
The Benefits of Close-Domain Fine-Tuning for
Table Detection in Document Images?

Ángela Casado-García1, César Domínguez1[0000−0002−2081−7523], Jónathan
Heras1[0000−0003−4775−1306], Eloy Mata1[0000−0003−0538−4579], and Vico

Pascual1[0000−0003−3576−0889]

Department of Mathematics and Computer Science, University of La Rioja, Spain
{angela.casado, cesar.dominguez, jonathan.heras, eloy.mata,

vico.pascual}@unirioja.es

Abstract. A correct localisation of tables in a document is instrumental
for determining their structure and extracting their contents; therefore,
table detection is a key step in table understanding. Nowadays, the most
successful methods for table detection in document images employ deep
learning algorithms; and, particularly, a technique known as fine-tuning.
In this context, such a technique exports the knowledge acquired to de-
tect objects in natural images to detect tables in document images. How-
ever, there is only a vague relation between natural and document im-
ages, and fine-tuning works better when there is a close relation between
the source and target task. In this paper, we show that it is more bene-
ficial to employ fine-tuning from a closer domain. To this aim, we train
different object detection algorithms (namely, Mask R-CNN, RetinaNet,
SSD and YOLO) using the TableBank dataset (a dataset of images of
academic documents designed for table detection and recognition), and
fine-tune them for several heterogeneous table detection datasets. Using
this approach, we considerably improve the accuracy of the detection
models fine-tuned from natural images (in mean a 17%, and, in the best
case, up to a 60%).

Keywords: Table detection · Deep learning · Transfer learning · Fine-
tuning

1 Introduction

Tables are widely present in a great variety of documents such as administra-
tive documents, invoices, scientific papers, reports, or archival documents among
others; and, therefore, techniques for table analysis are instrumental to auto-
matically extract relevant information stored in a tabular form from several
? This work was partially supported by Ministerio de Economía y Competitividad
[MTM2017-88804-P], Ministerio de Ciencia, Innovación y Universidades [RTC-2017-
6640-7], Agencia de Desarrollo Económico de La Rioja [2017-I-IDD-00018], and the
computing facilities of Extremadura Research Centre for Advanced Technologies
(CETA-CIEMAT), funded by the European Regional Development Fund (ERDF).
CETA-CIEMAT belongs to CIEMAT and the Government of Spain.

ar
X

iv
:1

91
2.

05
84

6v
1 

 [
cs

.C
V

] 
 1

2 
D

ec
 2

01
9



2 A. Casado-García et al.

sources [7]. The first step in table analysis is table detection — that is, deter-
mining the position of the tables in a document — and such a step is the basis
to later determine the internal table structure and, eventually, extract semantics
from the table contents [7].

Table detection methods in digital born documents, such as readable PDFs or
HTML documents, employ the available meta-data included in those documents
to guide the analysis by means of heuristics [28]. However, table detection in
image-based documents, like scanned PDFs or document images, is a more chal-
lenging task due to high intra-class variability — that is, there are several table
layouts that, in addition, are highly dependent on the context of the documents
— low inter-class variability — that is, other objects that commonly appear in
documents (such as figures, graphics or code listing among others) are similar to
tables — and the heterogeneity of document images [8]. These three issues make
difficult to design rules that are generalisable to a variety of documents; and,
this has led to the adoption of machine learning techniques, and, more recently,
deep learning methods.

Currently, deep learning techniques are the state of the art approach to deal
with computer vision tasks [32]; and, this is also the case for table detection
in document images [21, 23, 34]. The most accurate models for table detection
have been constructed using fine-tuning [29], a transfer learning technique that
consists in re-using a model trained in a source task, where a lot of data is
available, in a new target task, with usually scarce data. In the context of table
detection, the fine-tuning approach has been applied due to the small size of
table detection datasets that do not contain the necessary amount of images
required to train deep learning models from scratch. In spite of its success, this
approach has the limitation of applying transfer learning from natural images, a
distant domain from document images. This makes necessary the application of
techniques, like image transformations [11], to make document images look like
natural images.

In this work, we present the benefits of applying transfer learning for ta-
ble detection from a close domain thanks to the LATEX part of the TableBank
dataset [23], a dataset that consists of approximately 200K labelled images of
academic documents containing tables — a number big enough to train deep
learning models from scratch. Namely, the contributions of this work are the
following:

– We analyse the accuracy of four of the most successful deep learning al-
gorithms for object detection (namely, Mask-RCNN, RetinaNet, SSD and
YOLO) in the context of table detection in academic documents using the
TableBank dataset.

– Moreover, we present a comprehensive study where we compare the effects of
fine-tuning table detection models from a distant domain (natural images)
and a closer domain (images of academic documents from the TableBank
dataset), and demonstrate the advantages of the latter approach. To this
aim, we employ the 4 aforementioned object detection architectures and 7



Close-Domain Fine-Tuning for Table Detection in Document Images 3

heterogeneous table detection datasets containing a wide variety of document
images.

– Finally, we show the benefits of using models trained for table detection on
document images to detect other objects that commonly appear in document
images such as figures and formulas.

As a by-product of this work, we have produced a suite of models that can be
employed via a set of Jupyter notebooks (documents for publishing code, results
and explanations in a form that is both readable and executable) [22] that can be
run online using Google Colaboratory [5] — a free Jupyter notebook environment
that requires no setup and runs entirely in the cloud avoiding the installation of
libraries in the local computer. In addition, the code for fine-tuning the models
is also freely available. This allows the interested readers to adapt the models
generated in this work to detect tables in their own datasets. All the code and
models are available at the project webpage https://github.com/holms-ur/fine-
tuning.

