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Abstract. Sophisticated infrastructures often exhibit misbehaviour and
failures resulting from complex interactions of their constituent subsys-
tems. Such infrastructures use alarms, event and fault information, which
is recorded to help diagnose and repair failure conditions by operations
experts. This data can be analysed using explainable artificial intelligence
to attempt to reveal precursors and eventual root causes. The proposed
method is first applied to synthetic data in order to prove functionality.
With synthetic data the framework makes extremely precise predictions
and root causes can be identified correctly. Subsequently, the method is
applied to real data from a complex particle accelerator system. In the
real data setting, deep learning models produce accurate predictive mod-
els from less than ten error examples when precursors are captured. The
approach described herein is a potentially valuable tool for operations
experts to identify precursors in complex infrastructures.

Keywords: Prognostics and Diagnostics - Explainable Al - Deep Learn-
ing - Multivariate Time Series.

1 Introduction

Technical infrastructures are becoming increasingly complex while demands on
availability are constantly rising. Failures of simple systems can often be man-
ually analyzed in a relatively straight-forward manner by experts, whereas sys-
tems with increasing complexity and dependencies between infrastructures ren-
der manual failure analysis largely infeasible. This is primarily due to the sheer
amount of potentially relevant failure precursors that must be considered.

In this study, modern particle accelerators are taken as example of com-
plex infrastructures. Complete analytical models of failures and abnormal be-
haviors of particle accelerators are usually impossible; accelerators have numer-

ous inter-operating subsystems, recording large amounts of diverse data, which
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is difficult to analyse. In addition, the operational modes of particle accelera-
tors can change over time, influencing the reliability and operating margins of
sub-systems (e.g. an accelerator may operate as both an ion mode or a proton
mode, with significant operating margins in one mode, and limited margins in
the other). Moreover, an accelerator is a continuously evolving infrastructure,
maintenance is carried out, sub-systems are upgraded and evolved, modes of op-
eration are tuned, and adjusted. All combined, this makes traditional modelling
approaches inadequate.

In general, operation data, such as system alarms, events, faults, physical
measurements, etc., are abundant and are logged at rates and dimensionalities
which are impossible to analyze in real time by a human operator. Hence, auto-
mated data driven analyses are required to assist human operators in diagnosis
of system operation.

For application in particle accelerator environments, data driven methods
need to handle heterogeneous data sources (e.g. binary alarms, discrete logged
settings, continuous monitoring values), function with raw data and extract fea-
tures automatically, learn from few observed failures and many observed non-
failures (imbalanced data), and scale to several hundreds of input signals.

A data driven prognostics and diagnostics framework should reveal both (a)
prediction of failures and alarms in advance and (b) clear insights for the inter-
pretation of failure predictions. This would allow operators to increase infras-
tructure availability by preventive and pro-active actions to mitigate or remove
failure conditions.

Related work Methods to predict faults have been reviewed extensively in the
fields of prognostics and diagnostics [13, 31, 25|, system health management [15]
and predictive maintenance [23]. They are commonly classified as model driven,
when a-priori modeling of the system behaviour is employed, or data driven,
when the system behaviour is inferred from data. As model driven approaches
are becoming infeasible when prior knowledge on the infrastructure behaviour
is limited, only data driven methods are considered here.

Within data driven approaches, a distinction can be made between classi-
cal Machine Learning (ML) (e.g. support vector machine, k-nearest neighbour,
decision tree), deep learning (e.g. deep belief networks, convolutional neural
networks, recurrent neural networks) and probabilistic reasoning (e.g. Hidden
Markov models, Gaussian Processes, Bayesian Graphical Networks) methods.
Traditional ML is computationally efficient but often requires extensive data
pre-processing and feature extraction efforts. Deep learning allows phenomena
to be modelled in greater detail with reduced preprocessing, when sufficient data
is available. Probabilistic reasoning allows to quantify and propagate uncertainty
when limited data is available, but cannot match the computational effectiveness
of traditional ML.

Further possible classifications are based on the field of application (e.g.
mechanical systems, electronics, software), the complexity of the studied system
(e.g. component, unit, system, system of system, human interaction), the type of
learning (supervised, semi-supervised, unsupervised) and the kind of data used
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(univariate, multivariate, binary, numeric, discrete, text, raw data, features).
Methods are usually not classified by the interpretability and explainability of
their predictions, which is an important criterion for the considered use case and
for many other applications [1].

Support-Vector Machines (SVMs) play a large role within traditional ML
approaches. Zhu et al [32] and Fulp et al [12] developed SVM based methods to
predict the failures of hard drives based on features indicating system health.
Leahy et al [16] predicted wind turbine failures based on features of data from
Supervisory Control and Data Acquisition (SCADA) systems in wind turbines.
Fronza et al [11] extended the approach to systems of systems by predicting
failures in large software systems. SVMs would allow interpretation of trained
models, especially with linear Kernel functions. However, none of the authors
considered investigating the structure of the learned models in order to gain
insights into the failure mechanisms of the systems.

