε-close).

• P8 : We finally move to a continuous output distribution. v′ is sampled as before (from the
conditional distribution of the continuous Gaussian distribution, with the conditions that v′ is
bounded per-coordinate and that the rounding of v′ is long enough), but this time we output

the quantum state without rounding it, that is, |v̂′〉⊗t (rather then |R̂(ε,B)(v
′)〉⊗t). For the

pass between these two distributions we use Lemma 4.5.

• P9 : Our last process yielded a continuous distribution over quantum states, but the uniform
distribution over quantum states is not only continuous, it is also spherically symmetric (a
property that our current distribution does not possess). To move to a spherically symmetric
distribution it’s tempting to simply cancel our conditions on v′; this will indeed yield a
spherically symmetric distribution (even the most obvious one - we know that a normalized
random Gaussian vector is exactly a random unit vector) but it is not immediately clear
how to show that such distribution is close to ours14. Our trick will be to observe that the
conditional distribution of the Gaussian distribution where the condition is a uniform lower
bound (as a side note, can also be upper bound) on the sampled vectors is also a spherically
symmetric distribution, and we’ll move to this spherically symmetric distribution in two steps.

In this step we’ll tweak our condition on the length of v′: we will ask that ‖v′‖ ≥
√
N
2 rather

than the condition that the rounded vector is long enough
∥
∥R(ε,B)(v

′)
∥
∥ ≥

√
N
2 (the other

condition about the per-cordinate bound stays the same).

• P10 : In this step we’ll drop the per-coordinate-bound condition from the sampling of v′, that
is, v′ is sampled from the conditional distribution of NC(0, 1)N with the only condition being

‖v′‖ ≥
√
N
2 . The output is then again the quantum state |v̂′〉⊗t.

• P11 : Our last step will be the distribution D2. By the spherical symmetry of the last
distribution, it is actually identical to this one.

We now explain why each pair of consecutive distributions are close in trace, and recall that
we need to show this closeness in trace as a negligible function of λ, rather than of n (or even

14Note that the probability mass of the vectors that do not satisfy the two conditions is negligible, but in N . Our
main challenge in this construction is to show negligible statistical distance in λ.
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N , as we always keep in mind the case where n = 1, N = 2). A useful notion we will repeatedly
use is, for distributions over quantum states, we can always consider their ”vector distributions”,
which are simply distributions over the vectors that describe the output quantum states (with the
same corresponding probabilities). By giving an upper bound on the statistical distance between a
pair of such vector distributions, by Lemma 4.3 we also obtain the same upper bound on the trace
distance between the two original quantum-state distributions, regardless of the number of output
copies of the sampled quantum state.

• TD (P1, P2) = 0 : Sampling a vector vf by sampling a random function f and then applying
the sampler GC

R(ε,B) to each of its outputs is by definition exactly like sampling a vector

v ←
(

GC
R(ε,B)

)N
, thus the vector distributions of the quantum-state distributions P1, P2 have

statistical distance 0 and thus in particular the above trace distance follows.

• TD (P2, P3) ≤ λ · 2−λ : Consider the vector distributions of P2, P3. In the process P2, in
any of the cases (either N > λ or N ≤ λ) we sample at most N · λ times from the sampler
GC

R(ε,B), and in P3 we perform exactly the same sampling pattern but from the distribution

NC
R(ε,B)(0, 1). By the correctness of the sampling algorithm GC

R(ε,B), the statistical distance

between the output of GC
R(ε,B) and NC

R(ε,B)(0, 1) is bounded by ε := 2−n−λ, and thus the

statistical distance of sampling N · λ times from these two is bounded by N · λ · ε = λ · 2−λ,
which is a bound on the statistical distance between the vector distributions of P2, P3, and
thus we get the above bound.

• TD (P3, P4) ≤ 2 ·
(

78
100

)λ
: Consider the vector distributions of P3, P4, and denote them by

P̃3, P̃4, accordingly. Observe that P̃4 is a conditional distribution of P̃3: In the case N > λ, it
is conditioned on that the sampled v satisfies the norm condition, and in the case N ≤ λ is it
conditioned that in one of the λ samplings, the sampled vector v satisfies the norm condition.
This implies that the statistical distance between the two vector distributions is bounded by
the probability that the condition does not hold (Fact 3.1).

