
Classifying Candidate Axioms
via Dimensionality Reduction Techniques

Dario Malchiodi1[0000−0002−7574−697X], Célia da Costa
Pereira2[0000−0001−6278−7740], and Andrea G. B.

Tettamanzi2[0000−0002−8877−4654]

1 Università degli Studi di Milano, Dipartimento di Informatica, Italy
dario.malchiodi@unimi.it

2 Université Côte d’Azur, CNRS, I3S, France
{celia.pereira,andrea.tettamanzi}@unice.fr

Abstract. We assess the role of similarity measures and learning meth-
ods in classifying candidate axioms for automated schema induction
through kernel-based learning algorithms. The evaluation is based on
(i) three different similarity measures between axioms, and (ii) two alter-
native dimensionality reduction techniques to check the extent to which
the considered similarities allow to separate true axioms from false ax-
ioms. The result of the dimensionality reduction process is subsequently
fed to several learning algorithms, comparing the accuracy of all combina-
tions of similarity, dimensionality reduction technique, and classification
method. As a result, it is observed that it is not necessary to use sophis-
ticated semantics-based similarity measures to obtain accurate predic-
tions, and furthermore that classification performance only marginally
depends on the choice of the learning method. Our results open the way
to implementing efficient surrogate models for axiom scoring to speed up
ontology learning and schema induction methods.

Keywords: Possibilistic Axiom Scoring · Dimensionality reduction

1 Introduction

Among the various tasks relevant to ontology learning [10], schema enrichment
is a hot field of research, due to the ever-increasing amount of Linked Data pub-
lished on the semantic Web. Its goal is to extract schema axioms from existing on-
tologies (typically expressed in OWL) and instance data (typically represented in
RDF) [7]. To this aim, induction-based methods akin to inductive logic program-
ming and data mining are exploited. They range from using statistical schema
induction to enrich the schema of an RDF dataset with property axioms [5]
or of the DBpedia ontology [24] to learning dataypes within ontologies [6] or
even developing light-weight methods to create a schema of any knowledge base
accessible via SPARQL endpoints with almost all types of OWL axioms [3].

All these approaches critically rely on (candidate) axiom scoring. In practice,
testing an axiom boils down to computing an acceptability score, measuring the

extent to which the axiom is compatible with the recorded facts. Methods to
approximate the semantics of given types of axioms have been thoroughly inves-
tigated in the last decade (e.g., approximate subsumption [20]) and some related
heuristics have been proposed to score concept definitions in concept learning
algorithms [19]. The most popular candidate axiom scoring heuristics proposed
in the literature are based on statistical inference (see, e.g., [3]), but alterna-
tive heuristics based on possibility theory have also been proposed [22]. While
it appears that these latter may lead to more accurate results, their heavy com-
putational cost makes it hard to apply them in practice. However, a promising
alternative to their direct computation is to train a surrogate model on a sample
of candidate axioms for which the score is already available, to learn to predict
the score of a novel, unseen candidate axiom.

In [11], two of us proposed a semantics-based similarity measure to train
surrogate models based on kernel methods. However, a doubt remained whether
the successful training of the surrogate model really depended on the choice of
such a measure (and not, for example, on the choice of the learning method).
Furthermore, it was not clear if a similarity measure has to capture the seman-
tics of axioms to give satisfactory results or if any similarity measure satisfying
some minimal requirements would work equally well. The goal of this paper is,
therefore, to shed some light on these issues.

To this aim, we (i) introduce three different syntax-based measures, having
an increasing degree of problem-awareness, computing the similarity/distance
between axioms; (ii) starting from these measures, we use two alternative kernel-
based dimensionality reduction techniques to check how well the images of true
and false axioms are separated; and (iii) we apply a number of supervised ma-
chine learning algorithms to these images in order to learn how to classify axioms.
This allows us to determine the combinations of similarity measure, dimension-
ality reduction technique, and classification method giving the most accurate
results. It should be stressed that we do not address here the broader topic of
how axiom scoring should be used to perform knowledge base enrichment, ax-
iom discovery, or ontology learning. Here, we focus specifically on the problem
of learning good surrogate models of an axiom scoring heuristics whose exact
computation has proven to be extremely expensive [21].