The rest of this paper is organised as follows. In the next section, we provide
a brief overview of the methods employed in the literature to tackle the table
detection task. Subsequently, in Section 3, we introduce our approach to train
models for table detection using fine-tuning, as well as the setting that we employ
to evaluate such an approach. Afterwards, we present the obtained results along
with a thorough analysis in Section 4, and the tools that we have developed in
Section 5. Finally, the paper ends with some conclusions and further work.

2 Related work

Since the early 1990s, several researchers have tackled the task of table detec-
tion in document images using mainly two approaches: rule-based techniques
and data-driven methods. The former are focused on defining rules to determine
the position of lines and text blocks to later detect tabular structures [16,19,38];
whereas, the latter employ statistical machine learning techniques, like Hidden
Markov models [6], a hierarchical representation based on the MXY tree [3] or
feature engineering together with SVMs [20]. However, both approaches have
drawbacks: rule-based methods require the design of handcrafted rules, that
do not usually generalise to several kinds of documents; and, machine learning
methods require manual feature engineering to decide the features of the docu-
ments that are feed to machine learning algorithms. These problems have been
recently alleviated by using deep learning methods.

Nowadays, deep learning techniques are the state of the art approach to deal
with table detection. The reason is twofold: deep learning techniques are ro-
bust for different document types; and, they do not need handcrafted features
since they automatically learn a hierarchy of relevant features using convolu-
tional neural networks (CNNs) [14]. Initially, hybrid methods combining rules
and deep-learning models were suggested; for instance, in [15] and [27], CNNs
were employed to decide whether regions of an image suggested by a set of rules

https://github.com/holms-ur/fine-tuning
https://github.com/holms-ur/fine-tuning


4 A. Casado-García et al.

contained a table. On the contrary, the main approach followed currently con-
sists in adapting general deep learning algorithms for object detection to the
problem of table detection. Namely, the main algorithm applied in this context
is Faster R-CNN [31], that has been directly employed using different backbone
architectures [21,23,34], and combined with deformable CNNs [36] or with image
transformations [11]. Other detection algorithms such as YOLO [30] or SSD [26]
have also been employed for table detection [17,21], but achieving worse results
than the methods based on the Faster R-CNN algorithm. Nevertheless, training
deep learning models for table detection is challenging due to the considerable
amount of images that are necessary for this task — up to recently, the biggest
dataset of document images containing tables was the Marmot dataset with 2,000
labelled images [18], far from the datasets employed by deep learning methods
that consists of several thousands, or even millions, of images [9, 33].

In order to deal with the problem of limited amount of data, one of the most
successful methods applied in the literature is transfer learning [29], a technique
that re-uses a model trained in a source task in a new target task. This is
the approach followed in [11, 34, 36], where they use models trained on natural
images to fine-tune their models for table detection. However, transfer learning
methods are more effective when there is a close relation between the source
and target domains, and, unfortunately, there is only a vague relation between
natural images and document images. This issue has been faced, for instance, by
applying image transformations to make document images as close as possible
to natural images [11].

Another option to tackle the problem of limited data consists in acquiring
and labelling more images, a task that has been undertaken for table detection
in the TableBank project [23] — a dataset that consists of 417K labelled images
of documents containing tables. The TableBank dataset opens the door to apply
transfer learning to not only construct models for table detection in different
kinds of documents, but also to detect other objects, such as figures or formulas,
that commonly appear in document images. This is the goal of the present work.

3 Materials and methods

In this section, we explain the fine-tuning method, as well as the object detection
algorithms, datasets and evaluation metrics used in this work.

3.1 Fine-tuning

Transfer learning allows us to train models using the knowledge learned by other
models instead of starting from scratch. The idea on which transfer learning
techniques are based is that CNNs are designed to learn a hierarchy of features.
Specifically, the lower layers of CNNs focus on generic features, while the final
ones focus on specific features for the task they are working with. As explained
in [29], transfer learning can be employed in different ways, and the one em-
ployed in this work is known as fine-tuning. In this technique, the weights of a



Close-Domain Fine-Tuning for Table Detection in Document Images 5

network learned in a source task are employed as a basis to train a model in the
destination task. In this way, the information learned in the source task is used
in the destination task. This approach is especially beneficial when the source
and target tasks are close to each other.

In our work, we study the effects of fine-tuning table detection algorithms
from a distant domain (natural images from the Pascal VOC dataset [9]) and a
close domain (images of academic documents from the TableBank dataset). To
this aim, we consider the following object detection algorithms.

3.2 Object detection algorithms

Object detection algorithms based on deep learning can be divided into two
categories [12, 30]: the two-phase algorithms, whose first step is the generation
of proposals of “interesting” regions that are classified using CNNs in a second
step. And the one-phase algorithms that perform detection without explicitly
generating region proposals. For this work, we have employed algorithms of both
types. In particular, we have used the two-phase algorithm Mask R-CNN, and
the one-phase algorithms RetinaNet, SSD and YOLO.

Mask R-CNN [31] is currently one of the most accurate algorithm based on a
two-phase approach, and the latest version of the R-CNN family. We have used
a library implemented in Keras [1] for training models with this algorithm.

RetinaNet [25] is a one-phase algorithm characterised by using the focal loss
for training on a scarce set of difficult examples, and that prevents the large
number of easy negatives from overwhelming the detector during training.We
have used another library implemented in Keras [24] for traning models with
this algorithm.