By Lemma 5.5, the probability that a rounded Gaussian vector with N coordinates and
rounding parameters ε := 2−n−λ, B :=

⌈
2
√
n+ λ

⌉
does not satisfy the balance condition, is

bounded by e−
N
4 + e−λ. In the case where N > λ this probability is bounded by,

e−
λ
4 + e−λ ≤ 2 · e−λ

4 < 2 ·
(

78

100

)λ

.

Also, in the case where N ≤ λ, we perform λ independent samplings of v and thus the
probability that we fail (in all λ times) is bounded by,

(

e−
N
4 + e−λ

)λ
≤

(
N=2n≥2 , λ≥3

)

(

e−
2
4 + e−3

)λ
<

(
7

10

)λ

.

In any of the cases, the probability is bounded by 2 ·
(

78
100

)λ
.

• TD (P4, P5) ≤ t · e−λ : Let P̃4, P̃5 be the vector distributions of P4, P5. Observe that P̃5

is a conditional distribution of P̃4, conditioned on the algorithm BVS succeeding t times to
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generate the state |v̂〉, which implies that the statistical distance between them is bounded
by the probability that in one of t executions, BVS failed at least once (Fact 3.1). By a union
bound this probability is in turn bounded by t times the probability that BVSUv(

√
2 · B, 8 ·

λ · B2) failed (once). In both distributions, v is sampled from the conditional distribution
˜(

NC
R(ε,B)(0, 1)

)N
and thus satisfies ‖v‖ ≥

√
N
2 always (also, by the definition of the (ε,B)-

rounded distribution, ∀i ∈ [N ] : |vi| ≤
√
2 ·B). By Claim 4.2, the probability that BVSUv(

√
2 ·

B, 8 · λ · B2) fails to generate |v̂〉 is bounded by e−λ, and it follows that the statistical
distance between P̃4, P̃5 is bounded by t ·e−λ and thus the same bound applies for the original
distributions P4, P5.

• TD (P5, P6) = 0 : By definition of the rounded Gaussian distribution, sampling w from
(
NC

R(ε,B)(0, 1)
)N

is like sampling w′ ← NC(0, 1)N and outputting R(ε,B)(w
′). Note that

it follows that sampling v ← ˜(
NC

R(ε,B)(0, 1)
)N

(and outputting v) is identical to sampling

v′ ← NC(0, 1)N conditioned on
∥
∥R(ε,B)(v

′)
∥
∥ ≥

√
N
2 (and outputting R(ε,B)(v

′)).

• TD (P6, P7) ≤ 4 · e−λ : The vector distribution of P7 is by its definition a conditional dis-
tribution of (the vector distribution of) P6, with the condition that the sampled v′ satisfies
the per-coordinate bound condition: ∀i ∈ [N ] : |v′i| ≤ B. By Corollary 5.6, the probability
that the condition does not hold is bounded by 4 · e−λ, and thus the bound on the statistical
distance between the vector distributions (and also the quantum-state distributions) follows.

• TD (P7, P8) ≤ 6
√
2 ·
√
t ·N−1 · 2−λ : We now use lemma 4.5, but we will first understand why

we can use it. Denote by D the distribution that v′ is sampled from and by V the support
of D. Let v′ ∈ V , and by the definition of V we have ∀i ∈ [N ] : |v′i| ≤ B, and thus in
every entry of v′ both real and imaginary parts are B-bounded, and by the definition of the
rounding function both are rounded upwards when R(ε,B)(·) is applied, and furthermore are

rounded upwards by at most ε. This in turn implies that ∀i ∈ [N ] : |v′i −R(ε,B)(v
′)i| ≤

√
2 · ε

(note that we have a factor of
√
2 because we are dealing with complex numbers). Also by

the definition of V , we have
∥
∥R(ε,B)(v

′)
∥
∥ ≥

√
N
2 . The above implies that by Lemma 5.8,

∣
∣
∣〈R̂(ε,B)(v

′)|v̂′〉
∣
∣
∣ ≥ 1− 36 · ε2.

