Quantifying Susceptibility to Spear Phishing in a
High School Environment Using Signal Detection Theory
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Spear phishing is a deceptive attack that uses social engineering to obtain confidential information
D: through targeted victimization. It is distinguished by its use of social cues and personalized in-
formation to target specific victims. Previous work on resilience to spear phishing has focused on
convenience samples, with a disproportionate focus on students. In contrast, here, we report on an
= evaluation of a high school community. We engaged 57 high school students and faculty members
8] (12 high school students, 45 staff members) as participants in research utilizing signal detection the-
ory (SDT). Through scenario-based analysis, participants tasked with distinguishing phishing emails
from authentic emails. The results revealed an overconfidence bias in self-detection from the partici-
o\ pants, regardless of their technical background. These findings are critical for evaluating the decision-
making of underrepresented populations and protecting people from potential spear phishing attacks

5 by examining human susceptibility.
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8 1. Introduction

) Phishing is used to obtain confidential information, install malware, obtain funds, or steal
. . resources [18]. Targeted phishing is a critical component of that; for example, phishing
= attacks on Zoom increased four orders of magnitude between March and April 2020 and

'>2 COVID-19-related phishing, including misinformation as well as attacks on the benefits for

the newly unemployed. The most targeted form of phishing attack is spear phishing [1].
a As spear phishing is a challenge essentially grounded in human behavior and decision-
making [29], solutions should be informed by human subject evaluations as well.
Conversely, studies on phishing show a bias toward machine learning and purely techni-
cal solutions, with only 13.9% of published papers on phishing in the ACM Digital Library
utilizing human participants or user-centered methodologies [8]. Even when research does
involve human subjects, it often studies convenience samples, specifically university stu-
dents. Investigating high school students is particularly important, as previous research has
shown that age is a critical factor in predicting susceptibility to phishing attacks [22, 23, 26].
Improved understanding of participants’ mindsets when they click on a malicious email
link can enable robust defensive and offensive techniques against spear phishing attacks.
In order to contribute to this understanding, we combined phishing detection with signal
detection theory (SDT) to explore how spear phishing cues impact this population [2]. SDT
is often used to effectively measure and differentiate between present patterns and figura-
tively noisy distractions [24].
Specifically, we conducted a user study focusing on 57 high school students and staff
members to explore the less-observed correlation between participant mentalities and email
spear phishing attacks. Our goal was to address the following research questions:



e RQI1: How confident are participants in distinguishing between legitimate and non-
legitimate spear phishing content over email?

e RQ2: How does age affect a user’s ability to distinguish between legitimate and
non-legitimate spear phishing content over email?

2. Related Work

The U.S. Department of Homeland Security identified the sequence of actions taken to
craft a spear phishing attack: (1) identify the target, (2) meticulously craft the message
with the intent of the recipient taking immediate action, and (3) deliver the message from
a counterfeit email address [31]. Rajivan et al. found that phishing emails with “specific
attack strategies (e.g., sending notifications, use of authoritative tone, or expressing shared
interest)” were found to be more successful [32]. The use of social engineering through
psychological manipulation can establish trust, and, as a result, lure in victims [20].

Previous research on phishing has focused on software- or hardware-based solutions,
such as toolbars, machine learning models, and warning indicators [4]. Although signifi-
cant advances in technology-based tools have emerged [30, 34, 35], less research has fo-
cused on end users [8]. Yet, the need for such research has long been recognized; in 2008,
Friedrichs et al. argued that humans must be studied to stop web-based identity theft,
including phishing attacks [15]. Such insights become even more important in light of
Karakasiliotis et al.’s findings that only 36% of their study’s participants could identify
legitimate websites. Only 45% of participants could correctly identify malicious web-
sites [21]. Dhamija et al. found that visual deception can fool even sophisticated users;
a good phishing website fooled 90% of the participants in their study [13]. Fewer studies
have focused on more vulnerable populations, such as younger students. In our background
research, we did not find any studies focused on high school students or staff. Thus, we
specifically selected a high school environment for our study.

In 2016, Canfield et al. performed two experiments comparing detection and perfor-
mance using SDT. They found that “Greater sensitivity was positively correlated with con-
fidence. Greater willingness to treat emails as legitimate was negatively correlated with per-
ceived consequences from their actions and positively correlated with confidence” [2]. We
implemented SDT in our research by analyzing the ‘stimulus,” which triggers the decision-
making in users. To evaluate the efficacy of the stimulus, we measured hits, misses, false
alarms, and correct rejections (i.e., true positive, false negative, false positive, and true neg-
ative). We analyzed how users chose to click or not click links sent via electronic mail. The
use of SDT enabled us to evaluate which sections of the phishing email arouse suspicion
when they are present [2].