SSD [26] is a simple detection algorithm that completely eliminates proposal
generation and encapsulates all computation in a single network. In this case,
we have used the MXNET library [4] for training the models.

YOLO [30] frames object detection as a regression problem where a single neural
network predicts bounding boxes and class probabilities directly from full images
in one evaluation. Although there are several versions of YOLO, the main ideas
are the same for all of them. We have used the Darknet library [2] for training
models with this algorithm.

The aforementioned algorithms have been trained for detecting tables in a
wide variety of document images by using the datasets presented in the following
section.

3.3 Benchmarking datasets

For this project, we have used several datasets, see Table 1. Namely, we have
employed three kinds of datasets: the base datasets (which are used to train the



6 A. Casado-García et al.

base models), the fine-tune datasets for table detection, and the fine-tune dataset
for detecting other objects in document images. The reason to consider several
table detection datasets is that there are several table layouts that are highly
dependent on the document type, and we want to prove that our approach can
be generalised to heterogeneous document images.

Datasets #Train Images #Test Images Type of images

Pascal VOC 16,551 4,952 Natural images
TableBank 199,183 1,000 Academic documents

ICDAR13 178 60 Documents obtained from
Google search

ICDAR17 1,200 400 Scientific papers
ICDAR19 599 198 Modern images
Invoices 515 172 Invoices
MarmotEn 744 249 Scientific papers
MarmotChi 754 252 E-books
UNLV 302 101 Technical reports, business

letters, newspapers and
magazines

ICDAR17FIG 1,200 400 Scientific papers
ICDAR17FOR 1,200 400 Scientific papers

Table 1. Sizes of the train and test sets of the datasets

Base Datasets In this work, we have employed two datasets of considerable
size for creating the base models that are later employed for fine-tuning.

The Pascal VOC dataset [9] is a popular project designed to create and evalu-
ate algorithms for image classification, object detection and segmentation. This
dataset consists of natural images which have been used for training different
models in the literature. Thanks to the trend of releasing models to the public,
we have employed models already trained with this dataset to apply fine-tuning
from natural images to the context of table detection.

TableBank [23] is a table detection dataset built with Word and LATEX doc-
uments that contains 417K labeled images. For this project, we only employ
the LATEX images (199,183 images) since the Word images contain some errors
in the annotations. On the contrary to the Pascal VOC dataset, where there
were available models trained for such a dataset, we have trained models for the
TableBank dataset from scratch.

Fine-tuning Datasets We have used several open datasets for fine-tuning;
however, most table detection datasets only release the training set. Hence, in



Close-Domain Fine-Tuning for Table Detection in Document Images 7

this project, we have divided the training sets into two sets (75% for training
and 25% for testing) for evaluating our approach. The dataset split are available
in the project webpage, and the employed datasets are listed as follows.

ICDAR13 [13] is one of the most famous datasets for table detection and struc-
ture recognition. This dataset is formed by documents extracted from Web pages
and email messages. This dataset was prepared for a competition focused on the
task of detecting tables, figures and mathematical equations from images. The
dataset is comprised of PDF files which we converted to images to be used
within our framework. The dataset contains 238 images in total, 178 were used
for training and 60 for testing.

ICDAR17 [10] is a data set prepared for a competition as ICDAR13. The dataset
consists of 1.600 images in total, where we can find tables, formulas and figures.
The training set consists of 1,200 images, while the rest of the 400 images are
used for testing. This dataset has been employed three times in our work: for
the detection of tables (from now on, we will call this dataset ICDAR17), for the
detection of figures (from now on, we will call this dataset ICDAR17FIG) and for
the detection of formulas (from now on, we will call this dataset ICDAR17FOR).

ICDAR19 [37] is, as in the previous cases, a dataset proposed for a competition.
The dataset contains two types of images: modern documents and archival ones
with various formats. In this work we have only taken the modern images (797
images in total, 599 for training and 198 for testing).

Invoices is a proprietary dataset of PDF files containing invoices from several
sources. The PDF files had to be converted into images. This set has 515 images
in the training set and 172 in the testing set.

Marmot [18] is a dataset that shows a great variety in language type, page layout,
and table styles. Over 1,500 conference and journal papers were crawled for this
dataset, covering various fields, spanning from the year 1970. to latest 2011
publications. In total, 2,000 pages in PDF format were collected. The dataset is
composed of Chinese (from now on MarmotChi) and English pages (from now
on MarmotEn): the MarmotChi dataset was built from over 120 e-Books with
diverse subject areas provided by Founder Apabi library, and no more than 15
pages were selected from each book, this dataset contains 993 images in total,
744 were used for training and 249 for testing. And the MarmotEn dataset was
crawled from the Citeseer website, this dataset contains 1,006 images in total,
754 were used for training and 252 for testing.

UNLV [35] is comprised of a variety of documents which includes technical
reports, business letters, newspapers and magazines. The dataset contains a
total of 2,889 scanned documents where only 403 documents contain a tabular
region. We only used the images containing a tabular region in our experiments:
302 for training and 101 for testing.



8 A. Casado-García et al.

Using the aforementioned algorithms and datasets, we have trained several
models that have been evaluated using the following metrics.