Finally, denote by ϕ(·) : V → CN the rounding function R(ε,B)(·), and observe that the
distribution P7 is exactly sampling from D, applying ϕ, normalizing and outputting t copies
of the corresponding quantum state, and the distribution P8 is the same, except that we don’t

apply ϕ. Because of the above and because we have ∀v′ ∈ V :
∣
∣
∣〈R̂(ε,B)(v

′)|v̂′〉
∣
∣
∣ ≥ 1−36 ·ε2, by

Lemma 4.5 the trace distance between P7, P8 is bounded by
√
2 · t · 36 · ε2 = 6

√
2 ·
√
t ·2−n−λ.

• TD (P8, P9) ≤ 4 · 2−λ · 6−N : Observe that the vector distribution of P9 is a conditional

distribution of the vector distribution of P8, with the condition ‖v′‖ ≥
√
N
2 . As usual, the

statistical distance between the distributions is bounded by the probability that the condition
does not hold, and by Corollary 5.10 it follows that this probability is bounded by 4 ·2−λ ·6−N
and thus so is the statistical distance.

• TD (P9, P10) ≤ 4 · e−λ : This trace closeness is by very similar reasoning as in the explanation
for the upper bound on TD(P6, P7). Specifically, P9 is a conditional distribution of P10
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with the condition that the vector v′ is per-coordinate-bounded. The probability that this
condition does not hold is bounded by 4 · e−λ according to Corollary 5.7.

• TD (P10, P11) = 0 : Recall that P11 is defined by sampling a random unit vector v from CN

and outputting a t-tensor of its corresponding quantum state |v̂〉. Also, it is a known property
of the Gaussian distribution that a normalized random Gaussian vector distributes exactly
like a random unit vector, this follows from a known property of the Gaussian distribution,
which is that it is spherically symmetric i.e. for any unitary transformation U , sampling a
Gaussian vector and applying U distributes like sampling a Gaussian vector without applying
U . The spherical symmetry property in fact also implies that any conditional distribution of
the Gaussian distribution, with the condition that the sampled vector has norm at least k (for
any k ∈ R), is also spherically symmetric. It follows that a normalization of such conditional
distribution of the Gaussian distribution also distributes like a random unit vector.

The distribution P10 is captured by the description of this conditional distribution, with k

being
√
N
2 . It follows that the vector distributions of P10 and P11 are identical and have

statistical distance of 0, and thus by Lemma 4.3 the trace distance between P10 and P11

follows.

5.1 Statistical Properties of Multidimensional Gaussian Distribution

In this subsection we state some useful properties of the Gaussian distribution, relevant to our
construction and that support the proof of the main Theorem 5.1. We start with quoting [Bar05,
Corollary 2.3], and follow with a sequence of lemmas and corollaries that are technically involved
but conceptually straightforward.

Lemma 5.2 (Gaussian Vectors are Almost Always Long [Bar05, Corollary 2.3]). For m ∈ N, ε > 0
we have,

Pr
u←N (0,1)m

[

‖u‖2 ≥ (1− ε) ·m
]

≥ 1− e− ε2·m
4 .

We’ll see that the probability for a sampled vector to be bounded per-coordinate is overwhelm-
ing, and thus it can be shown to be balanced with high probability.

Lemma 5.3 (Gaussian Vectors are Almost Always Bounded Per-Coordinate). Let n ∈ N, λ ∈ N

and B ≥ 2
√
n+ λ. Then,

Pr
v←NC(0,1)2n

[

∃i ∈ [2n] : |vi| > B
]

< e−λ .

Proof. The proof follows by a calculation and by known properties of the Gaussian distribution.
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Pr
v←NC(0,1)2n

[

∃i ∈ [2n] : |vi| > B
]

≤
(union bound)

2n · Pr
z←NC(0,1)

[

|z| > B
]

= 2n · Pr
y←N (0,1)2

[√

y21 + y22 > B
]

≤
(union bound)

2n · 2 · Pr
x←N (0,1)

[

|x| > B√
2

]

= 2n · 4 · Pr
x←N (0,1)

[

x >
B√
2

]

< 2n · 4 · 1

B
√
π
· e−B2

2
· 1
2 (4)

=
4

B
√
π
· 2n · e−B2

4

<
(B≥2·

√
n+λ)

e−λ ,

where 4 follows from a well known upper bound on the q-function of the Gaussian distribution:

∀t ≥ 0 : Pr
x←N (0,1)

[
x > t

]
<

1

t
√
2 · π

· e− t2

2 .

