
Single bounded parallel-batch machine
scheduling with an unavailability constraint and

job delivery ⋆

Jing Fan1, C. T. Ng2, T. C. E. Cheng2, and Hui Shi3

1 Shanghai Polytechnic University, Shanghai 201209, China
2 Logistics Research Centre, Department of Logistics and Maritime Studies,

The Hong Kong Polytechnic University, Hong Kong SAR, China
3 Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University,

Shanghai 200080, China sspu fj@163.com

Abstract. We consider a scheduling problem where a manufacturer pro-
cesses a set of jobs for a customer and delivers the completed jobs to the
customer. The job sizes and processing times are given. The objective is
to minimize the maximum delivery time to the customer. In the produc-
tion stage, one machine with an unavailability period is used to process
the jobs. The machine has a fixed capacity and the jobs are processed
in batches under the condition that the total size of the jobs in a batch
cannot exceed the machine capacity. The processing time of a batch is
the maximum processing time of the jobs contained in the batch. In
addition, each batch is non-resumable, i.e., if the processing of a batch
cannot be completed before the unavailability period, the batch needs to
be processed anew after the unavailability interval. In the distribution
stage, the manufacturer assigns a vehicle with a fixed capacity to deliver
the completed jobs. The total size of the completed jobs in one delivery
cannot exceed the vehicle capacity. We first consider the case where the
jobs have the same size and arbitrary processing times, for which we pro-
vide a 3/2-approximation algorithm and show that the worst-case ratio
is tight. We then consider the case where the jobs have the same process-
ing time and arbitrary sizes, for which we provide a 5/3-approximation
algorithm and show that the worst-case ratio is tight.

Keywords: parallel-batch; production and delivery; unavailability con-
straint; approximation algorithm

⋆ This research was supported in part by the National Natural Science Foundation of
China (No.11601316). The first author was also supported in part by the key disci-
pline “Applied Mathematics” of Shanghai Polytechnic University (No.XXKPY1604),
Research Center of Resource Recycling Science and Engineering, and Gaoyuan Dis-
cipline of Shanghai − Environmental Science and Engineering (Resource Recycling
Science and Engineering) of Shanghai Polytechnic University.

This is the Pre-Published Version.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of
use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect
post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-030-57602-8_47.

2 F. et al.

1 Introduction

Although production scheduling integrated with logistics is more difficult to deal
with than production scheduling alone from the theoretical research perspective,
there is an abundance of literature on the former because such problems are more
practical in the realistic manufacturing environment.

Potts [1] was probably the first researcher that considered scheduling with job
delivery. Hall and Potts [2] studied integrated scheduling that involves a supplier,
a manufacturer, and a customer. For integrated scheduling with one machine and
one customer, Chen and Vairaktarakis [3] presented a polynomial-time dynamic
programming solution algorithm to minimize the maximum arrival time, under
the condition that the last completed job delivered to the customer and the
total distribution cost do not exceed given bounds. Different from [3] in which
the number of vehicles has no limit, Lee and Chen [4] considered the problem
with a limited number of vehicles and showed that it is polynomially solvable by
dynamic programming. Studying the same problem in [4] where the jobs have
different sizes, Chang and Lee [5] showed that the problem is strongly NP -hard
and provided a heuristic with a worst-case performance bound of 5/3. He et al.
[6] and Zhong et al. [7] studied the same problem in [5], and proposed improved
approximation algorithms with worst-case performance bounds of 53/35 and
3/2, respectively.

However, due to the occurrence of breakdowns or the necessity for mainte-
nance and repair, the machines may become unavailable during the production
stage. There are many studies on integrated scheduling under the constraint of
machine unavailability. When job processing is interrupted by machine unavail-
ability, the interrupted job is often assumed to be non-resumable, which means
that the job needs to processed anew as defined in [8]. For the problem with de-
livery using a capacitated vehicle to minimize the maximum arrival time, Wang
and Cheng [9] showed that it is NP -hard, and proposed a 3/2-approximation
algorithm and showed that the worst-case ratio is tight. More details on this
research stream can be found in Chen [10] and Ma et al. [11].

In most models of scheduling with delivery, the machine processes one job
at a time. However, it is noted that batch-processing machines with limited
capacities are also widely used in real production. When a bounded parallel-
batch machine is used for production, the jobs are processed in batches under
the condition that the total size of the jobs in a batch cannot exceed the machine
capacity, and the processing time of a batch is equal to the longest processing
time of the jobs in it. Li et al. [12] and Gong et al. [13] considered several
parallel-batch machine scheduling problems with job delivery. Lu and Yuan [14]
considered unbounded parallel-batch scheduling with job delivery to minimize
the makespan. They provided a polynomial-time algorithm to solve the case
where the jobs have identical sizes, and a heuristic with a worst-case performance
ratio of 7/4 for the case where the jobs have non-identical sizes. Cheng et al.
[15] considered integrated scheduling of production and distribution on parallel
batch-processing machines. They presented a (2−1/m)-approximation algorithm
for the case where the jobs have the same size and arbitrary processing times,

Title Suppressed Due to Excessive Length 3

and provided a 13/7-approximation algorithm for the case where the jobs have
the same processing time and arbitrary sizes.