3. Methodology

To explore the relationship between the phishing susceptibility of high school students and
their educators, we wanted to see what email cues both groups notice when deciding to
click (or not click) on a malicious link. We conducted a non-experimental, quantitative
correlation analysis by collecting data through a descriptive survey to check phishing sus-
ceptibility outcomes, age differences, and confidence levels. We primarily collected data
from high school students and staff at a suburban high school in the United States. We
obtained approval from the Ethical Review Board before beginning this experiment.



3.1. Recruitment

To begin, we instituted a collaboration with a suburban high school from the Midwestern
part of the United States. As most high school students were under the age of 18, parental
permission was required on a paper version of an informed consent document. We only
allowed people to participate after their form was signed and approved by the staff and the
students’ parents. During the recruitment phase, we engaged with language arts classrooms
to find willing research participants. English language arts classes were chosen because all
students were required to enroll in these classes to graduate. The study was also advertised
to every student in the building during the morning school announcements. We also dis-
tributed flyers advertising the study to 200 participants. Students who turned in the paper
consent forms then received emails that contained an electronic form of the survey. To
recruit teachers and faculty members, we sent out emails containing the link to the con-
sent form and questionnaire. Because the study was announced beforehand, teachers and
faculty were expecting this recruitment email. The participants received an incentive at
the end of the survey by choosing to enter a drawing for Starbucks gift cards. Our power
analysis showed that we required sample size of more than 50 participants. We obtained a
complete response set from 57 participants in our final data set.

3.2. Survey Instrument and Study Design

The survey consisted of three parts: the informed consent information, the demographic
questionnaire, and the actual phishing susceptibility assessment. We utilized Google Forms
as the tool to provide the survey questionnaire because it was easily accessible to both
students and teachers. The first author anonymized the data so that personally identifiable
information would not be shared with anyone else, including other researchers. Participants
began by opening a Google Forms link from their email and confirming their status as a
student or a staff member of the high school. The staff needed to confirm their consent
to the study, while students would move on to the next step due to their parents having
already agreed via the consent form. Next, participants answered a set of demographic
questions regarding their age group (and not their specific date of birth to reduce the risk of
disclosure of identifiable information). Afterward, the participants were presented with ten
questions to assess their spear phishing susceptibility through the use of images of phishing
emails. We selected images instead of asking them to go through actual emails to mitigate
any concern that they may respond to malicious messages. The participants classified the
images as “regular email” or “phishing email”. For each question, the participants rated
their confidence in their decision, from least to most confident using a five-point Likert
scale.

Spear Phishing Susceptibility: Based on prior phishing research, there are three main
factors identified in most phishing emails: anonymous senders, suspicious URLSs or instal-
lations, and a sense of urgency [14]. Figure 2 is an example that shows the present signs
of a harmful phishing email such as: an anonymous sender (e.g., “is outside your orga-
nization”), a sense of urgency (e.g., “URGENT! CLICK THE LINK”), a suspicious URL
(e.g., “http://baoconhd.vn/api/get.php?...”), and a risky action (e.g., clicking on “Open in
Docs”). In contrast, Figure 1 shows an authentic email from Google, as seen by the trust-
worthy email address, the accurate website link, and the valid email format. Non-phishing
examples were adopted from personal school emails that the high school staff and students
received earlier, and at least one individual reported as suspicious. This data was obtained



from the high school staff and IT support, who anonymized the email samples.

Phishing examples were adopted from the Berkeley Phishing Examples Archive (PEA) !
The adopted phishing emails were modified to include the name of the school and actual
school activities, including grades and exams. The images were edited to address the par-
ticipants’ real names and roles (teacher or student). Google documents addressed school-
specific information to check the participants’ susceptibility to spear phishing emails. The
signals that were used in the phishing emails were (a) the greeting, (b) suspicious URLs
with a deceptive name or IP address, (c) content that did not match the ostensible sender
and subject, (d) requests for urgent action, and (e) grammatical or typographical errors. We
selected this set of signals based on a 2016 study by canfield et al. that similarly focused
on detection theory, albeit using an online survey of people aged 19-59 [2].