3.4 Performance measure

In order to evaluate the constructed models for the different datasets, we em-
ployed the same metric used in the ICDAR19 competition for table detection [37].
Considering that the ground truth bounding box is represent by GTP, and that
the bounding box detected by an algorithm is represented by DTP; then, the
formula for finding the overlapped region between them is given by:

IoU(GTP,DTP ) =
area(GTP

⋂
DTP )

area(GTP
⋃
DTP )

IoU(GTP, DTP) represents the overlapped region between ground truth and
detected bounding boxes and its value lies between zero and one.

Now, given a threshold T ∈ [0, 1], we define the notions of True Positive at T,
TP@T, False Positive at T, FP@T, and False Negative at T, FN@T. The TP@T
is the number of ground truth tables that have a major overlap (IoU ≥ T ) with
one of the detected tables. The FP@T indicates the number of detected tables
that do not overlap (IoU < T ) with any of the ground tables. And, FN@T
indicates the number of ground truth tables that do not overlap (IoU < T ) with
any of the detected tables. From these notions, we can define the Precision at
T, P@T, Recall at T, R@T, and F1-score at T, F1@T, as follows:

P@T =
TP@T

FP@T + TP@T

R@T =
TP@T

FN@T + TP@T

F1@T =
2 ∗ TP@T

FP@T + FN@T + 2 ∗ TP@T

Finally, the final score is decided by the weighted average WAvgF1 value:

WAvgF1 =
0.6× F1@0.6 + 0.7× F1@0.7 + 0.8× F1@0.8 + 0.9× F1@0.9

0.6 + 0.7 + 0.8 + 0.9

In the above formula, and since results with higher IoUs are more important
than those with lower IoUs, we use IoU threshold as the weight of each F1 value
to get a definitive performance score for convenient comparison. Using these
metrics we have obtained the results presented in the following section.

4 Results

In this section, we conduct a thorough study of our approach, see Tables 2–5.
Each table corresponds with the results obtained from each object detection



Close-Domain Fine-Tuning for Table Detection in Document Images 9

algorithm: Table 2 contains the results that have been obtained using Mask R-
CNN; Table 3, the results of RetinaNet; Table 4, the results of SSD; and, finally,
Table 5 contains the results of YOLO. The tables are divided into three parts:
the first row contains the results obtained for the TableBank dataset, the next 9
rows correspond with the result obtained with the models trained by fine-tuning
from natural image models, and the last 9 rows correspond with the models
fine-tuned from the TableBank models. All the models built in this work were
trained using the default parameters in each deep learning framework, and using
K80 NVIDIA GPUs.

@0.6 @0.7 @0.8 @0.9
P@0.6 R@0.6 F1@0.6 P@0.7 R@0.7 F1@0.7 P@0.8 R@0.8 F1@0.8 P@0.9 R@0.9 F1@0.9 WAvgF1 Improvement

TableBank 0.94 0.98 0.96 0.94 0.97 0.95 0.93 0.96 0.94 0.84 0.87 0.86 0.92

ICDAR13 0.14 0.77 0.23 0.08 0.45 0.14 0.03 0.16 0.05 0 0 0 0.09
ICDAR17 0.32 0.85 0.46 0.28 0.75 0.41 0.17 0.47 0.25 0.04 0.1 0.06 0.27
ICDAR17FIG 0.29 0.61 0.39 0.22 0.46 0.3 0.13 0.27 0.17 0.01 0.03 0.02 0.19
ICDAR17FOR 0.18 0.45 0.26 0.09 0.24 0.13 0.03 0.07 0.04 0 0.01 0 0.09
ICDAR19 0.6 0.64 0.62 0.48 0.51 0.5 0.24 0.25 0.25 0.02 0.02 0.02 0.31
Invoices 0.38 0.56 0.45 0.28 0.42 0.34 0.16 0.23 0.19 0.02 0.03 0.02 0.22
MarmotEn 0.37 0.75 0.49 0.28 0.58 0.38 0.08 0.17 0.11 0 0.01 0 0.21
MarmotChi 0.52 0.83 0.64 0.48 0.76 0.59 0.32 0.51 0.39 0.07 0.11 0.08 0.39
UNLV 0.29 0.58 0.39 0.17 0.34 0.23 0.06 0.11 0.08 0.01 0.02 0.01 0.15

ICDAR13 0.7 0.97 0.81 0.7 0.97 0.81 0.7 0.97 0.81 0.47 0.65 0.54 0.72 0.63
ICDAR17 0.72 0.95 0.82 0.7 0.93 0.8 0.68 0.9 0.78 0.49 0.64 0.56 0.72 0.45
ICDAR17FIG 0.36 0.69 0.47 0.33 0.63 0.43 0.23 0.43 0.3 0.05 0.09 0.07 0.29 0.09
ICDAR17FOR 0.1 0.49 0.17 0.06 0.28 0.1 0.02 0.12 0.04 0 0.01 0 0.06 -0.02
ICDAR19 0.76 0.85 0.81 0.74 0.83 0.79 0.67 0.75 0.71 0.38 0.42 0.4 0.65 0.34
Invoices 0.54 0.71 0.61 0.5 0.66 0.57 0.39 0.52 0.45 0.19 0.26 0.22 0.44 0.21
MarmotEn 0.72 0.93 0.81 0.7 0.9 0.79 0.67 0.87 0.76 0.46 0.6 0.52 0.70 0.48
MarmotChi 0.82 0.98 0.89 0.82 0.98 0.89 0.81 0.96 0.88 0.62 0.73 0.67 0.82 0.42
UNLV 0.66 0.83 0.74 0.63 0.8 0.7 0.55 0.69 0.61 0.24 0.3 0.27 0.55 0.39

Table 2. Results using the Mask R-CNN algorithm

We start by analysing the results for the TableBank dataset, see the first
row of the tables. Each model has its strenghts and weaknesses, and depending
on the context we can prefer different models. The overall best model, that is
the model with higher WAvgF1-score, is the Mask R-CNN model; the other
three models are similar among them. If we focus on detecting as most tables as
possible (R@0.6) and not detecting other artifacts as tables (P@0.6), the best
model is YOLO. Finally, if we are interested in accurately detecting the regions
of the tables (F1@0.9), the best model is RetinaNet. The strength of the SSD
model is that it is faster than the others.