In this paper we consider scheduling with job delivery for a customer on
a bounded parallel-batch machine with a machine unavailability period, where
a capacitated vehicle is used to deliver the completed jobs to the customer.
The objective is to minimize the time of the last completed job delivered to the
customer. We consider two cases of the problem corresponding to different condi-
tions on the job processing times and sizes, and design approximation algorithms
for them.

2 Description of the problem

In our problem, there is a manufacturer that processes jobs on a bounded
parallel-batch machine and delivers the completed jobs to a customer. Given
a set of n jobs J = {J1, J2, · · · , Jn}, where job Jj has the processing time pj and
size sj for j = 1, 2, ..., n. In the production stage, the machine has a capacity
B, i.e., it can simultaneously process at most B jobs as a batch. The processing
time of a batch is the maximum processing time of the jobs contained in the
batch. Due to reasons such as maintenance, breakdown etc, the machine has an
unavailability period [t1, t2]. Let I be the length of the unavailability period, i.e.,
I = t2 − t1. The processing of batches is non-resumable, i.e., if there is at least
one job in a batch that is interrupted by the unavailable period [t1, t2], the whole
batch needs to be processed anew after t2. In the delivery stage, there is a vehicle
with a capacity c to deliver the completed jobs to the customer. The transport
time between the machine and the customer is T . Let Dj be the delivery time of
job Jj , i.e., the arrival time of the batch containing job Jj to the customer. The
objective is to minimize the maximum delivery time of all the jobs, denoted by
Dmax.

Chen [10] proposed a five-field notation to denote an integrated schedul-
ing problem as α|β|π|δ|γ, where α represents the facility configuration of the
manufacturer; β represents the production constraints; π represents the vehicle
configuration and is often denoted by (v1, v2), where v1 represents the number
of vehicles and v2 represents the vehicle capacity; δ represents the number of
customers; and γ represents the scheduling objective to be minimized. Using the
above notation, we denote the two cases of the problem under study as follows:

(P1) : 1, h1|nr − a, p− batch, sj = 1, pj |V (1, c)|1|Dmax,

(P2) : 1, h1|nr − a, p− batch, sj , pj = 1|V (1, c)|1|Dmax.

For problem (P1), each job has a unit size but an arbitrary processing time.
On the contrary, for problem (P2), each job has an arbitrary size but a unit
processing time.

We organize the rest of the paper as follows: In Section 3 we show that prob-
lem (P1) is NP -hard and propose an approximation algorithm for it. In Section
4 we prove that problem (P2) is stronglyNP -hard and present an approximation
algorithm for it.

4 F. et al.

3 Algorithm for (P1) : 1, h1|nr − a, p − batch, sj =
1, pj|V (1, c)|1|Dmax

In this section we study problem (P1), where the jobs have the same size, i.e.,
sj = 1. Similar to [15], we assume that the manufacturer uses appropriate equip-
ment to improve the efficiency of the supply chain. Specifically, we let c = µB,
where µ ≥ 2 and µ is a positive integer.

We first analyze the computational complexity of (P1).

Theorem 1. (P1) : 1, h1|nr−a, p−batch, sj = 1, pj |V (1, c)|1|Dmax is NP-hard.

Proof. Consider the special case (P1′), where B = 1, i.e., each batch contains at
most one job. It is clear that (P1′) is equivalent to 1, h1|nr − a|V (1, c)|1|D′

max,
where D′

max is the maximum of the return time D′
j of the vehicle after delivering

the completed jobs to the customer. Obviously, D′
j = Dj + T for job Jj . Given

that Wang and Cheng [9] have shown that problem (P1′) is NP -hard, we obtain
the conclusion.

Next, we derive some properties of the optimal solution for problem (P1).

Lemma 1. There exists an optimal schedule σ∗ possessing the following prop-
erties:

(1) Let N∗ to be the number of batches, then N∗ = ⌈n/B⌉;
(2) The batches are processed consecutively before and after the unavailability

period;
(3) The batch that becomes available earlier is delivered earlier.
(4) The first delivery includes b∗ batches, and each of the last a∗ deliveries

includes µ jobs, where a∗ and b∗ are two positive integers satisfying N∗ = a∗µ+b∗

and 0 < b∗ ≤ µ, respectively.

The lemma can be proved similar to the proof in [9]. Because every job has
the same size 1, we construct the following algorithm including the same number
of batches as the optimal schedule.

Algorithm A1

Step 1: Sequence all the jobs in non-increasing order of their processing
times.