L1 regularized Granger causality was developed by Qiu et al [22] to detect
root causes of anomalies in industrial processes. They reported interpretable
results, scalability and robust performance. However, the method was not used
to predict faults.

Association rule mining based methods were used by Vilalta et al [28] and
Serio et al [27] to identify failure mechanisms in complex infrastructures using
interpretable models. Vilalta et al detected anomalies in computer networks. The
class imbalance problem is overcome by learning only from the minority class
representing anomalies. They reported good accuracy but limited applicability
of the method. The work by Serio et al represents the only relevant application in
the particle accelerator domain. The authors successfully extracted expert ver-
ified fault dependencies between subsystems from logging data. However, time
dependence between events were not considered and fault predictions are there-
fore not possible.

As an example of probabilistic reasoning methods, Mori et al [19] proposed a
Bayesian graphical model approach to perform root cause diagnosis in industrial
processes. The method is interpretable and accurate. At the overlap of proba-
bilistic modeling and deep learning is the work of Liu et al [17]. The framework
combines ideas from state space modeling with Restricted Boltzmann Machines
or Deep Neural Networks to identify root causes of anomalies in industrial pro-
cesses. High accuracy and scalability were reported.

With deep learning methods Saeki et al [24] classified wind turbine generator
anomalies from spectral data. On a test data set, a visual explanation technique
attributed importance to the same failure precursors as human experts. They
noted that the data set used was not representative for real world scenarios.
Amarsinghe et al [2] detected Denial of Service attacks in computer networks
using a Deep Neural Network and a so called Layer-wise Relevance Propagation
(LRP) introduced by Bach et al [4] to highlight relevant inputs for classification
decisions. High classification accuracy was reported and explanations were intu-
itive to interpret. However, the method used features generated from raw data.
Bach-Andersen et al [5] performed an extensive study of early fault precursor
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detection for ball bearings in wind turbines using raw spectral data. They com-
pared logistic regression, fully connected neural networks and deep convolutional
neural networks across three classification tasks. The deep network was found to
perform the best. Using a visualization technique of higher layers of the trained
deep network, the strong performance of the network could be explained and
insights about the failure behaviour were derived. The method yielded accurate
results, handled class imbalance and scaled well.

Demonstrating performance advantage and universality, explainable deep
learning frameworks seem promising for fault prediction in the accelerator do-
main. The work of Bach-Andersen et al provides a strong baseline but it was
optimized for a different application domain and used a data structure which is
not compatible with the particle accelerator use case. Moreover, the LRP mech-
anism by Bach et al was more intuitive to the authors of this study than the high
level feature visualization used in Andersen et al. Furthermore, LRP is based on
a more firmly established theory [18,26]. A recent extensive review by Fawaz et
al [9] on deep learning architectures for time series problems reveals that convolu-
tional neural network structures outperform traditional methods across a variety
of multivariate time series classification tasks. Similar findings were previously
reported by Wang et al [29] for univariate time series. Therefore, we chose neural
network architectures as suggested in Fawaz et al for failure prediction and LRP
by Bach et al as the explanation mechanism for the framework presented in this
study. The goal is to evaluate whether such a framework can successfully be
applied as fault prognostics and diagnostics tool in the accelerator domain and
whether it provides significant advantages over classical ML methods. It is the
first of its kind in the particle accelerator domain based on state-of-the-art deep
learning for multivariate time series and explainable AI methods.

Data Data Driven Model Prediction Explanation
Input (image of animal) Label (species) Input Prediction
cock ¢
Cock
hammerhead
Input (past Label (leading to ..
monitoring signals) alarm in future?) Input Prediction
Timet{ - - - No
Signals B =l |
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.
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Fig. 1. Upper Row: Machine learning algorithms are able to identify animal species
based on labeled images. Explanation techniques help to understand which pixels con-
tribute the most to assign a certain species to an input image. [4] Lower Row: In the
same way, a machine learning algorithm can learn a model to predict infrastructure
failures based on time series data of monitoring signals. Here explanation techniques
provide information about the most relevant signals leading to the failure.
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The idea of the proposed framework is illustrated in Fig. 1. Time series of data
are obtained during the operation of complex infrastructures, such as particle
accelerators. Operational alarms or anomalies lead to specific fault events in the
data. A sliding window approach can extract snapshots of the machine behaviour
before the occurrence of fault events and snapshots during normal operation.
Thereby, a supervised training data set is generated without manual labeling
effort. From such data, a discriminator, such as a deep neural network, can learn
general rules to predict if a certain system snapshot will lead to failures after
a certain time. If a fault is predicted, LRP highlights the most relevant fault
precursors which help system experts understand the fault mechanism and take
preventive measures.

The framework is introduced in Section 2. In Section 3 the effectiveness and
the suitability of the framework are evaluated in experiments with synthetically
generated time series data. Then, the method is applied to real world logging
data sets of a particle accelerator to verify its suitability for the accelerator
domain. Throughout, the deep learning frameworks are compared to classical
machine learning methods, such as support-vector machines, random forests,
and k-nearest-neighbor classifiers. Summary, Conclusions and Outlook are given
in Section 4.