Let us focus now on the table detection datasets. In the case of models
fine-tuned using natural images, the algorithms that stand out are RetinaNet
and YOLO, see Tables 2 to 5 and Figure 1. Similary, the models that achieve
higher accuracies when fine-tuning from the TableBank dataset are YOLO and
RetinaNet, see Figure 2. As can be seen in Tables 2 to 5, fine-tuning from a
close domain produce more accurate models that fine-tuning from an unrelated
domain. However, the effects on each algorithm and dataset greatly differ. The
algorithm that is more considerably boosted for table detection is Mask R-CNN,



10 A. Casado-García et al.

@0.6 @0.7 @0.8 @0.9
P@0.6 R@0.6 F1@0.6 P@0.7 R@0.7 F1@0.7 P@0.8 R@0.8 F1@0.8 P@0.9 R@0.9 F1@0.9 WAvgF1 Improvement

TableBank 0.98 0.86 0.92 0.98 0.86 0.92 0.97 0.85 0.91 0.94 0.82 0.87 0.90

ICDAR13 0.56 0.58 0.57 0.56 0.58 0.57 0.56 0.58 0.57 0.34 0.35 0.35 0.50
ICDAR17 0.65 0.86 0.74 0.64 0.85 0.73 0.58 0.77 0.67 0.48 0.63 0.55 0.66
ICDAR17FIG 0.57 0.61 0.59 0.7 0.76 0.73 0.73 0.79 0.76 0.74 0.8 0.77 0.72
ICDAR17FOR 0.63 0.06 0.12 0.63 0.06 0.12 0.6 0.06 0.11 0.4 0.04 0.07 0.10
ICDAR19 0.86 0.66 0.74 0.82 0.63 0.72 0.76 0.58 0.66 0.58 0.45 0.51 0.64
Invoices 0.90 0.59 0.71 0.88 0.58 0.70 0.86 0.56 0.68 0.70 0.46 0.56 0.65
MarmotEn 0.75 0.86 0.8 0.74 0.86 0.8 0.7 0.81 0.75 0.47 0.54 0.5 0.69
MarmotChi 0.78 0.85 0.81 0.75 0.81 0.78 0.73 0.79 0.75 0.5 0.54 0.52 0.70
UNLV 0.81 0.83 0.82 0.79 0.81 0.80 0.76 0.77 0.76 0.61 0.63 0.62 0.73

ICDAR13 0.83 0.77 0.8 0.79 0.74 0.77 0.76 0.71 0.73 0.72 0.68 0.7 0.74 0.24
ICDAR17 0.92 0.87 0.89 0.92 0.87 0.89 0.89 0.84 0.86 0.79 0.75 0.77 0.84 0.18
ICDAR17FIG 0.76 0.79 0.77 0.74 0.77 0.76 0.72 0.75 0.74 0.64 0.66 0.65 0.72 0.001
ICDAR17FOR 0.26 0.35 0.3 0.24 0.32 0.27 0.19 0.26 0.22 0.08 0.1 0.09 0.20 0.11
ICDAR19 0.91 0.74 0.82 0.87 0.81 0.79 0.81 0.67 0.73 0.68 0.56 0.61 0.72 0.08
Invoices 0.92 0.59 0.72 0.92 0.59 0.71 0.87 0.55 0.68 0.74 0.47 0.58 0.66 0.01
MarmotEn 0.93 0.86 0.9 0.92 0.86 0.89 0.91 0.84 0.87 0.78 0.73 0.75 0.84 0.14
MarmotChi 0.87 0.87 0.87 0.85 0.85 0.85 0.83 0.83 0.83 0.69 0.7 0.69 0.80 0.10
UNLV 0.81 0.83 0.82 0.79 0.8 0.8 0.75 0.77 0.76 0.63 0.64 0.64 0.74 0.01

Table 3. Results using the RetinaNet algorithm

that improves up to a 60% in some cases and 42% in mean. In the case of
RetinaNet, in mean it improves by 11%, YOLO a 9%, and SSD is the one with
the least improvement, only a 5%.

Finally, if we consider the results for the datasets containing figures and
formulas, the improvement is not as remarkable as in the detection of tables. In
this case, the algorithm that takes a bigger advantage of this technique is YOLO,
since in both cases it improves up to a 10%. In the case of RetinaNet, it improves
the detection of formulas by 10%, while that of figures barely improves. And in
the case of SSD and Mask R-CNN, they are the ones with the least improvement
and even have some penalty.

As we have shown in this section, fine-tuning from the TableBank dataset can
boosten table detection models. However, there is not a model that outperforms
the rest, see Figures 1 and 2. Therefore, we have released a set of tools to employ
the trained models, and also employ them for constructing models using fine-
tuning on custom datasets.