Review blocked sign-in attempt s

o] - URGENT! CLICK THE LINK TO VIEW THIS DOCUMENT NOW! issex x L]
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I o yous orgmzaton
Google
Figure 1: Example of an Authentic Email Dis- Figure 2: Example of a Phishing Email Dis-
played to the Participants in the Survey played to the Participants in the Survey

3.3. Analysis: Method

Once the data collection was complete, we analyzed the data using RStudio and SPSS
Statistics. Using SDT, participants’ answers were categorized as four possible outcomes:
hit, miss, false alarm, and correct rejection. Table 1 shows the signal detection theory
outcomes adjusted to become appropriate for this study. The outcomes from the phishing
assessment were analyzed in a one-way analysis of variance (ANOVA) to explore the re-
lationship between the independent variable (age group) and the dependent variables (the
number of different outcomes and the average confidence levels). The one-way analysis
of variance is used to determine whether there are any statistically significant differences
between the means of two or more independent (unrelated) groups [17]. For ANOVA, we
usually compare three or more groups. For this study, we divided the data set into seven
groups.

Respond “Regular Email” | Respond “Phishing Email”
Phishing Email Miss Hit
Authentic Email Correct Rejection False Alarm

Table 1: Modified Signal Detection Theory Implemented to Evaluate Spear Phishing Susceptibility

Uhttps://security.berkeley.edu/education-awareness/phishing/phishing-examples-archive
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4. Findings and Discussions

Our data collection was done over a period of two months. We collected a complete data set
of 57 subjects, who provided their consent and participated in it. Of these 57 participants,
12 were students, and 45 were staff members of the high school. Eight participants were
from 12 to 17 years old; four participants were from 18 to 24 years old; 11 participants
were from 25 to 34 years old; 15 participants were from 35 to 44 years old; 12 were from
45 to 54 years old; seven were from 55 to 64 years old. Thus, the participants’ ages ranged
from 12 to 64 years old. This study aimed to determine if there was a significant difference
between the age groups (12—17, 18-24, 25-34, 35-44, 45-54, and 55-64 years old), the
email outcomes (hit, miss, correct rejection, false alarm), and the confidence levels (Likert
scale one through five ratings) using a ten-item test. Results of the ANOVA test are shown
in Table 2. A significant difference was noted for the hit or miss email outcomes (F(5, 51)
=2.614, p <.035). The correct rejection, false alarm, and all the different confidence levels
had no significant difference between the groups.

Sum df T Mean F Sig.
of Sq Square
Hit Between Groups | 13.634 | 5 | 2.727 2.614 1 0.035
Within Groups | 53.208 | 51 | 1.043
Total 66.842 | 56
Miss Between Groups | 13.634 | 5 | 2.727 2.614 |1 0.035
Within Groups | 53.208 | 51 | 1.043
Total 66.842 | 56
Rejection Between Groups | 4.111 5 10.822 1.292 1 0.282
Within Groups | 32.451 | 51 [ 0.636
Total 36.561 | 56
FalseAlarm Between Groups | 4.111 5 10.822 1.292 [ 0.282
Within Groups | 32.451 | 51 | 0.636
Total 36.561 | 56
HitConf Between Groups | 2.156 5 1 0.431 0.976 | 0.441
Within Groups | 22.079 | 50 [ 0.442
Total 24.234 1 55
MissConf Between Groups | 2.954 5 1 0.591 1.548 | 0.194
Within Groups | 17.554 | 46 | 0.382
Total 20.507 | 51
CorrRejConf Between Groups | 0.812 5 10162 [ 0.558 [ 0.732
Within Groups | 14.854 | 5T | 0.291
Total 15.667 | 56
FalseAlarmConf| Between Groups | 1.457 5 10.291 0.514 [ 0.764
Within Groups | 23.818 [ 42 | 0.567
Total 25.275 | 47

Table 2: ANOVA Results of the Different Signals (Hit, Miss, Correct Rejection, and False Alarm)
Between and Within Groups (Divided Based on Age)