The corollary about Gaussian vectors being balanced follows.

Corollary 5.4 (Gaussian Vectors are Almost Always Balanced). Let n ∈ N, λ ∈ N and B ≥
2
√
n+ λ. Then we have,

Pr
v←NC(0,1)2n

[(

‖v‖ ≥
√
2n

2

)

∧ (∀i ∈ [2n] : |vi| ≤ B)

]

> 1−
(

e−
2n

4 + e−λ
)

.
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Proof.

1− e− 2n

4 ≤ 1− e−( 7
8)

2· 2·2n
4

≤
(Lemma 5.2)

Pr
u←N (0,1)2·2n

[

‖u‖2 ≥
(

1− 7

8

)

· (2 · 2n)
]

= Pr
u←N (0,1)2·2n

[

‖u‖ ≥
√
2n

2

]

= Pr
v←NC(0,1)2n

[

‖v‖ ≥
√
2n

2

]

= Pr
v←NC(0,1)2n

[(

‖v‖ ≥
√
2n

2

)

∧ (∃i ∈ [2n] : |vi| > B)

]

+ Pr
v←NC(0,1)2n

[(

‖v‖ ≥
√
2n

2

)

∧ (∀i ∈ [2n] : |vi| ≤ B)

]

≤ Pr
v←NC(0,1)2n

[

∃i ∈ [2n] : |vi| > B
]

+ Pr
v←NC(0,1)2n

[(

‖v‖ ≥
√
2n

2

)

∧ (∀i ∈ [2n] : |vi| ≤ B)

]

<
(Lemma 5.3)

e−λ + Pr
v←NC(0,1)2n

[(

‖v‖ ≥
√
2n

2

)

∧ (∀i ∈ [2n] : |vi| ≤ B)

]

,

and the above inequalities imply our wanted inequality,

1−
(

e−
2n

4 + e−λ
)

< Pr
v←NC(0,1)2n

[(

‖v‖ ≥
√
2n

2

)

∧ (∀i ∈ [2n] : |vi| ≤ B)

]

.

The last corollary implies that vectors which are sampled from rounded Gaussian distribution
are also long, if the tail-cut parameter is sufficiently large.

Corollary 5.5 (Rounded Gaussian Vectors are Almost Always Long). Let n ∈ N, λ ∈ N, ε > 0
and B ≥ 2

√
n+ λ. Then we have,

Pr
v←
(
NC

R(ε,B)
(0,1)

)2n

[

‖v‖ ≥
√
2n

2

]

> 1−
(

e−
2n

4 + e−λ
)

.
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Proof. The calculation of the probability follows.

Pr
v←
(
NC

R(ε,B)
(0,1)

)2n

[

‖v‖ ≥
√
2n

2

]

= Pr
u←NC(0,1)2n

[

∥
∥R(ε,B)(u)

∥
∥ ≥

√
2n

2

]

≥ Pr
u←NC(0,1)2n

[(

‖u‖ ≥
√
2n

2

)

∧
(
∀i ∈ [2n] : |ui| ≤ B

)

]

(5)

>
(Corollary 5.4)

1−
(

e−
2n

4 + e−λ
)

,

where 5 is due to properties of the rounding function; if |ui| ≤ B then in particular |Re(ui)| ≤ B,
|Im(ui)| ≤ B, and then it is necessarily the case that ∀i ∈ [2n] : |ui| ≤ |R(ε,B)(ui)| which then implies

‖u‖ ≤
∥
∥R(ε,B)(u)

∥
∥, and thus

√
2n

2 ≤
∥
∥R(ε,B)(u)

∥
∥ follows from

√
2n

2 ≤ ‖u‖.

Statistical Properties of Conditional Distributions. During the proof of Theorem 5.1 we
also argue about statistical properties of conditional distributions that are related to the Gaussian
distribution. For these arguments we derive a few corollaries.

Corollary 5.6. Let n ∈ N, λ ∈ N s.t. λ ≥ 3, ε > 0, B ≥ 2
√
n+ λ and let D be the conditional

distribution of v ← NC(0, 1)2
n

with the condition that
∥
∥R(ε,B)(v)

∥
∥ ≥

√
2n

2 . Then,

Pr
v←D

[

∃i ∈ [2n] : |vi| > B
]

< 4 · e−λ .

