Lecture Notes in Computer Science

12116

Founding Editors

Gerhard Goos Karlsruhe Institute of Technology, Karlsruhe, Germany Juris Hartmanis Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino Purdue University, West Lafayette, IN, USA Wen Gao Peking University, Beijing, China Bernhard Steffen TU Dortmund University, Dortmund, Germany Gerhard Woeginger RWTH Aachen, Aachen, Germany Moti Yung Columbia University, New York, NY, USA More information about this series at http://www.springer.com/series/7412

Xiang Bai · Dimosthenis Karatzas · Daniel Lopresti (Eds.)

Document Analysis Systems

14th IAPR International Workshop, DAS 2020 Wuhan, China, July 26–29, 2020 Proceedings

Editors Xiang Bai Huazhong University of Science and Technology Wuhan, China

Daniel Lopresti
Lehigh University
Bethlehem, PA, USA

Dimosthenis Karatzas D Autonomous University of Barcelona Barcelona, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-030-57057-6 ISBN 978-3-030-57058-3 (eBook) https://doi.org/10.1007/978-3-030-57058-3

LNCS Sublibrary: SL6 - Image Processing, Computer Vision, Pattern Recognition, and Graphics

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Welcome to the 14th IAPR International Workshop on Document Analysis Systems (DAS 2020). For the first time in our long history, DAS was held virtually. The workshop was originally set to take place in Wuhan, China, in May 2020. However, given the worldwide pandemic, we decided to host DAS during July 26–29, 2020, and converted the workshop into a fully virtual event.

As a result, instead of welcoming you to Wuhan, we brought Wuhan to you. While the organization of DAS 2020 was still based in Wuhan, the workshop was not confined to a specific location. In a sense, this was the first truly worldwide edition of DAS, taking place around the world in a coordinated fashion, employing a schedule we designed to support participation across a wide range of time zones. Of course, this comes with some challenges, but also with interesting opportunities that caused us to rethink how to foster social and scientific interaction in this new medium. It also allowed us to organize an environmentally friendly event, to extend the reach of the workshop, and to facilitate participation literally from anywhere to those with an interest in our field and an internet connection. We truly hope we managed to make the most out of a difficult situation.

DAS 2020 continued the long tradition of bringing together researchers, academics, and practitioners from all over the world in the research field of Document Analysis Systems. In doing so, we build on the previous workshops held over the years in Kaiserslautern, Germany (1994); Malvern, PA, USA (1996); Nagano, Japan (1998); Rio de Janeiro, Brazil (2000); Princeton, NJ, USA (2002); Florence, Italy (2004); Nelson, New Zealand (2006); Nara, Japan (2008); Boston, MA, USA (2010); Gold Coast, Australia (2012); Loire Valley Tours, France (2014); Santorini, Greece (2016); and Wien, Austria (2018).

As with previous editions, DAS 2020 was a rigorously peer reviewed and 100% participation single-track workshop focusing on system-level issues and approaches in document analysis and recognition. The workshop comprises presentations by invited speakers, oral and poster sessions, a pre-workshop tutorial, as well as the distinctive DAS discussion groups.

We received 64 submissions in total, 57 of which in the regular paper track and 7 in the short paper track. All regular paper submissions underwent a rigorous single-blind review process where the vast majority of papers received three reviews from the 62 members of the Program Committee, judging the originality of work, the relevance to document analysis systems, the quality of the research or analysis, and the presentation. Of the 57 regular submissions received, 40 were accepted for presentation at the workshop (70%). Of these, 24 papers were designated for oral presentation (42%) and 22 for poster presentation (38%). All short paper submissions were reviewed by at least two of the program co-chairs. Of the 7 short papers received, 6 were accepted for poster presentation at the workshop (85%). The accepted regular papers are published in this

proceedings volume in the *Springer Lecture Notes in Computer Science* series. Short papers appear in PDF form on the DAS workshop website.