2 The Hypothesis Language

The hypotheses we are interested in classifying as true or false are OWL 2 ax-
ioms, expressed in functional-style syntax [14], and their negations. In particular,
we focus on subsumption axioms, whose syntax is described by the production:
Axiom := ’SubClassOf’ ’(’ ClassExpression ’ ’ ClassExpression ’)’.
Although a ClassExpression can be quite complicated, according to the full
OWL syntax, here, for the sake of simplicity, we will restrict ourselves to class
expressions consisting of just one atomic class, represented by its internation-
alized resource identifier (IRI), possibly abbreviated as in SPARQL, i.e., as a
prefix, followed by the class name, like dbo:Country. The formulas we consider

are thus described by the production Formula := Axiom | ’-’ Axiom. If a for-
mula consists of an axiom (the first alternative in the above production) we will
say it is positive; otherwise (the second alternative), we will say it is negative.
If φ is a formula, we define sgn(φ) = 1 if φ is positive, −1 otherwise. Alongside
the “sign” of a formula, it is also convenient to define a notation for the OWL
axiom from which the formula is built, i.e., what remains if one removes a minus
sign prepended to it: abs(φ) = φ if φ is positive, ψ if φ = −ψ, with ψ an axiom.

Because the OWL syntax tends to be quite verbose, when possible we will
write axioms in description logic (DL) notation. In such notation, a subsumption
axiom has the form A v B, where A and B are two class expressions. For its
negation, we will write ¬(A v B), although this would not be legal DL syntax.3

With this DL notation, the definition of abs(φ) can be rewritten as follows:
abs(φ) = φ if sgn(φ) = 1, ¬φ if sgn(φ) = −1.

We will denote with [C] = {a : C(a)} the extension of an OWL class C in an
RDF dataset, and with ‖E‖ the cardinality of set E.

In particular, the dataset we processed has been built considering 722 for-
mulas, together with their logical negations, thus gathering a total of 1444 ele-
ments. Each item is associated to a score inspired by possibility theory [4], called
acceptance-rejection index (ARI for short), introduced in [11] and numerically
summarizing the suitability of that formula as an axiom within a knowledge base
expressed through RDF. More precisely, the ARI of a formula φ has been de-
fined as the combination of the possibility and necessity measures of φ as follows:
ARI(φ) = Π(φ)−Π(¬φ) ∈ [−1, 1], so that a negative ARI(φ) suggests rejection
of φ (Π(φ) < 1), whilst a positive ARI(φ) suggests its acceptance (N(φ) > 0),4

with a strength proportional to its absolute value. A value close to zero reflects
ignorance about the status of φ. For all φ, ARI(¬φ) = −ARI(φ).

The 722 formulas of our dataset were exactly scored against DBpedia, which
required a little less than 290 days of CPU time on quite a powerful machine [23].

3 Formula Translation

Among the landscape of dimensionality reduction techniques (see for instance
[13, 17]), formulas have been processed using (i) kernel-based Principal Compo-
nent Analysis (PCA) [18] and (ii) t-distributed Stochasting Neighbor Embedding
(t-SNE) [9]. The first technique applies standard PCA [15] to data nonlinarly
mapped onto a higher-dimensional space. On the other hand, t-SNE describes
data using a probability distribution linked to a similarity measure, minimizing
its Kullback-Leibler divergence with an analogous distribution in map space.
We did not use such techniques to reduce data dimensionality [25], but as a way
to map formulas into Rd, for arbitrary choices of d, based on the similarity mea-

3 It should always be borne in mind that this is just a shorthand notation for the
underlying OWL 2 functional-style syntax extended with the “minus” operator as
explained above.

4 We recall that N(φ) = 1−Π(¬φ) and Π(φ) = 1−N(¬φ).

(a) simlen (b) simH (c) simedit (d) simJ

Fig. 1. t-SNE-based scatter plots for the considered similarity measures. Positive and
negative formulas are marked using + and −, respectively, using a gray shade reflecting
ARI (dark shades for low ARI and vice versa.)

(a) simlen (b) simH (c) simedit (d) simJ

Fig. 2. PCA-based scatter plots. Same notations as in Figure 1.

sures detailed below. The result of this mapping is considered as an intermediate
representation to be further processed as explained in the rest of the paper.