Proof. We have,

e−λ >
(Lemma 5.3)

Pr
v←NC(0,1)2n

[

∃i ∈ [2n] : |vi| > B
]

> Pr
v←NC(0,1)2n

[(
∥
∥R(ε,B)(v)

∥
∥ ≥
√
2n

2

)

∧
(
∃i ∈ [2n] : |vi| > B

)
]

= Pr
v←NC(0,1)2n

[
∥
∥R(ε,B)(v)

∥
∥ ≥

√
2n

2

]

· Pr
v←D

[

∃i ∈ [2n] : |vi| > B
]

= Pr
u←
(
NC

R(ε,B)
(0,1)

)2n

[

‖u‖ ≥
√
2n

2

]

· Pr
v←D

[

∃i ∈ [2n] : |vi| > B
]

>
(Corollary 5.5)

(

1−
(

e−
2n

4 + e−λ
))

· Pr
v←D

[

∃i ∈ [2n] : |vi| > B
]

≥
(2n≥2 , λ≥3)

(

1−
(

e−
1
2 + e−3

))

· Pr
v←D

[

∃i ∈ [2n] : |vi| > B
]

>

(
3

10

)

· Pr
v←D

[

∃i ∈ [2n] : |vi| > B
]

.

The above implies in particular,

e−λ ·
(
10

3

)

> Pr
v←D

[

∃i ∈ [2n] : |vi| > B
]

,

which implies our wanted inequality.
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Corollary 5.7. Let n ∈ N, λ ∈ N, ε > 0, B ≥ 2
√
n+ λ and let D be the conditional distribution

of v ← NC(0, 1)2
n

with the condition that ‖v‖ ≥
√
2n

2 (unlike the condition
∥
∥R(ε,B)(v)

∥
∥ ≥

√
2n

2 from
Corollary 5.6). Then,

Pr
v←D

[

∃i ∈ [N ] : |vi| > B
]

< 4 · e−λ .

Proof. We have,

e−λ >
(Lemma 5.3)

Pr
v←NC(0,1)2n

[

∃i ∈ [2n] : |vi| > B
]

> Pr
v←NC(0,1)2n

[(

‖v‖ ≥
√
2n

2

)

∧
(
∃i ∈ [2n] : |vi| > B

)
]

= Pr
v←NC(0,1)2n

[

‖v‖ ≥
√
2n

2

]

· Pr
v←D

[

∃i ∈ [2n] : |vi| > B
]

≥
(

see proof of
Corollary 5.4

)

(

1− e− 2n

4

)

· Pr
v←D

[

∃i ∈ [2n] : |vi| > B
]

≥
(2n≥2)

(

1− e− 1
2

)

· Pr
v←D

[

∃i ∈ [2n] : |vi| > B
]

>

(
3

10

)

· Pr
v←D

[

∃i ∈ [2n] : |vi| > B
]

.

The above implies in particular,

e−λ ·
(
10

3

)

> Pr
v←D

[

∃i ∈ [2n] : |vi| > B
]

,

which implies our wanted inequality.

Geometric Properties of a Vector and its Rounding. Besides statistical Properties of the
Gaussian distribution, the below is a useful Lemma that will come in handy when we will want to
use Lemma 4.5. Specifically we will use the below lemma when we’ll want to argue that a vector
and its rounding are close on the unit sphere (even in high dimensions), as long as the vector had
sufficiently-large norm in the first place.

Lemma 5.8 (Long Vectors with Coordinate-Bounded Difference are Close when Normalized). Let
n ∈ N, 0 ≤ ε ≤ 1

5 and u, v ∈ C2n s.t.

• ‖u‖ ≥
√
2n

2 .

• ∀i ∈ [2n] : |ui − vi| ≤ ε.

Then we have the following lower bound on the inner product of the normalized vectors,

|〈û|v̂〉| ≥ 1− 18 · ε2 .