The results illustrate a significant number in the hit or miss category, but few correct
rejections and false alarms across all the confidence levels. The ANOVA results of the
confidence levels of the participants can be seen in Table 3. Here, we can say that age
plays a significant role in responding to a stimulus, as evidenced by the participants either
responding with “Authentic Email” or “Phishing Email.” A potential reason for the lack
of significance could be that the confidence levels were not precisely represented and that
participants’ perceived confidence was subjective. One participant’s response of a 5 (most
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Figure 3: SDT Mean Outcome shows Figure 4: SDT Mean Outcome for Confidence Levels
the mean for the email outcomes in a lin- showing the confidence level. Misclassifying phish-
ear transformation from 100% to a five ing email(red) is associated with the same confi-
point scale. It shows ﬁfrom top to bottom) dence as correct rejection for 12-17 (yellow), with
correct rese‘ctlon in yellow, correct accep- confidence falling with age. False alarm is shown
tance (hit) in blue, incorrect acceptance  ith least confidence in ages 12-17, and increases
(miss) in red, and false alarm in green. with with age.

confident) could be the same as another participant’s 3 (average confidence). Their per-
ceived confidence could also shift throughout the survey; a response of 1 (least confident)
could be changed to a 2 (lower confidence) or 3 later on, depending on whether or not the
participants believed that the questions were more or less difficult at the beginning of the
survey.

Fig 3 shows correct results (yellow, blue) increase with age. Fig 4 show confidence
increasing in false alarms in with age (green), with confidence about correct identification
( and misidentification higher for younger age groups. Our data revealed that the highest
mean for the hit outcome was from age group six (45-54 years old). The second-highest
mean for the hit outcome was from age group five (35-44 years old). Groups five and six
also had the lowest mean for the miss outcome. In Figure 3, we show the mean outcome
for hit and correct rejection, which has an increasing slope, with a negative correlation with
miss and false alarm. Therefore, there is strong evidence that older groups are less suscep-
tible to spear phishing than the younger groups in a high school setting. Figure 4 shows
that the other variables were not significant. This result is quite different from that hypoth-
esized under the ‘digital native’ rubrics that argue for younger cohorts’ lifetime exposure
resulting in improved decision-making (e.g., [27]).

5. Implications

Spear phishing is an effective form of attack because attackers manipulate their targets,
either through luring them in with promises of specific benefits or by coercing them with
specific threats [25]. These techniques are designed to lead to impulsive or quick decision-
making from the end-users. In our findings (Section 4), we leveraged SDT to understand
participant decision-making with spear phishing stimuli. When the mean of the outcomes
was graphed, the results revealed a positive slope for the hit and correct rejection outcomes,
meaning that the older participants tended to be less susceptible to spear phishing. The
effects of these relationships can contribute to a better understanding of how people interact
with fraudulent acts online. Here we offer recommendations that our findings indicate as
ways to increase resilience against spear phishing attacks.



N | Mean SD SE 95% CI | 95% CI | Min | Max
LB UB
HitConf| 2 8 | 3.9375 | 0.78142] 0.27627| 3.28 4.5908 3 5
3 4 1345 0.51171] 0.25586| 2.6357 | 4.2643 2.8 4
4 1T | 3.803 0.69848] 0.2106 3.338 42723 3 5
5 15 1 3.8856 | 0.71328] 0.18417] 3.4906 | 4.2806 | 2.5 5
6 12 ] 3.4306 | 0.40644] 0.11733] 3.1723 | 3.6888 | 2.67 4
7 6 | 3.77361 | 0.80003| 0.32661| 2.8965 | 4.5757 3 5
Total | 56 | 3.7321 | 0.6638 | 0.0887 | 3.5544 | 3.9099 | 2.5 5
1é/l1s§f 2 8 | 4.1354 | 0.42243] 0.14935] 3.77823 | 4.4886 | 3.67 5
on
3 3 135 0.5 0.28868| 2.2579 | 4.7421 3 4
4 1T | 3.5606 | 0.57384| 0.17302] 3.1751 3.9461 3 45
5 12 1 3.7708 | 0.66962| 0.1933 | 3.3454 | 4.1963 2.5 5
6 IT14 0.58214] 0.17552] 3.6089 | 4.3911 3 5
7 T | 3.4762 | 0.83571] 0.31587| 2.7033 | 4.2491 2 433
Total | 52 | 3.7756 | 0.63412] 0.08794| 3.5991 3.9522 2 5
ConRej 2 8 | 3.7646 | 0.65686] 0.23223] 3.2154 | 4.3137 3 5
Conf
3 4 1309 0.57991| 0.28996| 2.9772 | 4.8228 | 3.33 | 4.67
4 1T | 3.912 0.55523] 0.16741| 3.5482 | 4.2942 3 4.75
5 15 | 4.1133 | 0.51564| 0.13314| 3.8278 | 4.3989 | 3.25 5
6 12 ] 3.8458 | 0.55674] 0.16072| 3.4921 | 4.1996 | 2.67 | 4.5
7 7 | 3.9238 | 0.31898] 0.12056| 3.6288 | 4.2188 35 45
Total | 57 | 3.9327 | 0.52892] 0.07006| 3.7924 | 4.0731 | 2.67 5
False 2 6 | 3.1944 | 0.62731| 0.2561 | 2.5361 3.8528 2 3.67
Alarm
Conf
3 3 | 3.1667 | 1.04083] 0.60093| 0.5811 | 5.7522 2 4
4 10 ] 3.6 0.8756 | 0.27689| 2.9736 | 4.2264 3 5
5 12 | 3.6667 | 0.74874| 0.21614] 3.1909 | 4.1424 2 5
6 1T | 3.4091 | 0.73547| 0.22175| 2.915 3.9032 2 4
7 6 | 3.5833 | 0.4916 | 0.2069 | 3.0674 | 4.0992 3 4
Total | 48 | 3.4931 | 0.73333| 0.10585] 3.2801 3.7706 2 5