Length-based similarity This similarity is obtained by comparing the textual
representation length of two formulas φ1 and φ2 as follows:

slen(φ1, φ2) = 1− |#φ1 −#φ2|
max{#φ1,#φ2}

, (1)

where #φ denotes the length of the textual representation of φ. Normalization
is required in order to transform the distance |#φ1 − #φ2| into a similarity. 5

Such measure, however, cannot be reasonably expected to be able to capture
meaningful information, as it merely relies on string length. For instance, two
formulas whose formal description have equal length will always exhibit maximal
similarity, regardless of the concepts they express. Nonetheless, such similarity
has been included as a sort of litmus test. Anyhow, (1) is excessively naive, for
it would assign quasi-maximal similarity to a formula and its logical negation:
indeed, their descriptions would differ only for a trailing minus character. This
inconvenience can be easily fixed by complementing to 1 the above definition

5 The used implementations of t-SNE and PCA in scikit-learn [16] accept, respectively,
a distance and a similarity matrix. Thus we normalized all similarities.

(a) simlen (b) simH (c) simedit (d) simJ

Fig. 3. Scatter plots of the output of PCA, followed by t-SNE. Same notations as in
Figure 1.

when the signs of the two formulas are opposed and limiting the comparison to
the base axiom only:

simlen(φ1, φ2) =

{
1− slen(abs(φ1), abs(φ2)) if sgn(φ1) 6= sgn(φ2),

slen(φ1, φ2) otherwise.
(2)

This basically ensures, as one would intuitively expect, that the similarity be-
tween a formula and its negation be zero.

Hamming similarity Despite its simplicity, length-based similarity catches very
simple instances of syntactical similarities (e.g. when identical—or almost identi-
cal—formulas only differ from synonymous class names); in this respect, it is
reasonable to obtain better results if the distance is defined in a smarter way. This
can be achieved for instance considering simH(φ1, φ2) = H(abs(φ1), abs(φ2)), if
sgn(φ1) 6= sgn(φ2), 1−H(φ1, φ2) otherwise, where H is the normalized Hamming
distance between the textual representations of two formulas, that is the fraction
of positions where such strings contain a different character, aligning them on
the left and ignoring the extra characters of the longest string.

Levenshtein similarity We can aim at grasping more sophisticated forms of
syntactical similarities, and even simple semantic similarities. To such extent,
we considered simedit(φ1, φ2) = Lev(abs(φ1), abs(φ2)) if sgn(φ1) 6= sgn(φ2),
1− Lev(φ1, φ2) otherwise, where Lev is the normalized Levenshtein distance [8]
between strings representing two formulas, intended as the smallest number of
atomic operations allowing to transform one string into the other one.

Jaccard similarity Semantics heavily depends on context. This is why we also
consider the similarity measure introduced in [11] exploiting notation of Sect. 1:

simJ(φ1, φ2) =
‖[A] ∩ [B] ∪ [C] ∩ [D]‖

‖[A] ∪ [C]‖
, (3)

where φ1 is the subsumption A v B, and φ2 is C v D. Note that among all the
considered similarities, this is the only one taking into account both the specific

Table 1. Radius statistics for PCA-based clusters. Rows: similarity measures; Dist:
average Euclidean distance between postivie and negative clusters; Max, m, IQR, µ,
and σ: maximum, median, interquartile range, mean, and standard deviation for cluster
radius. Indices are computed separately for positive and negative formulas and shown
columns marked with + and −.

Dist Max+ m+ IQR+ µ+ σ+ Max− m− IQR− µ− σ−

simlen 0.05 5.0e-1 1.7e-1 0.26 2.0e-1 0.16 5.0e-1 1.7e-1 0.25 2.0e-1 0.16
simH 0.45 8.2e-2 3.3e-2 0.03 3.3e-2 0.02 8.2e-2 3.2e-2 0.03 3.3e-2 0.02

simedit 0.41 3.1e-1 1.1e-1 0.14 1.2e-1 0.09 3.0e-1 1.0e-1 0.14 1.1e-1 0.09
simJ 0.30 5.2e-1 2.3e-2 0.39 1.8e-1 0.23 5.2e-1 2.3e-2 0.39 1.8e-1 0.23

form of the formulas (subsumptions) and their meaning within a dataset. It has
been termed Jaccard similarity because (3) racalls the Jaccard similarity index.