2 Methodology

Definitions and Overview The subject of study is an infrastructure I which
can be composed of multiple sub-systems. A range of N observable signals,
monitors the behaviour of the infrastructure and its environment over time,
forming a multivariate time series, S = {S;; : ¢ € [1 : N] and ¢ € N}. These can
include logged continuous and discrete parameters, event- and alarm-logs, input-
and output-signals, etc. The infrastructure has a range of failure modes which
indicate certain malfunctions. These failure modes are observable in a subset of
signals.

An autoregressive model predicts the future behaviour of a system based on
its current and past states. For a complex infrastructure, it can be expected that
failures may appear without announcing themselves in advance by precursors.
Even for situations with advance precursors, not all relevant processes might
be monitored. Therefore, an autoregressive model can only approximate future
failures based on time-discrete monitoring signals of complex infrastructures,

S%,[Htpét Dt (tptno)st] (I)(S[Fl):N],[tfnth : t])
with

— S§7[t+tp5t 4 (tytng)St] = 1, if a failure occurs between time ¢ +t,0t and time
t + (tp, + n,)0t, and zero otherwise,

— S[I;: NLft—nist : ] being finite histories of observed signals covering the time
stamps t — n;dt to t and being considered as possible precursors,

— &t being the discretization time,
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t, the prediction- or lead-time,

— n, the number of time steps chosen to capture the future failure behaviour,

— n; the number of discrete time steps chosen to capture the history of the
observed signals and

— & an auto-regressive model,

as illustrated in Fig. 2.
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Fig. 2. Time discrete model formulation. The x-axis represents discrete time and the
y-axis monitoring signals of the investigated infrastructure. Crosses mark events which
could be faults, alarms, changes in monitoring values, etc. Events of the signal Sy
represent infrastructure faults that the model ®(-) predicts.

In a few simple cases, the model ®(-) can be obtained from first principles. In
the case of complex infrastructure, the model needs to be determined in a data
driven fashion using machine learning or time series analysis techniques. Models
can learn the system behaviour from time series data in a supervised fashion
by supplying pairs of input-data, Sﬁ: N] and output- or target-data,
Sﬁ,[t«ktp&t st (tp+no)St]

Once such a model has been trained, it can predict failures when supplied
with observed data of the infrastructure. However, acting as black box it is not
able to provide operators of the infrastructure any further information concern-
ing the predicted failures, such information could be used for preventive actions
to prevent the reoccurence of the failure observed.

To address this, the framework provides a relevance measure, p(S*) € R(%-N),
of each of the observed signals at each time step, which signifies the most rele-
vant input signals for model predictions. This can be provided to infrastructure
operators, to focus their attention on a range of potential precursors. The frame-
work does not search for causality but temporal precedence of correlated failure

[t—nidt : ]
of the observed history of the studied infrastructure.
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precursors [8]. Including expert verified causal dependencies, it may be possible
to generate model based descriptions of failure behaviour [10].

The framework can be used as a real-time analysis tool, acquiring data con-
tinuously from the infrastructure as an input, predict imminent failures as an
output. In this manner it could advise operators to take preventive measures.
These actions require a certain lead-time, ¢, > 0, to allow the system operators
time to intervene, t,0t, to preemptively act on predicted failures. As a post-
mortem tool, the framework could be used without lead-time constraints, in the
analysis and explanation of complex failure mechanisms, which could then be
investigated by system experts to mitigate reoccurrence. All of these consid-
erations are particularly relevant for future generations of high-energy particle
accelerators, for which the increasing size (order of 100 km), are expected to set
unprecedented challenges in terms of maintainability of the infrastructures.

Machine Learning Pipeline This Subsection describes in more detail how
predictive models ®(-) are learned from observed monitoring data.

Data Collection The observable signals S of the studied infrastructure are stored
in time series format in a data-set D. Based on a-priori expert knowledge, a pre-
selection of potentially relevant signals can be chosen to reduce the required
storage capacities. Further details on the data collection will be given for the use
cases 3.

Model Selection and Evaluation The problem formulation contains a range of
hyperparameters to be optimized, e.g. [T, n;, no, t,], which are introduced later
in this Section. To do so, a K-fold validation strategy is adopted for the studied
use-cases [6]. It is performed by splitting the overall data-set, D, in a training set,
Dirain up to time tgp5:, and a final test set, Dyieqr after time £p;¢. The K-folds
for hyperparameter selection are obtained by a further splitting of the training
set into K sub-training sets at splitting times tsup—sprit,s & = 1, ..., K.

Subsampling As failures in the considered infrastructures are rare, the target
data S, will contain few failures and therefore contain many more '0’s (no
failures) than ’1’s (failures). Such an imbalanced data-set requires subsampling
of the majority class (usually class ’0’) randomly until a certain target ratio
Po,targ = freq(clo)/freg(cly), is reached. Here, freq(cly) denotes the number
of class 'x’ instances in the data set. After subsampling, data n.., time-steps
before and after each class "1’ instances are added to the training set as it leads
to better performance of the learned models. This can be seen as a method to
increase ’contrast’ in the class "1’ neighbourhood.
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Input Filtering and Normalization Input signals having values equal to zero
or less than ay,;,* times or having a variance smaller or equal to ,,;,° are
automatically removed. After the filtering, the input signals of the training data
are normalized to the range [0, 1].