Table 3: ANOVA Descriptives for SDT Confidence Levels Outcomes

Align Anti-Phishing Training with Self-perceived Expertise: Our work found that
older participants were less susceptible to spear phishing than younger participants, as age
group six had the highest average number of hits (i.e., correct detection) throughout the
experiment. This is aligned with previous research from Sheng et al. [33]. One reason for
this gap may be students’ lack of exposure to training geared towards them. For this reason,
we recommend introducing phishing training to students at a younger age and aligning it
with their self-perceived expertise. Our results show both a high level of incorrect responses
and a high level of confidence. This indicates that younger participants may be unaware
that they have been the victim of a successful phishing attack.

Targeted Risk Communication: In addition to providing anti-phishing training, or-
ganizations should consider providing clear risk communication, especially for younger
adults or children. Students may lack an understanding of the technical threats that may be
present in their email inbox [19], believing that they will not be targeted. Thus, the need
for context-aware risk communication [3] that has been identified as necessary for older
adults [6, 7, 16] is similarly required for high school student populations.

Enable Multi-Factor Authentication: To create more robust defensive techniques
against spear phishing attacks, we need to reduce the risk of compromised credentials.



Such compromised credentials can be used to steal sensitive information. Because of this,
schools that provide laptops (or require these for online instruction) should consider adopt-
ing multi-factor authentication (MFA) for students and staff [5, 9, 28]. The introduction of
these (like other training) should be aligned with user risk mental models [10, 11, 12]. The
issue of over-confidence above also motivates the importance of another factor for authen-
tication (e.g., a hardware token) in addition to their password, which would mitigate the
harm of phishing.

6. Limitations and Future Work

This work, with its focus on the confidence as well as correctness, opens more questions
than it answers. Other factors besides age and confidence levels should be studied to gain
a holistic understanding of susceptibility to spear phishing. The suburban high school
we engaged with has relatively high socio-economic homogeneity, and the study should be
repeated with other high schools. To improve diversity, future work should begin with more
diverse schools, and then study specific underrepresented populations, such as students with
physical or learning disabilities. Interviewing the participants to collect more qualitative
data and better understand user decision making is a needed expansion of this work.

7. Conclusion

With the current rise in spear phishing, especially among vulnerable populations, it is crit-
ical to developing tools and educational approaches to train users to differentiate between
authentic and malicious emails. To understand spear phishing attack resilience, we studied
a population in a high school environment (N = 57). We found that age and confidence play
a critical role in the identification of spear phishing attacks. Our study concludes by provid-
ing recommendations for developing anti-phishing training tools and communicating risks
and benefits.

8. Acknowledgement

We would like to the participants of the highschool for their valuable contribution, and
Stephanie Davis for encouraging the first author throughout the entire data collection pro-
cess. We would also like to thank Kevin Gingerich from Eli Lilly for their expert advice
on phishing and guiding the first author. This research was supported in part by the Na-
tional Science Foundation under CNS 1565375, Cisco Research Support, and the Comcast
Innovation Fund. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s). They do not necessarily reflect the views of the
U.S. Government, NSF, Cisco, Comcast, Indiana U, or the University of Denver.