Figures 1 and 2 show the obtained set of points in R2 when applying t-SNE
and kernel PCA, coupled with the above similarities, to the considered subsump-
tion formulas6. In each plot, + and − denote the images of positive and negative
formulas in R2 through the reduction technique; the color of each bullet reflects
the ARI associated to a formula (cf. Sect. 2), with minimal and maximal values
being mapped onto dark and light gray. Figure 3 shows the same scatter plots
when PCA and t-SNE are applied in chain, as commonly advised [9]. In partic-
ular, not having here an explicit dimension for the original space of formulas,
we extracted 300 principal components via PCA and considered the cumulative
fraction of explained variance (EV) for each of the extracted components, after
the latter were sorted by nondecreasing EV value. In such cases, the number
of components to be considered is the one explaining a fixed fraction of the
total variance, and we set such fraction to 75%, which led us to roughly 150
components, to be further reduced onto R2 via t-SNE.

Recalling that our final aim is to tell “good” formulas from “bad” ones,
where “good” means a high ARI, i.e., light gray symbols in the scatter plots, the
obtained results highlight the following facts.

– In all simlen plots, light and dark bullets tend to heavily overlap, thus con-
firming that simlen is not a suitable choice for our classification purposes.

– A similar behavior is generally exhibited by PCA; however, shapes in Fig-
ures 2(a) and 2(d) strongly recall the projection onto R2 of a saddle-shaped
manifold, thus suggesting a low-dimensional intrinsic dimensionality.

Leaving apart the length-based similarity and the sole kernel PCA technique,
we are left with six possibilities, which are hard to rank via qualitative judgment
only. We can only remark that simH tends to generate plots where the two classes
do not appear as sharply distinguished as in the remaining cases. However, this
criterion is too weak and, therefore, a quantitative approach is needed. This is

6 Code and data to replicate all experiments described in the paper is available at
https://github.com/dariomalchiodi/MDAI2020.

Table 2. Radius statistics for clusters of points obtained through t-SNE. Same nota-
tions as in Table 1.

Dist Max+ m+ IQR+ µ+ σ+ Max− m− IQR− µ− σ−

simlen 15.80 7.8e+1 3.4e+1 36.62 3.4e+1 23.12 8.0e+1 3.7e+1 37.35 3.6e+1 24.01
simH 60.29 1.2e+1 3.0e+0 7.10 4.4e+0 3.98 1.0e+1 2.1e+0 5.26 3.4e+0 3.23

simedit 57.66 2.7e+1 8.3e+0 11.42 9.6e+0 7.62 2.6e+1 7.6e+0 9.31 8.9e+0 6.96
simJ 2.33 3.8e+0 9.1e-1 2.75 1.5e+0 1.44 3.3e+0 6.3e-1 2.54 1.3e+0 1.33

Table 3. Radius statistics for clusters of points obtained chaining kernel PCA and
t-SNE. Same notations as in Table 1.

Dist Max+ m+ IQR+ µ+ σ+ Max− m− IQR− µ− σ−

simlen 17.76 7.9e+1 3.5e+1 36.68 3.5e+1 3.65 8.0e+1 3.7e+1 37.87 3.7e+1 24.45
simH 56.19 3.3e+0 1.1e+0 1.51 1.3e+0 0.91 3.1e+0 1.1e+0 1.41 1.2e+0 0.87

simedit 60.56 3.1e+1 1.0e+1 14.28 1.2e+1 9.22 3.2e+1 1.1e+1 13.97 1.2e+1 9.45
simJ 13.02 2.3e+1 1.3e+0 16.47 7.8e+0 9.72 2.6e+1 1.4e+0 16.46 7.9e+0 10.05

why we considered the radius statistics of the clusters of points in R2 referring
to a same concept. More precisely:

– each concept is identified by an OWL class (such as for instance Coach,
TennisLeague, Eukaryote, and so on);

– given a concept, we identify all positive formulas having it as antecedent,7

and consider the positive cluster of corresponding points in R2; we proceed
analogously for the negative cluster ;

– we subsequently obtain the centroids of the two clusters and compute their
Euclidean distance; moreover, we consider the population of distances be-
tween each point in a cluster and the corresponding centroid. Such popu-
lation is described in terms of basic descriptive indices (namely, maximum,
mean and standard deviation, median and interquartile range (IQR)).