5 Tools for table detection

Using one of the generated detection model with new images is usually as simple
as invoking a command with the path of the image (and, probably, some ad-
ditional parameters). However, this requires the installation of several libraries
and the usage of a command line interface; and, this might be challenging for
non-expert users. Therefore, it is important to create simple and intuitive inter-
faces that might be employed by different kinds of users; otherwise, they will not
be able to take advantage of the object detection models.

To disseminate our detection models, we have created a set of Jupyter note-
books, that allows users to detect tables in their images. Jupyter notebooks [22]



Close-Domain Fine-Tuning for Table Detection in Document Images 11

@0.6 @0.7 @0.8 @0.9
P@0.6 R@0.6 F1@0.6 P@0.7 R@0.7 F1@0.7 P@0.8 R@0.8 F1@0.8 P@0.9 R@0.9 F1@0.9 WAvgF1 Improvement

TableBank 0.96 0.97 0.96 0.94 0.95 0.95 0.92 0.92 0.92 0.82 0.82 0.82 0.90

ICDAR13 0.54 0.68 0.6 0.44 0.55 0.49 0.38 0.48 0.43 0.15 0.19 0.17 0.40
ICDAR17 0.49 0.71 0.58 0.41 0.59 0.48 0.34 0.49 0.4 0.22 0.32 0.4 0.45
ICDAR17FIG 0.7 0.8 0.75 0.68 0.77 0.72 0.61 0.69 0.65 0.34 0.38 0.36 0.59
ICDAR17FOR 0.44 0.64 0.52 0.34 0.49 0.4 0.19 0.27 0.22 0.03 0.05 0.22 0.32
ICDAR19 0.31 0.35 0.33 0.23 0.26 0.25 0.18 0.2 0.19 0.1 0.11 0.1 0.20
Invoices 0.87 0.84 0.85 0.8 0.78 0.79 0.63 0.61 0.62 0.27 0.26 0.26 0.59
MarmotEn 0.67 0.76 0.71 0.63 0.71 0.67 0.6 0.67 0.63 0.38 0.43 0.4 0.58
MarmotChi 0.57 0.7 0.63 0.48 0.60 0.53 0.36 0.45 0.4 0.25 0.31 0.28 0.44
UNLV 0.66 0.64 0.65 0.6 0.58 0.59 0.45 0.43 0.44 0.12 0.11 0.12 0.42

ICDAR13 0.62 0.68 0.65 0.62 0.68 0.65 0.5 0.55 0.52 0.32 0.35 0.34 0.52 0.12
ICDAR17 0.55 0.71 0.62 0.46 0.60 0.52 0.42 0.54 0.47 0.30 0.39 0.34 0.47 0.01
ICDAR17FIG 0.27 0.77 0.41 0.26 0.72 0.38 0.21 0.58 0.31 0.10 0.28 0.15 0.29 -0.3
ICDAR17FOR 0.5 0.74 0.6 0.41 0.6 0.49 0.29 0.42 0.34 0.07 0.11 0.09 0.35 0.03
ICDAR19 0.35 0.35 0.35 0.28 0.27 0.28 0.23 0.22 0.23 0.13 0.12 0.13 0.23 0.03
Invoices 0.91 0.86 0.89 0.87 0.81 0.84 0.71 0.67 0.69 0.37 0.35 0.36 0.66 0.07
MarmotEn 0.71 0.75 0.73 0.69 0.73 0.71 0.66 0.70 0.68 0.49 0.52 0.51 0.64 0.06
MarmotChi 0.61 0.67 0.64 0.50 0.55 0.52 0.42 0.46 0.44 0.28 0.31 0.29 0.45 0.01
UNLV 0.72 0.66 0.69 0.66 0.61 0.63 0.5 0.45 0.47 0.28 0.26 0.27 0.49 0.07

Table 4. Results using the SSD algorithm

@0.6 @0.7 @0.8 @0.9
P@0.6 R@0.6 F1@0.6 P@0.7 R@0.7 F1@0.7 P@0.8 R@0.8 F1@0.8 P@0.9 R@0.9 F1@0.9 WavgF1 Improvement

TableBank 0.98 0.99 0.98 0.98 0.99 0.98 0.96 0.97 0.96 0.74 0.75 0.75 0.90

ICDAR13 0.92 0.58 0.6 0.61 0.61 0.61 0.57 0.55 0.56 0.31 0.32 0.32 0.50
ICDAR17 0.9 0.94 0.92 0.88 0.93 0.9 0.78 0.82 0.8 0.39 0.41 0.4 0.72
ICDAR17FIG 0.88 0.84 0.86 0.85 0.82 0.84 0.75 0.72 0.74 0.23 0.22 0.23 0.63
ICDAR17FOR 0.9 0.85 0.87 0.82 0.77 0.79 0.54 0.5 0.52 0.1 0.09 0.1 0.52
ICDAR19 0.95 0.91 0.93 0.94 0.9 0.92 0.89 0.85 0.87 0.61 0.58 0.6 0.81
Invoices 0.89 0.87 0.88 0.84 0.82 0.83 0.7 0.68 0.69 0.26 0.26 0.26 0.63
MarmotEn 0.9 0.96 0.93 0.87 0.93 0.9 0.76 0.81 0.78 0.32 0.34 0.33 0.70
MarmotChi 0.95 0.96 0.96 0.93 0.94 0.94 0.88 0.89 0.89 0.61 0.62 0.61 0.83
UNLV 0.91 0.95 0.93 0.88 0.91 0.89 0.73 0.76 0.74 0.39 0.4 0.39 0.70