Proof. We prove a lower bound for |〈û|v̂〉| by giving an upper bound on the distance between the
normalizations ‖|û〉 − |v̂〉‖. Intuitively, the geometric argument goes as follows:
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• The distance ‖|û〉 − |v̂〉‖ is exactly the distance between the two (un-normalized) vectors u

and ‖u‖‖v‖ · v, multiplied by the factor 1
‖u‖ . We later use the fact that u is long, and thus the

factor 1
‖u‖ will make the distance between the un-normalized vectors small.

• The distance from u to ‖u‖‖v‖ · v is bounded by the distance from u to v, plus the distance from

v to ‖u‖‖v‖ · v.

• The distance from u to v is bounded as a function of ε, and the distance between v and ‖u‖‖v‖ ·v
is bounded by the fact that the norms ‖u‖, ‖v‖ are close.

Formally, assume w.l.o.g. that u is the longer vector between the two, denote the difference
vector r := u− v and it follows that ‖r‖ ≤

√
2n · ε. Additionally, from triangle inequality it follows

that ‖v‖ ≥
(
1
2 − ε

)
·
√
2n. We have the following inequalities.

‖|û〉 − |v̂〉‖ =
∥
∥
∥
∥

1

‖u‖ · u−
1

‖v‖ · v
∥
∥
∥
∥

=
1

‖u‖ ·
∥
∥
∥
∥
u− ‖u‖‖v‖ · v

∥
∥
∥
∥

=
1

‖u‖ ·
∥
∥
∥
∥
v + r − ‖u‖‖v‖ · v

∥
∥
∥
∥

≤
(1)

1

‖u‖ ·
(∥
∥
∥
∥
v − ‖u‖‖v‖ · v

∥
∥
∥
∥
+ ‖r‖

)

≤ 1

‖u‖ ·
(∥
∥
∥
∥
v − ‖u‖‖v‖ · v

∥
∥
∥
∥
+ ε ·

√
2n
)

,

where (1) is due to the triangle inequality.

Next, observe that the ratio ‖u‖‖v‖ is close to 1: it’s at least 1 because we assume that ‖u‖ ≥ ‖v‖,
and also,

‖u‖
‖v‖ =

‖v + r‖
‖v‖

≤ ‖v‖+ ‖r‖‖v‖

≤ ‖v‖+ ε ·
√
2n

‖v‖

= 1 +
ε ·
√
2n

‖v‖
≤

(‖v‖≥( 1
2
−ε)·

√
2n , 1

4
≥ε)

1 + 4 · ε ,

The above implies the following bound,
∥
∥
∥
∥
v − ‖u‖‖v‖ · v

∥
∥
∥
∥
=

∣
∣
∣
∣
1− ‖u‖‖v‖

∣
∣
∣
∣
· ‖v‖ ≤ 4 · ε · ‖v‖ ,
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and thus,

1

‖u‖ ·
(∥
∥
∥
∥
v − ‖u‖‖v‖ · v

∥
∥
∥
∥
+ ε ·

√
2n
)

≤ 1

‖u‖ ·
(

4 · ε · ‖v‖+ ε ·
√
2n
)

=
‖v‖
‖u‖ · 4 · ε+

ε ·
√
2n

‖u‖
≤

(
‖v‖≤‖u‖,
‖u‖≥

√
2n/2

)
4 · ε+ 2 · ε

= 6 · ε ,

that is, ‖|û〉 − |v̂〉‖ ≤ 6 · ε.
Finally, recall the law of cosines that says that for vectors x, y:

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2 · ‖x‖ · ‖y‖ · cos(Θx,y) = ‖x‖2 + ‖y‖2 − 2 · 〈x|y〉 ,

which implies for unit vectors |x̂〉, |ŷ〉,

=⇒ |〈x̂|ŷ〉| =
∣
∣
∣
∣
∣
1− ‖|x̂〉 − |ŷ〉‖

2

2

∣
∣
∣
∣
∣
.

In our case,

|〈û|v̂〉| =
∣
∣
∣
∣
∣
1− ‖|û〉 − |v̂〉‖

2

2

∣
∣
∣
∣
∣

≥
(

‖|û〉−|v̂〉‖≤6·ε,
ε2≤1/18

)

1− 18 · ε2 .