Model Learning Algorithms To learn a model ®(-), from pairs of historical input-
and output-data of the infrastructure, deep learning algorithms and classical ma-
chine learning algorithms were used. The target variables take values '0’ and 1,
so the failure forecasting problem has been formulated as a binary classification
task.

Based on recent studies on using deep learning for multivariate time se-
ries classification, the study is focused on fully-convolutional neural networks.
They reach state-of-the-art performance while being faster to train than recur-
rent neural networks [9,29]. These deep networks were compared against SVM,
Random-Forest, and K-Nearest-Neighbour classifiers, representing classical ML
techniques. The following algorithms were used:

— FCN: The classifier is based on an architecture proposed by Wang et al [29].

It consists of three convolutional blocks with three operations in each: a
convolution is followed by a batch normalization [14] and fed into a ReLU
activation. The output of the last convolutional block is averaged over the
whole time-dimension in a Global Average Pooling layer (GAP). Lastly, the
GAP’s output is fully connected to a traditional softmax classifier.
The convolutions are characterised by having a stride of 1 with zero padding
to conserve the shape of the input data. The three convolution layers contain
128, 256, and 128 filters with a filter length of 8, 5, and 3, respectively. It
was selected as it achieved the highest accuracy across 13 multivariate time
series datasets in the review by Fawaz et al [9]. We use the implementation of
the review paper with minor modifications. The number of training epochs
is set to 2000. An early stop criterion ensures that training is terminated if
the validation loss is not decreasing by more than 0.001 after 200 epochs,
with the loss function set to categorical cross-entropy.

— FCN2drop: This is the same classifier as FCN, except with dropout applied
to two layers in the network. Dropout is applied on the second convolution
and on the GAP layer with a dropout probability of p4rop = 0.5. Due to
the scarcity of class '1’ items in the learning data, dropout regularization is
expected to prevent overfitting of the network.

— FCN3drop: This is the same classifier as FCN, except with dropout applied
to three layers in the network. Dropout is applied on the second and third
convolution and on the GAP layer with pgrop = 0.7.

— tCNN: As proposed by Zhao et al [30], the network consists of two convo-
lutional layers with 6 and 12 filters, respectively. The final layer is a tra-
ditional fully-connected layer with sigmoid activation function. It uses the

4 Unless stated otherwise, amin=4, as it was the minimal number of examples from
which the selected algorithms could learn from. [3]

5 Unless stated otherwise, omin=0, to only remove constant signals which do not
contain any discriminatory information.
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mean-squared error instead of cross-entropy as loss function. We have taken
the implementation from Fawaz et al using the same early stopping criterion
as for the FCN models.

— SVM: A support vector machine with linear kernel functions, using the im-
plementation from [21] with default parameters.

— RF: A random forest classifier is a meta classifier based on decision trees. We
used the implementation from [21] with the number of features to consider
for optimal splitting set to the square-root of the number of features and
default parameters.

— kNN: A k-Nearest-Neighbour classifier based on the implementation from
[21] using n = 7 neighbours and default parameters.

The classifier parameters were manually pre-selected based on recommendations
in the Scikit-learn user guide [21] and preliminary experiments on data-sets as
described in Section 3. SVM, RF and kNN classifiers require the input to be one-
dimensional. Therefore, the 2D multivariate time series input data is flattened
to one dimension when fed into the classifier for training and prediction.

To evaluate the performance of the classifiers the accuracy and the F1 score
on the test-set is examined. Due to the imbalance of classes, additionally the
fraction of the majority class in the test-set is reported.

Explaining Predictions In order to help operation experts interpreting pre-
dictions of the framework and discovering failure mechanisms, the relevance of
each input at discrete time steps in the observed history, p(S¥) € RN s
quantified and reported.

For deep learning methods, several such relevance reporting techniques have
been developed. The so-called LRP was chosen for implementation as it provides
best-in-class explanations [26]. It is based on a backward pass within the neural
network which is layer-wise relevance conserving. Neurons contributing the most
to the following layer receive most relevance from it during its backwards pass.

Testing the Gradient x Input [18], LRP-0, and LRP-¢ rules [4], the LRP-0
rule showed a better omission of irrelevant failure precursors with synthetic test
data.

For the classical machine learning methods, the input relevance for the SVM
classifier was calculated by evaluating the input feature weight vector [21]. The
input relevance is depicted as 2D heatmaps with more relevant inputs being
represented in darker colours.

3 Numerical Experiments

The method described above is applied to several use-cases, which are briefly
introduced. Implementations are available on github®.