The final program includes six oral sessions, two poster sessions, and the discussion group sessions. There were also two awards announced at the conclusion of the workshop: the IAPR Best Student Paper Award and IAPR Nakano Best Paper Award. We offer our deepest thanks to all who contributed their time and effort to make DAS 2020 a first-rate event for the community.

In addition to the contributed papers, the program included three invited keynote presentations by distinguished members of the research community: Tong Sun, who leads the Document Intelligence Lab in Adobe, spoke about "The Future of Document: A New Frontier in the New Decade;" Lianwen Jin, from South China University of Technology, spoke on the topic of "Optical Character Recognition in the Deep Learning Era;" and C.V. Jawahar, from IIIT Hyderabad, shared his vision about "Document Understanding Beyond Text Recognition."

We furthermore would like to express our sincere thanks to the tutorial organizers, Zhibo Yang and Qi Zheng from Alibaba, for sharing their valuable scientific and technological insights. A special thanks is also due to our sponsors IAPR, Meituan, Hanvon Technology, Huawei Technologies, and TAL Education Group, whose support, especially during challenging times, was integral to the success of DAS 2020.

The workshop program represents the efforts of many people. We want to express our gratitude especially to the members of the Program Committee and the external reviewers for their hard work in reviewing submissions. The publicity chairs Koichi Kise (Japan), Simone Marinai (Italy), and Mohamed Cheriet (Canada) helped us in many ways, for which we are grateful. We also thank the discussion group chairs Alicia Fornés (Spain), Faisal Shafait (Germany), and Vincent Poulain d'Andecy (France) for organizing the discussion groups, and the tutorial chairs Jun Sun (China), Apostolos Antonacopoulos (UK), and Venu Govindaraju (USA) for organizing the tutorials. A special thank goes to the publication chair Yongchao Xu (China), who was responsible for the proceedings at hand. We are also grateful to the local arrangements chairs who made great efforts in arranging the program, maintaining the Webpage, and setting up the virtual meeting platform. The workshop would not have happened without the great support from the hosting organization, Huazhong University of Science and Technology.

Finally, the workshop would not be possible without the excellent papers contributed by authors. We thank all the authors for their contributions and their participation in DAS 2020! We hope that this program will further stimulate research and provide practitioners with better techniques, algorithms, and tools for the deployment. We feel honored and privileged to share the best recent developments in the field of Document Analysis Systems with you in these proceedings.

July 2020

Cheng-Lin Liu Shijian Lu Jean-Marc Ogier Xiang Bai Dimosthenis Karatzas Daniel Lopresti

Organization

Huazhong University of Science and Technology,

Universitat Autònoma de Barcelona, Spain

Organizing Committee

General Chairs

Cheng-Lin Liu	Institute of Automation of Chinese Academy
	of Sciences, China
Shijian Lu	Nanyang Technological University, Singapore
Jean-Marc Ogier	University of La Rochelle, France

China

Lehigh University, USA

Program Chairs

Xiang Bai

Dimosthenis Karatzas	
Daniel Lopresti	

Program Committee

Alireza Alaei	Southern Cross University, Australia
Adel Alimi	University of Sfax, Tunisia
Apostolos Antonacopoulos	University of Salford, UK
Xiang Bai	Huazhong University of Science and Technology,
	China
Abdel Belaid	Université de Lorraine, LORIA, France
Jean-Christophe Burie	University of La Rochelle, France
Vincent Christlein	University of Erlangen-Nuremberg, Germany
Andreas Dengel	German Research Center for Artificial Intelligence,
	Germany
Markus Diem	Vienna University of Technology, Austria
Antoine Doucet	University of La Rochelle, France
Véronique Eglin	LIRIS-INSA de Lyon, France
Jihad El-Sana	Ben-Guion University of the Negev, Israel
Gernot Fink	TU Dortmund University, Germany
Andreas Fischer	University of Fribourg, Switzerland
Alicia Fornés	Universitat Autònoma de Barcelona, Spain
Volkmar Frinken	University of California, Davis, USA
Utpal Garain	Indian Statistical Institute, Kolkata, India
Basilis Gatos	National Centre of Scientific Research Demokritos,
	Greece
Lluis Gomez	Universitat Autònoma de Barcelona, Spain
Dafang He	Pinterest, USA
Masakazu Iwamura	Osaka Prefecture University, Japan