Spherical Symmetry by Bound on Probability. Finally, an important property of the Gaus-
sian distribution is that when we take a small number ε, the probability that a vector is of length

ε-close (as a multiplication factor) to
√
2n

2 is bounded by ε ·N . A part of the reasoning in the proof
of Theorem 5.1 will include moving from a non-spherically-symmetric distribution to a spherically
symmetric one. More specifically, the reason that the mentioned distribution is not symmetric
is due to the fact that it’s a conditional distribution, with the condition being a lower bound on
the sampled vector length, but this lower bound changes from vector to vector and isn’t uniform.
However, it is known that the changes on the lower bound between vectors are within a small
multiplicative factor (which we think of as ε).

The below bound shows that changing the condition on a sampled vector’s length by a bit
(and thus making the condition uniform for all sampled vectors) yields a tiny change in statistical
distance, as needed.

Lemma 5.9 (Probability Mass of Vectors inside Thin Layer is Small). Let n ∈ N, λ ∈ N (s.t.
λ ≥ 4) and denote ε := 2−n−λ, N := 2n. Then,

Pr
u←NC(0,1)N

[(
1

2
− ε
)√

N ≤ ‖u‖ < 1

2
·
√
N

]

< 2−λ · 6−N .
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Proof. Denote L :=

{

u ∈ R2N :
(
1
2 − ε

)√
N ≤ ‖u‖ < 1

2 ·
√
N

}

and by µ the 2N -dimensional

Gaussian distribution measure, and we have,

Pr
u←NC(0,1)N

[(
1

2
− ε
)√

N ≤ ‖u‖ < 1

2
·
√
N

]

= Pr
u←N (0,1)2N

[(
1

2
− ε
)√

N ≤ ‖u‖ < 1

2
·
√
N

]

= µ (L) .

We can bound the measure of L by using the always-increasing exponential function and the
multi-dimensional volume of L:

e(
1
4
−ε)N · µ (L) < e(

1
2
−ε)2N · µ (L)

=

∫

L
e(

1
2
−ε)2Ndµ

≤
∫

L
e‖u‖

2

dµ

=

∫

L
e‖u‖

2 · e−‖u‖2/2 · (2π)−N du

=

∫

L
e

‖u‖2−2·ln(2·π)N
2 du

<

∫

L
e

N−8·ln(2·π)N
8 du

=

∫

L
e

1−8·ln(2·π)
8

·Ndu

< e−
17
10
·N ·

∫

L
1du

= e−
17
10
·N · Vol(L) ,

which implies,

µ (L) < e−(
1
4
−ε)N · e− 17

10
·N · Vol(L)

= e−(
39
20
−ε)N ·Vol(L)

<
(ε<1/20)

e−
38
20
N ·Vol(L) ,

and it is left to bound the volume of L.
The volume of L is a volume that can be calculated rather easily - this is simply the volume of

the real sphere S2N

(
1
2 ·
√
N
)

of 2N dimensions and radius 1
2 ·
√
N , minus the volume of the real

sphere S2N

((
1
2 − ε

)√
N
)

of 2N dimensions and radius
(
1
2 − ε

)√
N . Since there are known and
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convenient formulas for the volume of the N -ball, the calculation follows.

Vol(L) = Vol

(

S2N

(
1

2
·
√
N

))

−Vol

(

S2N

((
1

2
− ε
)√

N

))

=
πN

Γ(N + 1)
·
(
1

2
·
√
N

)2N

− πN

Γ(N + 1)
·
((

1

2
− ε
)√

N

)2N

=
πN ·NN

N !
·
((

1

2

)2N

−
(
1

2
− ε
)2N

)

.

To bound the above, we’ll give a lower bound for
(
1
2 − ε

)2N
:

(
1

2
− ε
)2N

=

2N∑

i=0

(
2N

i

)

(−1)i · εi · 1

22N−i

=
1

22N
− 2Nε · 1

22N−1
+

2N∑

i=2

(
2N

i

)

(−1)i · εi · 1

22N−i

≥ 1

22N
− 2Nε · 1

22N−1
, (6)

and we would like to show the inequality in Eq. (6) , that says that the last sum (that sums
from i = 2 and up) is positive:

2N∑

i=2

(
2N

i

)

(−1)i · εi · 1

22N−i
=

∑

i=2,4,6,··· ,2N−2

((
2N

i

)