Thus, for each combination of reduction technique, similarity measure, and con-
cept, we obtain a set of measurements. In order to reduce this information to a
manageable size, we average all indices across concepts: Tables 1–3 summarize
the results, for which we propose the following interpretation:

– the use of kernel PCA results in loosely decoupled clusters: indeed, indepen-
dently of the considered similarity measure, the distance between positive
and negative formulas is generally smaller than the sum of the radii of the
corresponding clusters (identified with the max index); moreover, all mea-
sured indices tend to take up similar values;

– as already found out in the qualitative analysis of Figures 1–3, a weakness
analogous to that illustrated in the previous point tends to be associated to
simlen, regardless of the chosen reduction technique;

7 We also repeated all experiments considering both antecedents and consequents,
obtaining comparable results.

– quite suprisingly, simH is the only similarity measure which results in sharply
distinguished clusters when coupled with t-SNE.

4 Learning ARI

As all considered formulas have been mapped to points in a Euclidean space,
it is now easy to use the images of the considered mappings as patterns to be
fed to a supervised learning algorithm, whose labels are the ARI of the relevant
formulas. More precisely, we considered the following models (and, specifically,
their implementation in scikit-learn [16]), each described together with the hy-
perparameters involved in the model selection phase:

– Decision trees (DT), parameterized on purity index, maximal number of
leaves, maximal number of features, and maximal tree depth;

– Random forests (RF), parameterized on the number of trees, as well as on
the same quantities as DT;

– Naive Bayes with Gaussian priors (NB), without hyperparameters;
– Linear Discrimimant Analysis (LDA), without hyperparameters;
– Three-layered feed-forward neural networks (NN), parameterized on the num-

ber of hidden neurons;
– Support vector classifiers (SVC), parameterized on the tradeoff constant and

on the used kernel.

When applicable, model selection was carried out via a repeated holdout con-
sisting of five iterations, each processing a grid of the above-mentioned values for
hyperparameters, shuffling available data, and considering a split assigning 80%,
10%, and 10% of points, respectively, to train, validation, and test. When model
selection was not involved, respectively 80% and 20% of the available examples
where assigned to training and test.

In order to build examples to be fed to learning algorithms, each formula
needed to be associated with a binary label. That was done through binarization
of the ARI values, using a threshold α ∈ {i/10 for i = 1, . . . , 9}. More precisely,
an experiment was carried out for each of the possible thresholding levels. Finally,
the transformation of formulas into vectors was done by considering different
values for the dimension d of the resulting Euclidean space, namely the values in
{2, 3, 5, 10, 30} were tested. Summing up, for each reduction technique R (that
is, either PCA or t-SNE coupled with any similarity measure) and considered
dimension d, the following holdout protocol was iterated ten times:

1. R was applied to the available data in order to obtain a set of vectors in Rd;
2. for each model M such vectors were randomly shuffled and subsequently

divided into training, validation (if needed), and test set;
3. for each threshold value α, a model selection for M using the data in train-

ing and validation set was carried out, testing the selected model against
generalization using the test set;

4. the model whose value of α gave the best generalization was retained.

Table 4. Test set accuracy for the considered learning algorithms, when fed with points
in R2 representing the original formulas transformed through kernel PCA using simJ.

Model
Test accuracy

Model
Test accuracy

α mean median σ α mean median σ

DT 0.8 0.71 0.64 0.12 LDA 0.9 0.82 0.82 0.01
RF 0.8 0.84 0.83 0.01 MLP 0.2 0.83 0.82 0.02
NB 0.9 0.82 0.82 0.00 SVC 0.9 0.60 0.60 0.00

Table 5. Comparison between test set median accuracy of algorithms using PCA.
Rows: models; columns: similarity; d: space dimension.

d = 2 d = 3 d = 5 d = 10
H J edit H J edit H J edit H J edit

DT 0.62 0.64 0.68 0.62 0.60 0.66 0.62 0.60 0.66 0.62 0.64 0.66
RF 0.67 0.83 0.67 0.66 0.81 0.70 0.66 0.82 0.68 0.64 0.81 0.68
NB 0.62 0.82 0.69 0.63 0.80 0.68 0.63 0.83 0.68 0.62 0.81 0.68
LDA 0.52 0.82 0.68 0.52 0.82 0.67 0.52 0.83 0.68 0.53 0.83 0.68
MLP 0.62 0.82 0.66 0.61 0.83 0.68 0.63 0.80 0.68 0.61 0.82 0.68
SVC 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

Table 6. Comparison between algorithms using t-SNE. Same notations as in Table 5.