Brian Kenji Iwana Motoi Iwata Lianwen Jin Dimosthenis Karatzas Florian Kleber Bart Lamiroy Laurence Likforman-Sulem Rafael Lins Cheng-Lin Liu Josep Llados

Daniel Lopresti Georgios Louloudis

Andreas Maier R. Manmatha Carlos David Martinez Hinarejos Jean-Luc Meunier Guenter Muehlberger Jean-Marc Ogier Umapada Pal Shivakumara Palaiahnakote Thierry Paquet Stefan Pletschacher Vincent Poulain D'Andecv Ioannis Pratikakis Verónica Romero Marçal Rusiñol Robert Sablatnig Joan Andreu Sanchez Marc-Peter Schambach Srirangaraj Setlur Faisal Shafait

Foteini Simistira Liwicki Nikolaos Stamatopoulos

H. Siegfried Stiehl Seiichi Uchida Ernest Valveny Mauricio Villegas Yongchao Xu

Berrin Yanikoglu Richard Zanibbi Anna Zhu

Kyushu University, Japan Osaka Prefecture University, Japan South China University of Technology, China Universitat Autònoma de Barcelona, Spain Vienna University of Technology, Austria Université de Lorraine, LORIA, France Télécom ParisTech, France Federal University of Pernambuco, Brazil Institute of Automation of Chinese Academy of Sciences, China Universitat Autònoma de Barcelona, Spain Lehigh University, USA National Center for Scientific Research Demokritos, Greece University of Erlangen-Nuremberg, Germany University of Massachusetts, USA Universitat Politècnica de València, Spain

NAVER LABS Europe, France University of Innsbruck, Austria University of La Rochelle, France Indian Statistical Institute, Kolkata, India University of Malaya, Malaysia Université de Rouen, France University of Salford, UK Yooz, France Democritus University of Thrace, Greece Universitat Politècnica de València, Spain Universitat Autònoma de Barcelona, Spain Vienna University of Technology, Austria Universitat Politècnica de València, Spain Siemens AG, Germany University at Buffalo, SUNY, USA National University of Sciences and Technology, Pakistan Luleå University of Technology, Sweden National Center for Scientific Research Demokritos, Greece University of Hamburg, Germany Kyushu University, Japan Universitat Autònoma de Barcelona, Spain Omni:us, Germany Huazhong University of Science and Technology, China Sabanci University, Turkey Rochester Institute of Technology, USA

Wuhan University of Technology, China

Sponsors

Meituan, Hanvon, Huawei, TAL, and IAPR

Logos

Contents

Character and Text Recognition

Maximum Entropy Regularization and Chinese Text Recognition Changxu Cheng, Wuheng Xu, Xiang Bai, Bin Feng, and Wenyu Liu	3
An Improved Convolutional Block Attention Module for Chinese Character Recognition	18
Adapting OCR with Limited Supervision Deepayan Das and C. V. Jawahar	30
High Performance Offline Handwritten Chinese Text Recognition with a New Data Preprocessing and Augmentation Pipeline <i>Canyu Xie, Songxuan Lai, Qianying Liao, and Lianwen Jin</i>	45
ALEC: An Accurate, Light and Efficient Network for CAPTCHA Recognition	60
A Benchmark System for Indian Language Text Recognition Krishna Tulsyan, Nimisha Srivastava, Ajoy Mondal, and C. V. Jawahar	74
Classification of Phonetic Characters by Space-Filling Curves	89
Document Image Processing	
Self-supervised Representation Learning on Document Images Adrian Cosma, Mihai Ghidoveanu, Michael Panaitescu-Liess, and Marius Popescu	103
ACMU-Nets: Attention Cascading Modular U-Nets Incorporating Squeeze and Excitation Blocks	118
Dewarping Document Image by Displacement Flow Estimation with Fully Convolutional Network	131