· εi · 1

22N−i
− 2 ·

(
2N

i+ 1

)

· εi+1 · 1

22N−i

)

+ ε2N

=
∑

i=2,4,6,··· ,2N−2

(

εi · 1

22N−i
·
((

2N

i

)

− 2 ·
(

2N

i+ 1

)

· ε
))

+ ε2N ,

and for all i = 2, 4, 6, · · · , 2N − 2 we have,

(
2N

i

)

− 2 ·
(

2N

i+ 1

)

· ε =
i−1∏

j=0

2N − j
i− j − 2ε ·

i∏

j=0

2N − j
i+ 1− j

=
i−1∏

j=0

2N − j
i− j − 2ε · (2N − i)

i−1∏

j=0

2N − j
i+ 1− j

≥
i−1∏

j=0

2N − j
i− j − 4Nε ·

i−1∏

j=0

2N − j
i+ 1− j

≥





i−1∏

j=0

2N − j
i− j



 · (1− 4Nε)

≥
(1≥2−λ+2=4Nε)

0 .

The last inequality implies the inequality 6, which in turn implies the lower bound,
(
1

2
− ε
)2N

≥ 1

22N
− 4Nε · 1

22N
.
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Finally, we obtain the following:

µ (L) < e−
38
20
N ·Vol(L)

= e−
38
20
N · π

N ·NN

N !
·
((

1

2

)2N

−
(
1

2
− ε
)2N

)

≤ e− 38
20
N · π

N ·NN

N !
· 4Nε · 1

22N

= 2−λ+2 · πN ·NN

e
38
20
N · 4N ·N !

≤
(Stirling)

2−λ+2 · πN ·NN

e
38
20
N · 4N ·

√
2πN

(
N
e

)N

= 2−λ+2 · πN

e
18
20
N · 4N ·

√
2πN

<
(

6<e
18
10

)

2−λ · 6−N .

The Lemma about the tiny probability that a Gaussian vector lands inside the layer that’s

ε-near
√
2n

2 implies that it is also the case when it is sampled from the conditional distribution of
balanced vectors.

Corollary 5.10 (Balanced Gaussian Vectors are Almost Always Outside of the Thin Layer). Let
n ∈ N, 4 ≤ λ ∈ N, ε := 2−n−λ, B ≥ 2

√
n+ λ and let D be the conditional distribution of

u← NC(0, 1)N with the conditions that
∥
∥R(ε,B)(u)

∥
∥ ≥

√
N
2 and ∀i ∈ [2n] : |ui| ≤ B. Then,

Pr
u←D

[

‖u‖ <
√
2n

2

]

< 4 · 2−λ · 6−2n .

Proof. We have,

2−λ · 6−2n >
(Lemma 5.9)

Pr
u←NC(0,1)2n

[(
1

2
− ε
)√

2n ≤ ‖u‖ 1
2
·
√
2n
]

≥ Pr
u←NC(0,1)2n

[(

∥
∥R(ε,B)(u)

∥
∥

√
2n

2

)

∧ (∀i ∈ [2n] : |ui| ≤ B) ∧
(

‖u‖ <
√
2n

2

)]

= Pr
u←NC(0,1)2n

[(

∥
∥R(ε,B)(u)

∥
∥

√
2n

2

)

∧ (∀i ∈ [2n] : |ui| ≤ B)

]

· Pr
u←D

[

‖u‖ <
√
2n

2

]

≥ Pr
u←NC(0,1)2n

[(

‖u‖ ≥
√
2n

2

)

∧ (∀i ∈ [2n] : |ui| ≤ B)

]

· Pr
u←D

[

‖u‖ <
√
2n

2

]

>
(Corollary 5.4)

(

1−
(

e−
2n

4 + e−λ
))

· Pr
u←D

[

‖u‖ <
√
2n

2

]

≥
(2n≥2 , λ≥3)

(

1−
(

e−
1
2 + e−3

))

· Pr
u←D

[

‖u‖ <
√
2n

2

]

>

(
3

10

)

· Pr
u←D

[

‖u‖ <
√
2n

2

]

.
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The above implies in particular,

2−λ · 6−2n ·
(
10

3

)

> Pr
u←D

[

‖u‖ <
√
2n

2

]

,

which implies our wanted inequality.
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