d = 2 d = 3 d = 5 d = 10
H J edit H J edit H J edit H J edit

DT 0.66 0.62 0.62 0.65 0.62 0.60 0.65 0.62 0.60 0.67 0.61 0.60
RF 0.64 0.66 0.65 0.66 0.64 0.66 0.65 0.63 0.65 0.66 0.66 0.66
NB 0.69 0.65 0.63 0.69 0.66 0.64 0.65 0.65 0.65 0.67 0.65 0.62
LDA 0.67 0.65 0.62 0.68 0.68 0.62 0.68 0.67 0.62 0.70 0.68 0.62
MLP 0.70 0.66 0.63 0.68 0.60 0.61 0.64 0.57 0.61 0.68 0.58 0.60
SVC 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

Table 4 shows the results obtained when using kernel PCA with Jaccard simi-
larity. For each model, the optimal value of α is shown, as well as the estimated
generalization capability, in terms of mean and median accuracy on the test set.

Tables 5 and 6 show a more compact representation of the corresponding
results when considering the possible combinations of learning algorithm, sim-
ilarity measure, reduction technique, and dimension of the space onto which
formulas are mapped. Because, as expected, the length-based distance always
gave the worst results, it has been omitted from the tables to save space. The
same applies to the results obtained when setting d = 30, which in this case did
not give any significant improvement w.r.t. the figures for d = 10.

Looking at these results, it is immediately clear that SVC is systematically
outperformed by the remaining models, and the results it obtains are indepen-
dent of the combination of reduction technique, similarity measure, and space

(a) t-SNE (b) PCA

Fig. 4. Comparison of the more significative results in learning ARI when using t-SNE
(a) and PCA (b). Rows are associated to learning algorithms, using the abbreviations
introduced in Sect. 4, while columns refer to similarity measures (E: simedit, H: simH,
L: simlen, J: simJ). Each graph plots test set accuracy vs. number of dimensions.

dimension. Moreover, the best results (highlighted using boldface in the tables)
are almost always higher when using kernel PCA, thus somehow in contrast with
the preliminary results obtained in Sect. 3. In order to further analyze this trend,
Figure 4 graphically shows a subset of the obtained results, where SVC is left
out. The graphs highlight that the space dimension d has a weak influence on
the results, and that simlen always attains a low score, thus it has been excluded
from the rest of the analysis. Experiments can be divided into three groups:

– all combinations of LDA with simH, getting a bottom-line performance,
– a majority of cases where median accuracy lays roughly between 60 and 70%,

notably containing all remaining results based on t-SNE, and
– a top set of experiments with median accuracy > 80%, including all those

involving kernel PCA with simJ and any learning algorithm but DT.

In order to verify that there is a significant difference between the experi-
ments in these groups, we executed the Cramér-Von Mises (CVM) test [2]. For
the sake of conciseness, we will call a case any combination of learning algorithm,
dimensionality reduction technique, dimension of the resulting space, and simi-
larity measure (excluding, as previously stated, SVC and simlen). For each case,
we repeated the experiments ten times, thus getting a sample of ten values for
the median test set error. We then gathered cases in the following categories:

Gtop
PCA, Gmid

PCA, Gbtm
PCA: respectively the best, middle, and low performing cases

using PCA (corresponding to the three items in the previous list); GtSNE: all
cases using tSNE, i.e. those shown in Figure 4(a). Now, given a generic pair of
cases taken from Gtop

PCA and Gmid
PCA, the hypothesis that the corresponding test

error samples are drawn from the same distribution is strongly rejected by the
CVM test, with p < 0.01. The same happens when considering any other pair of
groups related to PCA, and these results do not change if Gmid

PCA is swapped with
GtSNE. On the other hand, the same test run on two cases from Gtop

PCA didn’t
reject the same hypothesis in 81% of the times.

5 Conclusions

Our results show that it is possible to learn reasonably accurate predictors of
the score of candidate axioms without having to resort to sophisticated (and
expensive-to-compute) semantics-based similarity measures. Indeed, we showed
that using a dimensionality-reduction technique to map candidate axioms to
a low-dimension space allows supervised learning algorithms to effectively train
predictive models of the axiom score. This agrees with the observation that there
are no obvious indicators to inform the decision to choose between a cheap or
expensive similarity measure based on the properties of an ontology [1].

Our findings can contribute to dramatically speed up ontology-learning ap-
proaches based on exhaustive or stochastic generate-and-test strategies, like [3,
12]. As a further development, we plan to apply to the same dataset more sophis-
ticated techniques able to learn the ARI without the need of binarizing labels.