5 https://github.com/Ifelsber /alarmsMining
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Synthetic Data Experiments The framework is tested with synthetically
generated data. It resembles characteristics of real-world data-sets but with the
advantage of a known ground truth which allows to verify if the correct failure
precursors are identified.

Noise Robustness In this experiment, an infrastructure is modeled by n,qnq
systems firing precursors randomly and one system firing two consequent failure
precursors which are always followed by an infrastructure failure S'. The timing
of the alarms is illustrated in Fig. 3. The goal is to study the ability of the frame-
work to filter and explain the deterministic pattern at increasing numbers n,4n4
of randomly firing systems despite being provided only less than ten failures to
learn from.

—— k- ———— *X—-— - ¥———-—S »
Ubr Lpr ) L tbr ) Upr rand
s ) . .
___f _____ ‘___*___* _____ - Sg, noise
—— X ————— = %= =% - ->Sp.
Sp _+ precursor
* SF T fault
tep top | tpe L tep
I

Fig. 3. Parameters of synthetic pattern.

The synthetic data is generated with a time tp. ~ N(u = 14.61d, o =
14.61d) between randomly firing precursors, Sgr,, | = 1,2,...,and, a time
top ~ N(u = 1d, 0 = 1d/24) between deterministic precursors S,, a time
tpe ~ N(p = 10d/24, o = 1d/24) between deterministic precursors S, and in-
frastructure failures SE', and a time t., ~ N(u = 36.525d, o = 36.525d) between
infrastructure failure SI* and deterministic precursors S, with d being a day of
24 hours. The data is generated for a time range of 2.7 years and n,q,q being
[1,2,4,8,16,32, 64,128,256, 512].

The framework is applied with sampling times 6t = [2h, 3h] (h for hours), an
input range n; = 40, a lead-time ¢, = 0, an output range of n, = [1,2,3,4], a
sub-sampling target ratio pg iarg = 0.8, and a class 1’ neighbourhood coverage
Neov = 2. We split the data set with a splitting time %,y chosen so that 80
percent of the data-set are used for training and model-selection and 20 percent
for final testing. Training and model selection is performed by a 7-fold validation
for sub-splitting times ¢s,p—spis¢ chosen so that [50,55, 60, 65, 70, 75, 80] percent
of the training data set are used for training and [50, 45, 40, 35, 30, 25, 20] percent
for validation. On average 7 (13) infrastructure failures were in the training data
of the validation folds (the whole data-set). Hence, we are investigating a small
data scenario.

Of the 4480 trained models, we present the results for 6t = 3h and n, = 2
as these parameters led to good results for all classifiers. In Fig. 4a and 4b, the
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Fig. 4. Dependency of the predictive performance on the number of randomly firing
signals. The line depicts the mean and the error bar plus and minus one standard
deviation calculated over the 7 validation sets. Solid lines represent deep models which
perform on average better than the classical models (dashed). (a) The F1 score. Note
that the predictors level out at 0.0 for large n,qnd, which is the binary F1 score when
always predicting the majority class (’0’). (b) The accuracy. Note that the predictors
level out at 0.82 for large m,and, which is the accuracy when always predicting the
majority class ('0).

performance metrics are plotted as a function of the number of randomly firing
signals, Nyqnq. Evidently, for higher numbers of random signals the performance
is decreasing. Nevertheless, the correct patterns can be identified out of up to
100 random signals from as little as 7 examples in the training sets with the
chosen parametrization. This implies that in a real-data scenario, less than 10
training examples can be sufficient to detect failure patterns.

Further characteristics of the framework have been studied in [3]. It has
been found that increasing n, by one or two can lead to accuracy improvements
especially when the duration between precursors and failures has a high variance.
Other insights are that the input relevance highlights the precursors with the
lowest timing variance, and that patterns can be found from as few as four failure
examples.

Recovering Fault Tree Structure Often faults in infrastructures are due to the in-
teraction of multiple sub-systems. This experiment tests if the framework is able
to identify failures due to interaction of sub-systems and if it can be explained
by a system operator.

To do so, synthetic data is generated by simulating multiple sub-system in-
teractions leading to infrastructure failures as illustrated in Fig. 5. An infras-
tructure failure, Sf*, occurs after two precursor signals, Sp, and Sp,, fulfill either
a Boolean AND, OR, or XOR condition. Four additional noise signals, Sg,_,,
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are added to simulate non-interacting parts of the infrastructure. Time delays
between signals are chosen to represent a realistic scenarios.

——fm e ——— FR e —— ;(-—--->5R1
----------- X-———%-————» Sp.
i B gp 1 L precursors
P
...................................................... Yenreeenmeenneeeaah ng } fault
tep tpe ‘ tep
I

Fig. 5. Parameters of synthetic pattern.

The results for data generation parameters ty, ~ N (1n = 23min, o = 24min),
tpe = 7Tlmin, t., = 120min are shown in Fig. 6. The framework is applied with
sampling time §t = 12min (min for minutes), an input range n; = 5, a lead-time
t, = 5, an output range of n, = 1, a sub-sampling target ratio pg tarq = 0.8,
and a class '1’ neighbourhood coverage n.,, = 2. The data set was split in an
equally sized training and testing set without additional K-fold validation as no
hyperparameter selection was performed. The input data contain less than 20
examples of infrastructure failures. Deep networks and traditional ML algorithms
perform well, consistently reaching F'1 > 0.97. The results for the FCN2drop
network are detailed below.