9. References

[1] APWG. Phishing Activity Trends Report, 2020 (accessed June 29, 2020). "https://docs.apwg.
org/reports/apwg_trends_report_q1_2020.pdf.

[2] C. I Canfield, B. Fischhoff, and A. Davis. Quantifying Phishing Susceptibility for Detection
and Behavior Decisions. Human Factors, 58(8):1158-1172, 2016.

[3] S. Das. A Risk-reduction-based Incentivization Model for Human-centered Multi-factor Au-
thentication. PhD thesis, Indiana University, 2020.


"https://docs.apwg.org/reports/apwg_trends_report_q1_2020.pdf
"https://docs.apwg.org/reports/apwg_trends_report_q1_2020.pdf

(4]

(5]

[6

—_

[7

—

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

S. Das, J. Abbott, S. Gopavaram, J. Blythe, and L. J. Camp. User-centered risk communication
for safer browsing. In First Asia USEC-Workshop on Usable Security, In Conjunction with the
Twenty-Fourth International Conference International Conference on Financial Cryptography
and Data Security, 2020.

S. Das, A. Dingman, and L. J. Camp. Why johnny doesn’t use two factor a two-phase usability
study of the fido u2f security key. In International Conference on Financial Cryptography and
Data Security, pages 160-179. Springer, 2018.

S. Das, A. Kim, B. Jelen, J. Streiff, L. J. Camp, and L. Huber. Towards implementing inclusive
authentication technologies for older adults. Who Are You, 2019.

S. Das, A. Kim, B. Jelen, J. Streiff, L. J. Camp, and L. Huber. Why don’t older adults adopt
two-factor authentication? Das, S., Kim, A., Jelen, B., Streiff, J., Camp, LJ, & Huber, L.(2020,
April). Why Don’t Older Adults Adopt Two-Factor Authentication, 2020.

S. Das, A. Kim, Z. Tingle, and C. Nippert-Eng. All About Phishing Exploring User Research
through a Systematic Literature Review. In 13th International Symposium on Human Aspects
of Information Security & Assurance, 2019.

S. Das, G. Russo, A. C. Dingman, J. Dev, O. Kenny, and L. J. Camp. A qualitative study on
usability and acceptability of yubico security key. In 7th Workshop on Socio-Technical Aspects
in Security and Trust, pages 28-39, 2018.

S. Das, B. Wang, and L. J. Camp. MFA is a Waste of Time! Understanding Negative Connota-
tion Towards MFA Applications via User Generated Content. In /3th International Symposium
on Human Aspects of Information Security & Assurance (HAISA 2019), 2019.

S. Das, B. Wang, A. Kim, and L. J. Camp. Mfa is a necessary chore!: Exploring user mental
models of multi-factor authentication technologies. In 53rd Hawaii International Conference
on System Sciences, 2020.

S. Das, B. Wang, Z. Tingle, and L. J. Camp. Evaluating user perception of multi-factor authen-
tication: A systematic review. arXiv preprint arXiv:1908.05901, 2019.

R. Dhamija, J. D. Tygar, and M. Hearst. Why Phishing Works. In SIGCHI Conference on
Human Factors in Computing Systems, pages 581-590, 2006.

I. Fette, N. Sadeh, and A. Tomasic. Learning to Detect Phishing Emails. In /6th International
Conference on World Wide Web, pages 649656, 2007.

O. Friedrichs, M. Jakobsson, and C. Soghoian. The Threat of Political Phishing. In 2nd Inter-
national Symposium on Human Aspects of Information Security & Assurance, 2008.

V. Garg, L. Lorenzen-Huber, L. J. Camp, and K. Connelly. Risk communication design for older
adults. In ISARC. Proceedings of the International Symposium on Automation and Robotics in
Construction, volume 29, page 1. IAARC Publications, 2012.

E. R. Girden. ANOVA: Repeated Measures. Number 84. Sage Publications Sage CA: Los
Angeles, CA, 1992.

C. Hadnagy. Social Engineering: The Art of Human Hacking. John Wiley & Sons, 2010.

M. Harbach, M. Hettig, S. Weber, and M. Smith. Using Personal Examples to Improve Risk
Communication for Security & Privacy Decisions. In SIGCHI Conference on Human Factors
in Computing Systems, pages 2647-2656, 2014.