ICDAR13 1 0.65 0.78 0.95 0.61 0.75 0.9 0.58 0.71 0.6 0.39 0.47 0.66 0.15
ICDAR17 0.94 0.94 0.94 0.93 0.94 0.93 0.89 0.89 0.89 0.61 0.62 0.61 0.82 0.09
ICDAR17FIG 0.91 0.83 0.87 0.89 0.82 0.86 0.83 0.76 0.8 0.44 0.4 0.42 0.71 0.07
ICDAR17FOR 0.94 0.85 0.89 0.88 0.79 0.83 0.65 0.59 0.62 0.19 0.17 0.18 0.59 0.06
ICDAR19 0.95 0.95 0.95 0.94 0.94 0.94 0.9 0.9 0.9 0.68 0.68 0.68 0.85 0.04
Invoices 0.9 0.89 0.89 0.87 0.85 0.86 0.76 0.74 0.75 0.39 0.39 0.39 0.69 0.06
MarmotEn 0.95 0.97 0.96 0.95 0.97 0.96 0.92 0.93 0.93 0.68 0.69 0.69 0.87 0.16
MarmotChi 0.97 0.93 0.95 0.96 0.93 0.94 0.92 0.89 0.91 0.69 0.67 0.68 0.85 0.02
UNLV 0.93 0.95 0.94 0.92 0.94 0.93 0.83 0.85 0.84 0.48 0.49 0.49 0.77 0.06

Table 5. Results using the YOLO algorithm



12 A. Casado-García et al.

Fig. 1. Dispersion diagram using fine-tuning from natural images

Fig. 2. Dispersion diagram using fine-tuning dataset from the TableBank



Close-Domain Fine-Tuning for Table Detection in Document Images 13

are documents for publishing code, results and explanations in a form that is
both readable and executable; and, they have been widely adopted across mul-
tiple disciplines, both for their usefulness in keeping a record of data analyses,
and also for allowing reproducibility. The drawback of Jupyter notebooks is that
they require the installation of several libraries. Such a problem has been over-
come in our case by providing our notebooks in Google Colaboratory [5], a free
Jupyter notebook environment that requires no setup and runs entirely in the
cloud avoiding the installation of libraries in the local computer. The notebooks
are available at https://github.com/holms-ur/fine-tuning.

In addition, in the same project webpage, due to the heterogeneity of docu-
ment images containing tables, we have provided all the weights, configuration
files, and necessary instructions to fine-tune any of the detection models created
in this work to custom datasets containing tables.

6 Conclusion and Further work

In this work, we have shown the benefits of using fine-tuning from a close domain
in the context of table detection. In addition to the accuracy improvement, this
approach avoids overfitting and solves the problem of having a small dataset.
Moreover, we can highlight that apart from the Mask R-CNN algorithm, other
algorithms such as YOLO and RetinaNet can achieve a good performance in the
table detection task.

Since table detection is the first step towards table analysis, we plan to use
this work as a basis for determining the internal structure of tables, and, even-
tually, extracting the semantics from table contents. Moreover, we are also in-
terested in extending these methods to detect forms in document images.

References

1. Abdulla, W.: Mask R-CNN for object detection and instance segmentation on
Keras and TensorFlow (2017), https://github.com/matterport/Mask_RCNN

2. Alexey, A.B.: YOLO darknet (2018), https://github.com/AlexeyAB/darknet
3. Cesari, F., et al.: Trainable Table Location in Document Images. In: 16th Interna-

tional Conference on Pattern Recognition. ICPR’02, vol. 3, p. 30236. ACM (2002)
4. Chen, T., et al.: MXNet: A Flexible and Efficient Machine Learning Library

for Heterogeneous Distributed Systems. CoRR abs/1512.01274 (2015), http:
//arxiv.org/abs/1512.01274

5. Colaboratory team: Google colaboratory (2017), https://colab.research.
google.com

6. Costa e Silva, A.: Learning Rich Hidden Markov Models in Document Analy-
sis: Table Location. In: 10th International Conference on Document Analysis and
Recognition. pp. 843–847. ICDAR’10, IEEE (2009)

7. Coüasnon, B., Lemaitre, A.: Handbook of Document Image Processing and Recog-
nition, chap. Recognition of Tables and Forms, pp. 647–677. Springer International
Publishing (2014)

https://github.com/holms-ur/fine-tuning
https://github.com/matterport/Mask_RCNN
https://github.com/AlexeyAB/darknet
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
https://colab.research.google.com
https://colab.research.google.com


14 A. Casado-García et al.

8. Embley, D.W., et al.: Table-processing paradigms: a research survey. International
Journal Document Analysis and Recognition 8(2–3), 647–677 (2006)

9. Everingham, M., et al.: The Pascal Visual Object Classes Challenge: A Retrospec-
tive. International Journal of Computer Vision 111(1), 98–136 (2015)

10. Gao, L., Yi, X., Jiang, Z., Hao, L., Tang, Z.: ICDAR2017 competition on page
object detection. In: 14th IAPR International Conference on Document Analysis
and Recognition. pp. 1417–1422. ICDAR’17 (2017)

11. Gilani, A., et al.: Table Detection using Deep Learning. In: 14th International
Conference on Document Analysis and Recognition. pp. 771–776. ICDAR’17, IEEE
(2017)

12. Girshick, R., et al.: Accurate Object Detection and Semantic Segmentation. In:
2014 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition. pp. 580–587. CVPR’14, IEEE (2014)