Acknowledgments

Part of this work was done while D. Malchiodi was visiting scientist at Inria
Sophia-Antipolis/I3S CNRS Université Côte d’Azur. This work has been sup-
ported by the French government, through the 3IA Côte d’Azur “Investments in
the Future” project of the Nat’l Research Agency, ref. no. ANR-19-P3IA-0002.

References

1. Alsubait, T., Parsia, B., Sattler, U.: Measuring conceptual similarity in ontologies:
How bad is a cheap measure? In: Description Logics. pp. 365–377

2. Anderson, T.W.: On the distribution of the two-sample cramer-von mises criterion.
The Annals of Mathematical Statistics 33(3), 1148–1159 (1962)

3. Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge
bases. In: EKAW 2012. pp. 57–71

4. Dubois, D., Prade, H.: Possibility Theory—An Approach to Computerized Pro-
cessing of Uncertainty. Plenum Press, New York (1988)

5. Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property
axioms. In: OTM 2012. pp. 718–735

6. Huitzil, I., Straccia, U., Dı́az-Rodŕıguez, N., Bobillo, F.: Datil: Learning fuzzy
ontology datatypes. In: IPMU 2018. pp. 100–112

7. Lehmann, J., Völker, J. (eds.): Perspectives on Ontology Learning, Studies on the
Semantic Web, vol. 18. IOS Press, Amsterdam (2014)

8. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8), 707–710 (February 1966)

9. Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine learn-
ing research 9(Nov), 2579–2605 (2008)

10. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent
Systems 16(2), 72–79 (2001)

11. Malchiodi, D., Tettamanzi, A.G.B.: Predicting the possibilistic score of owl axioms
through modified support vector clustering. In: SAC 2018. pp. 1984–1991

12. Nguyen, T.H., Tettamanzi, A.: Learning class disjointness axioms using grammat-
ical evolution. In: EuroGP. pp. 278–294

13. Nonato, L.G., Aupetit, M.: Multidimensional projection for visual analytics: Link-
ing techniques with distortions, tasks, and layout enrichment. IEEE Transactions
on Visualization and Computer Graphics 25(8), 2650–2673 (2018)

14. Parsia, B., Motik, B., Patel-Schneider, P.: OWL 2 web ontology lan-
guage structural specification and functional-style syntax (second edition).
W3C recommendation, W3C (December 2012), http://www.w3.org/TR/2012/

REC-owl2-syntax-20121211/

15. Pearson, K.: LIII. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
2(11), 559–572 (1901)

16. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

17. Sacha, D., Zhang, L., Sedlmair, M., Lee, J.A., Peltonen, J., Weiskopf, D., North,
S.C., Keim, D.A.: Visual interaction with dimensionality reduction: A structured
literature analysis. IEEE transactions on visualization and computer graphics
23(1), 241–250 (2016)

18. Schölkopf, B., Smola, A.J., Müller, K.: Kernel principal component analysis. In:
International Conference on Artificial Neural Networks (ICANN). pp. 583–588

19. Straccia, U., Mucci, M.: pFOIL-DL: Learning (fuzzy) EL concept descriptions from
crisp OWL data using a probabilistic ensemble estimation. In: SAC 2015. pp. 345–
352

20. Stuckenschmidt, H.: Partial matchmaking using approximate subsumption. In:
Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, July
22-26, 2007, Vancouver, British Columbia, Canada. pp. 1459–1464

21. Tettamanzi, A.G.B., Faron-Zucker, C., Gandon, F.: Dynamically time-capped pos-
sibilistic testing of subclassof axioms against rdf data to enrich schemas. In: K-
CAP 2015. p. Article No.: 7

22. Tettamanzi, A.G.B., Faron-Zucker, C., Gandon, F.: Possibilistic testing of OWL
axioms against RDF data. International Journal of Approximate Reasoning 91,
114–130 (December 2017)

23. Tettamanzi, A.G.B., Faron-Zucker, C., Gandon, F.L.: Testing OWL axioms against
RDF facts: A possibilistic approach. In: EKAW 2014. pp. 519–530

24. Töpper, G., Knuth, M., Sack, H.: Dbpedia ontology enrichment for inconsistency
detection. In: I-SEMANTICS. pp. 33–40

25. Yin, H.: Nonlinear dimensionality reduction and data visualization: a review. In-
ternational Journal of Automation and Computing 4(3), 294–303 (2007)