J. M. Hatfield. Social Engineering in Cybersecurity: The Evolution of a Concept. Computers
& Security, 73:102-113, 2018.

A. Karakasiliotis, S. Furnell, and M. Papadaki. Assessing End-User Awareness of Social En-
gineering and Phishing. In 7th Australian Information Warfare and Security Conference, pages
60-72. School of Computer and Information Science, Edith Cowan University, Perth, 2006.



[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

P. Kumaraguru, J. Cranshaw, A. Acquisti, L. Cranor, J. Hong, M. A. Blair, and T. Pham. School
of Phish: A Real-World Evaluation of Anti-Phishing Training. In 5th Symposium on Usable
Privacy and Security (SOUPS), pages 1-12, 2009.

E. Lastdrager, I. C. Gallardo, P. Hartel, and M. Junger. How effective is anti-phishing training
for children? 1In Thirteenth Symposium on Usable Privacy and Security ({SOUPS} 2017),
pages 229-239, 2017.

J. Martin, C. Dubé, and M. D. Coovert. Signal Detection Theory (SDT) Is Effective for Model-
ing User Behavior Toward Phishing and Spear-Phishing Attacks. Human Factors, 60(8):1179—
1191, 2018.

M.-E. Maurer, A. De Luca, and S. Kempe. Using Data Type Based Security Alert Dialogs to
Raise Online Security Awareness. In 7th Symposium on Usable Privacy and Security (SOUPS),
pages 1-13, 2011.

J. Nicholson, Y. Javed, M. Dixon, L. Coventry, O. Dele-Ajayi, and P. Anderson. Investigat-
ing teenagers’ ability to detect phishing messages. In EuroUSEC 2020: The 5th European
Workshop on Usable Security. IEEE, 2020.

S. Nikou, M. Brinnback, and G. Widén. The Impact of Digitalization on Literacy: Digital
Immigrants vs. Digital Natives. In 27th European Conference on Information Systems, pages
1-15. ECIS, 2019.

A. Ometov, S. Bezzateev, N. Mikitalo, S. Andreev, T. Mikkonen, and Y. Koucheryavy. Multi-
Factor Authentication: A Survey. Cryptography, 2(1):1-31, 2018.

M. Pattinson, C. Jerram, K. Parsons, A. McCormac, and M. Butavicius. Why do Some People
Manage Phishing E-Mails Better than Others? Information Management & Computer Security,
20(1):18-28, 2012.

P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta. Phishnet: Predictive Blacklisting to
Detect Phishing Attacks. In 29th IEEE Conference on Computer Communications, pages 1-5.
IEEE, 2010.

P-P. A. E. Program. Phishing:  Don’t be Phooled!, 2018 (accessed June 29,
2020). "https://www.dhs.gov/sites/default/files/publications/2018_AEP_Vulnerabilities_of_
Healthcare_IT_Systems.pdf.

P. Rajivan and C. Gonzalez. Creative Persuasion: A Study on Adversarial Behaviors and Strate-
gies in Phishing Attacks. Frontiers in Psychology, 9, 2018.

S. Sheng, M. Holbrook, P. Kumaraguru, L. F. Cranor, and J. Downs. Who Falls for Phish? A De-
mographic Analysis of Phishing Susceptibility and Effectiveness of Interventions. In SIGCHI
Conference on Human Factors in Computing Systems, pages 373-382, 2010.

M. Wu, R. C. Miller, and S. L. Garfinkel. Do Security Toolbars Actually Prevent Phishing
Attacks? In SIGCHI Conference on Human Factors in Computing Systems, pages 601-610,
2006.

G. Xiang, J. Hong, C. P. Rose, and L. Cranor. Cantina+ A Feature-Rich Machine Learning
Framework for Detecting Phishing Web Sites. ACM Transactions on Information and System
Security (TISSEC), 14(2):1-28, 2011.

10


"https://www.dhs.gov/sites/default/files/publications/2018_AEP_Vulnerabilities_of_Healthcare_IT_Systems.pdf
"https://www.dhs.gov/sites/default/files/publications/2018_AEP_Vulnerabilities_of_Healthcare_IT_Systems.pdf

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Recruitment
	3.2 Survey Instrument and Study Design
	3.3 Analysis: Method

	4 Findings and Discussions
	5 Implications
	6 Limitations and Future Work
	7 Conclusion
	8 Acknowledgement
	9 References