13. Gobel, M.C., Hassan, T., Oro, E., Orsi, G.: ICDAR2013 Table Competition.
In: 12th ICDAR Robust Reading Competition. pp. 1449–1453. ICDAR’13, IEEE
(2013)

14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org

15. Hao, L., et al.: A table detection method for pdf documents based on convolutional
neural networks. In: 12th International Workshop on Document Analysis Systems.
pp. 287–292. DAS’16, IEEE (2016)

16. Hirayama, Y.: A method for table structure analysis using DP matching. In: 3rd
International Conference on Document Analysis and Recognition. pp. 583–586.
ICDAR’95, IEEE (1995)

17. Huang, Y., et al.: A YOLO-based Table Detection Method. In: 15th International
Conference on Document Analysis and Recognition. ICDAR’19 (2019)

18. Institute of Computer Science and Techonology of Peking University and Institute
of Digital Publishing of Founder R&D Center, China: Marmot dataset for table
recognition (2011), http://www.icst.pku.edu.cn/cpdp/sjzy/index.htm

19. Jianying, H., et al.: Medium-independent table detection. In: Document Recogni-
tionand Retrieval VII. vol. 3967, pp. 583–586. International Society for Optics and
Photonics (1999)

20. Kasar, T., et al.: Learning to Detect Tables in Scanned Document Images Using
Line Information. In: 12th International Conference on Document Analysis and
Recognition. pp. 1185–1189. ICDAR’13, IEEE (2013)

21. Kerwat, M., George, R., Shujaee, K.: Detecting Knowledge Artifacts in Scientific
Document Images - Comparing Deep Learning Architectures. In: 5th International
Conference on Social Networks Analysis, Management and Security. pp. 147–152.
SNAMS’18, IEEE (2018)

22. Kluyver, T., et al.: Jupyter notebooks — a publishing format for reproducible com-
putational workflows. In: 20th International Conference on Electronic Publishing.
pp. 87–90. IOS Press (2016)

23. Li, M., et al.: TableBank: Table Benchmark for Image-based Table Detection and
Recognition. CoRR abs/1903.01949 (2019), http://arxiv.org/abs/1903.01949

24. Lin, T., Goyal, P., Girshick, R., He, K., Dollár., P.: Keras retinanet (2017), https:
//github.com/fizyr/keras-retinanet

25. Lin, T.Y., et al.: Focal Loss for Dense Object Detection. In: 16th International
Conference on Computer Vision. pp. 2999–3007. ICCV’17 (2017)

26. Liu, W., et al.: SSD: Single Shot MultiBox Detectors. In: 14th European Conference
on Computer Vision. ECCV’16, vol. 9905, pp. 21–37 (2016)

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.icst.pku.edu.cn/cpdp/sjzy/index.htm
http://arxiv.org/abs/1903.01949
https://github.com/fizyr/keras-retinanet
https://github.com/fizyr/keras-retinanet


Close-Domain Fine-Tuning for Table Detection in Document Images 15

27. Oliveira, D.A.B., Viana, M.P.: Fast CNN-based document layout analysis. In:
14th International Conference on Computer Vision Workshops. pp. 1173–1180.
ICCVW’17, IEEE (2017)

28. Oro, E., Ruffolo, M.: PDF-TREX: An approach for recognizing and extracting ta-
bles from PDF documents. In: 10th International Conference on Document Anal-
ysis and Recognition. pp. 906–910. ICDAR’09, IEEE (2009)

29. Razavian, A.S., et al.: CNN features off-the-shelf: An astounding baseline for recog-
nition. In: 27th Conference on Computer Vision and Pattern Recognition Work-
shops. pp. 512–519. CVPRW’14 (2014)

30. Redmon, J., Farhadi, A.: YOLOv3: An Incremental Improvement. CoRR
abs/1804.02767 (2018), http://arxiv.org/abs/1804.02767

31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time Ob-
ject Detection with Region Proposal Networks. Advances in Neural Information
Processing Systems 28, 91–99 (2015)

32. Rosebrock, A.: Deep Learning for Computer Vision with Python. PyImageSearch
(2018), https://www.pyimagesearch.com/

33. Russakovsky, O., et al.: ImageNet Large Scale Visual Recognition Challenge. In-
ternational Journal of Computer Vision 115(3), 211–252 (2015)

34. Schreiber, S., et al.: DeepDeSRT: Deep Learning for Detection and Structure
Recognition of Tables in Document Images. In: 14th International Conference on
Document Analysis and Recognition. pp. 1162–1167. ICDAR’17, IEEE (2017)

35. Shahab, A., Shafait, F., Kieninger, T., Dengel, A.: An open approach towards the
benchmarking of table structure recognition systems. In: 9th IAPR Int. Workshop
on Document Analysis Systems. pp. 113–120. DAS’10 (2010)

36. Siddiqui, S.A., et al.: DeCNT: Deep Deformable CNN for Table Detection. IEEE
Access 6, 74151–74161 (2018)

37. Suen, C.Y., et al.: ICDAR2019 Table Competition (2019), http://icdar2019.org/
38. Zanibbi, R., Blostein, D., Cordy, J.R.: A survey of table recognition. Document

Analysis and Recognition 7(1), 1–16 (2004)

http://arxiv.org/abs/1804.02767
https://www.pyimagesearch.com/
http://icdar2019.org/

	The Benefits of Close-Domain Fine-Tuning for Table Detection in Document Images