Fig. 6 shows three randomly selected input windows from the test data set
with subsequent infrastructure failures for the AND, OR, and XOR scenario. Left
columns show the unfiltered input window and right columns show the explana-
tions with relevant signals as obtained from the FCN2drop network. Clearly, the
correct precursors, Sp, and Sp,, could be identified by the framework and the
noise, Sg,—4, filtered. Comparing the groups of three input windows, the Boolean
logic can be reconstructed. However, this relies on comparing different situations
and is not possible from a single image. Still, the results confirm that the frame-
work can identify failures due to interaction of multiple subsystems and allows
system operators to explain the interactions. The inputs (left columns) would
not expose the fault logic without the filtering by the explanation framework
(right columns).

Particle Accelerator Data Experiments Logging data from a particle ac-
celerator infrastructure operated at CERN is used. The so-called Proton Syn-
chrotron Booster (PSB) has a radius of 25 m and is composed of four superim-
posed rings. It continuously logs failure modes, alarm data, operational settings
data, physical monitoring and condition data, among others. The goal is to learn
predictive models of failure modes and their mechanisms from data stored be-
tween January 2015 and December 2017. The learning task is difficult as the



Explainable Deep Learning for Fault Prognostics in Complex Systems 13

Input AND Explanation Input OR Explanation
time [minutes] time [minutes] time [minutes] time [minutes]
45 45 45 . 45
30 30 300 B 30
15 ‘ 15 15 | 15
0 = -_ + . O : ! + + . 0 :_ .- + + - 0 : 4 . 4 -.
45 1 45 45+ o 45+
30- 30- 30 — 30+
15 15 15 15+
oL ol ommT gL
45- e PY N 45 — a5 _—
3000 301 30 30
15 15 15 15
0+ . r Qe [ - \ P | 4 .
noise precursors noise precursors Nnoise Precursors noise precursors
7
= ,
Input XOR Explanation
time [minutes] time [minutes]
45 45
301 30
155 W 15
C m owm -
45/ 45
30+ || 30+
15 15
o -L - -
45 45
30 || 300
15| — 15
0k = —
noise precursors noise precursors

Fig. 6. Illustration of AND, OR and XOR fault logic extraction. Left columns show
three randomly selected input windows before failure occurrence. Right columns show
the relevant precursors obtained with the FCN2drop network (darker colours indicate
higher relevance). Comparing the relevant precursors (right columns), allows to distin-
guish different Boolean rules and recover the fault logic of the system.
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infrastructure is continuously worked on and modified, the data logging mecha-
nisms have not been designed for historical data analysis, and failure data are
rare [20]. As for any real-world infrastructure, only a subset of all relevant pro-
cesses leading to failures can be observed. Furthermore, only system operators
and experts can verify if the framework highlights the correct relevant precursors.

The goal is to forecast failures of eight power converters used in the PSB.
The following signals are used for the analysis:

— Alarm logging data from the LASER alarm system [7]. The alarms are char-
acterised by a system name, fault code and priority. The priority can be
either 2 or 3 for the selected data. Priority 2 leads to a warning, whereas,
priority 3 leads to a shutdown of the system. We select the ten most frequent
priority 3 fault types of the 8 investigated power converters as the failure
signals Sp r we attempt to predict. The alarms are logged with a rising and
falling flag indicating the beginning and the end of the alarm state, respec-
tively. Only the rising flag is used as data. Data is grouped by system name
for the input. This leads to eight input signals.

— Interlock signals register external and internal disturbances which potentially
lead to the shut-down of the infrastructure. We have selected 27 signals based
on operations experts’ recommendations.

— The beam destination variable is an indicator of the operational mode of the
PSB. The eight different beam destinations are hot encoded and added to
the input data.

Time periods in which the PSB is switched off for maintenance were removed,
as the alarm data is not valid during these periods of time.

Mizing Synthetic and Real Data In a first attempt, the goal is to test if a known
pattern can be extracted from the real-world data. Therefore, the noise robust-
ness experiment was repeated with the randomly firing systems being replaced
by real-world data containing 8 LASER alarm signals, 27 interlock signals, and
8 beam destination signals from the PSB.

The framework was applied to the data with sampling times dt = [2h, 3h]
(h for hours), an input range n; = 40, a lead-time ¢, = 0, an output range
of n, = [1,2,3,4], a sub-sampling target ratio potary = 0.8, and a class 1’
neighbourhood coverage n.,, = 2. The same model validation strategy is chosen
as for the synthetic data experiment. All classifiers were trained and evaluated.