xii	Contents	
-----	----------	--

Building Super-Resolution Image Generator for OCR Accuracy	1.4.5
Xujun Peng and Chao Wang	145
Faster Glare Detection on Document Images Dmitry Rodin, Andrey Zharkov, and Ivan Zagaynov	161
Camera Captured DIQA with Linearity and Monotonicity Constraints <i>Xujun Peng and Chao Wang</i>	168
Background Removal of French University Diplomas Tanmoy Mondal, Mickaël Coustaty, Petra Gomez-Krämer, and Jean-Marc Ogier	182
Segmentation and Layout Analysis	
The Benefits of Close-Domain Fine-Tuning for Table Detection in Document Images	199
IIIT-AR-13K: A New Dataset for Graphical Object Detection in Documents Ajoy Mondal, Peter Lipps, and C. V. Jawahar	216
Page Segmentation Using Convolutional Neural Network and Graphical Model Xiao-Hui Li, Fei Yin, and Cheng-Lin Liu	231
The Notary in the Haystack – Countering Class Imbalance in Document Processing with CNNs	246
Evaluation of Neural Network Classification Systems on Document Stream Joris Voerman, Aurélie Joseph, Mickael Coustaty, Vincent Poulain d'Andecy, and Jean-Marc Ogier	262
Computerized Counting of Individuals in Ottoman Population Registers with Deep Learning Yekta Said Can and Mustafa Erdem Kabadayı	277
Word Embedding and Spotting	
Annotation-Free Learning of Deep Representations for Word Spotting	

Annotation-Free Learning of Deep Representations for Word Spotting	
Using Synthetic Data and Self Labeling	293
Fabian Wolf and Gernot A. Fink	

Contents	xiii
Contento	7111

Fused Text Recogniser and Deep Embeddings Improve Word Recognition and Retrieval	309
Siddhant Bansal, Praveen Krishnan, and C. V. Jawahar	007
A Named Entity Extraction System for Historical Financial Data Wassim Swaileh, Thierry Paquet, Sébastien Adam, and Andres Rojas Camacho	324
Effect of Text Color on Word Embeddings	341
Document Data Extraction System Based on Visual Words Codebook Vasily Loginov, Aleksandr Valiukov, Stanislav Semenov, and Ivan Zagaynov	356
Automated Transcription for Pre-modern Japanese Kuzushiji Documents by Random Lines Erasure and Curriculum Training Anh Duc Le	371
Representative Image Selection for Data Efficient Word Spotting Florian Westphal, Håkan Grahn, and Niklas Lavesson	383
Named Entity Recognition in Semi Structured Documents Using Neural Tensor Networks	398
Text Detection	
SickZil-Machine: A Deep Learning Based Script Text Isolation System for Comics Translation <i>U-Ram Ko and Hwan-Gue Cho</i>	413
Lyric Video Analysis Using Text Detection and Tracking Shota Sakaguchi, Jun Kato, Masataka Goto, and Seiichi Uchida	426
Fast and Lightweight Text Line Detection on Historical Documents Aleksei Melnikov and Ivan Zagaynov	441
From Automatic Keyword Detection to Ontology-Based Topic Modeling Marc Beck, Syed Tahseen Raza Rizvi, Andreas Dengel, and Sheraz Ahmed	451
A New Context-Based Method for Restoring Occluded Text in Natural	

New Benchmarks for Barcode Detection Using Both Synthetic and Real Data	481
Font Design and Classification	
Character-Independent Font Identification	497
A New Common Points Detection Method for Classification of 2D and 3D Texts in Video/Scene Images Lokesh Nandanwar, Palaiahnakote Shivakumara, Ahlad Kumar,	512

Tong Lu, Umapada Pal, and Daniel Lopresti

Neural Style Difference Transfer and Its Application to Font Generation 54 Gantugs Atarsaikhan, Brian Kenji Iwana, and Seiichi Uchida	529
	544
A Method for Scene Text Style Transfer	559
Re-Ranking for Writer Identification and Writer Retrieval	572