Of the 448 trained models, the results for ¢ = 3h and n, = 3 achieved high
F1 and accuracy and are presented in Table 1. The F'C'N networks show a strong
performance in this experiment reaching F1 close to 1 based on only 7 training
examples. This indicates that patterns in the real-world data can be detected
from less than ten examples. Fig. 7a shows the input activation for the FCN
and SVM, respectively. Both correctly identify the relevant precursor out of 43
signals.

Real Data The framework is tested to determine whether it can predict and
explain the ten most frequent priority 3 failures in the PSB accelerator power
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Fig. 7. (a) Upper: Input data for a single example of class '1’ in the test set (not
shown, occuring shortly after day 5). Lower left: Correctly identified relevant failure
precursors by FCN network. Lower right: Correctly identified failure precursors by SVM
network across all class '1” examples in the test set. Note that FCN and SVM evaluate
non-relevant error messages differently in their models (darker colours in the heatmap
signify higher relevance). (b) Input relevance for real data snapshot with §¢ = 30min,
n; = 32, t, =0, no = 4 and Sg,. The relevance in the upper region is higher for SVM.
System experts could identify that certain combinations of external interlock signals
and operational modes leading to infrastructure failures.
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Table 1. Performance metrics for mixing synthetic and real data experiments. fracmaj
stands for the fraction of the majority class and is shown as reference for the accuracy
of a trivial predictor always predicting the majority class. v and o stand for the mean
and standard deviation over the 7 validation folds, respectively, and t for results on
the test set.

FCN  FCN3drop FCN2drop tCNN kNN RF SVM | frac maj
v o, t v o, t v o, t v o, tlv o, t v o, t v o, t|lv o, t
acc[0.97 0.03 0.98 0.93 0.06 0.95 0.97 0.02 0.98 0.83 0.03 0.95(0.84 0.03 0.87 0.83 0.03 0.89 0.91 0.05 0.94/0.83 0.03 0.89
F1[0/88]0.11 0.930.79 0.22 0.80[6182 0.05 0.93 (8168 0.00 0.80[072/0.16 0.20[888] 0.00 0.00 0.73 0.15 0.71

converters using the data introduced above. All signals are chosen as input data
and the ten most active failure signals within the data set ([Sg,,...,Sr,]) were
predicted.

The framework is applied with sampling times 6t = [10min, 30min, 2h] (h
for hours, min for minutes), input ranges n; = [16, 32, 64], lead-times ¢, = [0, 1],
output ranges of n, = [1,2,4,16], a sub-sampling target ratio po tqrg = 0.8, and
a class ’1’ neighbourhood coverage n.., = 2. The same model validation strategy
is chosen as for the synthetic data experiment.

Table 2. Performance metrics for real data experiments. fracmaj stands for the fraction
of the majority class and is shown as reference for the accuracy of a trivial predictor al-
ways predicting the majority class. v and oy stand for the mean and standard deviation
over the 7 validation folds, respectively, and t for results on the test set.

srinity] FCN  FCN3drop FCN2drop tCNN kNN RF SVM | frac maj
v o, t v o, t v o t v o, t|lv o t v o, t v o, tlv o, t
acc 4 16 0[0.950.03 1.00 0.95 0.03 1.00 0.95 0.03 1.00 0.91 0.06 0.92/0.90 0.02 0.92 0.90 0.04 0.92 0.89 0.04 0.92(0.87 0.04 0.92
Fl 4 16 0]0.810.121.000.84 0.09 1.00 0.84 0.09 1.00 0.36 0.50 0.00]0.68 0.10 0.67 0.35 0.33 0.00/0.13 0.30 0.67]
acc 7 16 0[0.950.03 1.00 0.95 0.03 0.83 0.92 0.06 0.96 0.87 0.03 0.92/0.91 0.03 0.92 0.87 0.03 0.96 0.89 0.04 0.96(0.86 0.03 0.92
F1 7 16 0[0.840.091.00 0.84 0.09 0.33 0.71 0.27 0.80!0,00 0.00[0.74 0.03 0.67”0.00 0.6710.17 0.38 0.80)
acc 4 32 00.980.03 1.00 0.97 0.02 0.92 0.98 0.03 1.00 0.98 0.03 0.92/0.89 0.01 0.92 0.88 0.03 0.92 0.85 0.04 0.96(0.88 0.04 0.92
F1 4 32 0[0.940.09 1.0010.90 0.05 0.00/0.92 0.11 1.00/0.93 0.10 0.00]0.57 0.09 0.670.18 0.25 0.00 0.33 0.10 0.80
acc 7 32 0]0.970.03 1.00 0.95 0.03 0.92 0.97 0.02 0.92 0.93 0.05 0.92]0.87 0.04 0.96 0.88 0.03 0.92 0.85 0.04 1.00[0.86 0.03 0.92
F1 7 32 0[0.890.07 1.00 0.84 0.09 0.000.89 0.07 0.00 0.68 0.39 0.00]0.53 0.14 0.80 0.46 0.29 0.00 0.38 0.21 1.00
acc 4 16 1[0.940.061.00 0.92 0.03 1.00 0.97 0.03 1.00 0.88 0.050.92/0.91 0.03 0.92 0.88 0.03 1.00 0.94 0.02 0.96(0.86 0.04 0.92
Fl 4 16 1]0.750.261.00 0.74 0.06 1.00/0.89 0.10 1.000.16 0.36 0.00]0.74 0.06 0.67/0.08/0.18 1.00 0.66 0.24 0.80)
acc 7 16 1[0.950.011.00 0.91 0.03 1.00 0.96 0.01 1.00 0.86 0.03 0.91/0.91 0.03 0.96 0.86 0.03 0.91 0.94 0.02 1.00(0.83 0.00 0.91
F1 7 16 1[0.850.061.00 0.77 0.06 1.00 0.88 0.01 1,00go.00 0.00[0.76 0.04 0.80@0,00 0.67 0.67 0.25 1.00)
acc 4 32 1{0.920.03 1.00 0.93 0.02 0.92 0.96 0.01 0.96 0.88 0.04 0.92/0.88 0.02 0.96 0.91 0.05 0.92 0.87 0.03 0.96[0.86 0.03 0.92
F1 4 32 1[0.620.181.00 0.68 0.19 0.00 0.84 0.06 0.800.16 0.36 0.00]0.55 0.12 0.800.72 0.18 0.00 0.40 0.15 0.80
acc 7 32 1/0.920.031.00 0.96 0.01 0.91 0.97 0.02 0.96 0.88 0.04 0.91]0.86 0.05 0.96 0.89 0.05 0.91 0.84 0.04 1.00{0.84 0.02 0.91
F1 7 32 1(0.680.231.000.86 0.04 0.00/0.90 0.05 0.800.170.38 0.00]0.53 0.14 0.800.33 0.45 0.00 0.38 0.21 1.00

Of the 11520 trained models, we present the results for 0t = 30min, n; =
[16,32], t, = [0,1], and n, = 4 when predicting fault code Sg, (malfunction of a
power converter controller) and Sg. (failure of a current measurement device),
in Table 2 which showed high accuracy for both an on-line (¢, = 1) and post-
mortem (¢, = 0) use.

The FCN networks show F1 close to 1. Note that the models were trained
with as few as 17 class '1” examples on average for both the validation folds and
the final training on the whole data-set. The F1 for the tCNN networks ranges
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from zero to close to one for different problem parameters. Its performance might
be improved by additional tuning of the network parameters. The F1 of classical
models is mostly smaller than 0.5 which is evidence that for infrastructures with
discrete data deep networks outperform traditional machine learning classifiers.
Applying dropout does not significantly improve the performance.

An input relevance example is shown in Fig. 7b. The FCN filters less inputs
as relevant than the SVM. Still both have comparable predictive performance.
Analyzing the input relevance plots with system experts, the system behaviour
could be recovered and non-trivial insights obtained. However, additional manual
inspection of data was necessary to fully explore the potential of these insights.

Overall, the framework demonstrates good performance in predicting system
failures. However, only a subset of failures are predictable. Most likely this is due
to insufficient observability of relevant processes within the logged data, which
was neither conceived nor stored with the goal of using it for failure predictions.
Furthermore, in all systems there are randomly occurring errors that do not
necessarily have precursors.

The quality of explanations of predictions is more difficult to assess than for
the synthetic scenarios where the true failure mechanism is known. However,
system experts confirmed that the input relevance provides useful insights for
failure analysis, which gives confidence in the method and approach for future
analyses.

4 Summary, Conclusions and Outlook

Our data driven framework identifies failure mechanisms in complex infrastruc-
tures, such as particle accelerators. Using multivariate time series data from
infrastructure monitoring signals, a predictive model is learned with deep convo-
lutional neural networks and classical machine learning algorithms. Explainable
AT methods, such as layer wise relevance propagation, identify the most relevant
failure precursors in the monitoring data. This has the potential to allow a more
focused trouble-shooting of operational incidents.

The framework is applied to synthetic and real world data-sets. With syn-
thetic data, the framework correctly isolates relevant failure precursors from up
to hundred time series with as few as ten examples of failures to learn from and
is able to recover interactions between multiple sub-systems. With real-world
data, deep neural networks predict failures with F'1 scores close to 1 for particle
accelerator problems at a bare minimum of data preprocessing and problem-
adaptation. Non-trivial system behaviour could be identified from the explana-
tion mechanism. Fully Convolutional Neural Networks outperform classical ML
methods in our experiments. Explainable deep learning proves to be a promising
tool for future fault prognostics applications in particle accelerators.

For future research, the experimental verification will be extended to fur-
ther prognostics and diagnostics tasks inside and outside the particle accelerator
domain. Since the framework does not rely upon specific insights from particle
accelerators, it can be assumed that it performs equally well in other fields of
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application. An integrated treatment of uncertainty quantification is currently
missing, but would be valuable in limited data scenarios. To solve the limita-
tions due to the lack of failure data, transfer learning and few-shot learning could
be investigated. Continuous changes in the infrastructure causing concept drifts
could be tackled by re-learning approaches.
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