Step 2: Create the first batch HN∗ and put the first B jobs in HN∗ . Then
create batch HN∗−1 and put the next B jobs in it. Repeat the assignment until
there are y jobs left, where 0 < y ≤ B. Put them in batch H1. The obtained
batch set is {H1,H2, ..., HN∗}. The batches are in non-decreasing order of their
batch processing times.

Step 3: Regard batch Hj as job J̃j for j = 1, 2, ..., N∗, whose process-
ing time is the maximum processing time of the jobs in Hj and the size is

1. Take the obtained job set {J̃1, J̃2, ..., J̃N} as the job set of problem (P1′) :
1, h1|nr−a|V (1, c)|1|D′

max. Use the approximation algorithm proposed in Wang
and Cheng [9] to obtain the schedule σ.

Furthermore, we can obtain the following lemma.

Title Suppressed Due to Excessive Length 5

Lemma 2. Sorting all the batches of σ and σ∗ in non-decreasing order, we have
P (Hj) ≤ P (H∗

j) for j = 1, ..., N∗, where P (Hj) and P (H∗
j) are the processing

times of the j-th batch in schedules σ and σ∗, respectively,

The proof is similar to Cheng et al. [15]. Given that the worst-case ratio of
the approximation algorithm Wang and Cheng [9] proposed for (P1′) is 3/2, we
derive the worst-case ratio of algorithm A1 for (P1) as follows:

Theorem 2. Solving (P1), algorithm A1 has the worst-case ratio of 3/2, which
is tight.

Proof. It suffices to prove that the objective value produced by the optimal
schedule for (P1′), denoted by σ∗(P1′), is not greater than that for (P1), denoted
by σ∗(P1). Otherwise, we construct a new schedule σ̂(P1) by replacing the
corresponding batches of σ∗(P1) with the batches of σ∗(P1′) to process in non-
decreasing order of the batches in the two schedules, and delivering the batches
as σ∗(P1). Because the completion times of the batches in σ̂(P1) are no later
than those in σ∗(P1) by Lemma 2, so are the delivery times. Hence, the new
schedule σ̂(P1) is no worse than σ∗(P1).

Next, consider the following instance: n = 6, B = 2, µ = 2, [t1, t2] = [2, 2+ϵ],
p1 = p2 = ϵ, p3 = p4 = 1, and p5 = p6 = 1. The delivery time is T = ϵ. The
schedule produced by algorithm A1 is as follows: The first delivery including J1
and J2 is delivered at ϵ, and the second delivery including J3, J4, J5, and J6
is delivered at 3 + ϵ. Hence, Dmax = 3 + 2ϵ. However, in the optimal schedule,
there are two deliveries: the first delivery consisting of J3 and J4, and the second
delivery consisting of the others. The optimal objective function value is D∗

max =
2 + 3ϵ. So, we have Dmax

D∗
max

= 3
2 if ϵ is sufficiently small.

4 Algorithm for (P2) : 1, h1|nr − a, p − batch, sj, pj =
1|V (1, c)|1|Dmax

In (P2) : 1, h1|nr − a, p − batch, sj , pj = 1|V (1, c)|1|Dmax, all the jobs have
a unit processing time but arbitrary sizes. First we analyze the computational
complexity of (P2).

Theorem 3. (P2) : 1, h1|nr− a, p− batch, sj , pj = 1|V (1, c)|1|Dmax is strongly
NP -hard.

Proof. Consider the special case (P2′), where t1 = t2 and T = 0, i.e., there is
no unavailability interval on the machine and no delivery is needed. Since each
job has a processing time of 1, every batch has a processing time of 1. Hence,
(P2′) is equivalent to minimizing the number of batches, i.e., the bin-packing
problem, which is a well-known strongly NP -hard problem. Therefore, (P2), as
well as (P2′), is strongly NP -hard.

Obviously, the optimal schedule for (P2) possesses properties (2) − (4) in
Lemma 1.

6 F. et al.

In this section we use the same notation and the corresponding meanings,
such as N and N∗, as those used in Section 3. Next, we propose the following
approximation algorithm for (P2).

Algorithm A2

Step 1: Sort the jobs in non-increasing order of their sizes. Re-label them as
job J1, J2, · · · , Jn.

Step 2: Use the First Fit Decreasing (FFD) rule to assign the jobs into
batches. Create the first empty batchH1 and put job J1 in it. Check the following
jobs one by one as to whether it can be put in the batch. If so, put the job in H1

and delete it from the job list. If not, go on to check the next job. When all the
jobs have been assigned, create the second batch H2 and assign the remaining
jobs in the job list. Repeat the assignment until there is no job in the job list.
The obtained batch set is {H1, ..., HN}.

Step 3: Assign the batches in an arbitrary order to the machine for process-
ing.

Step 4: Deliver the first completed b batches inD1. For the following batches,
deliver µB batches immediately in each delivery. If the vehicle is available
when the µB batches are completed, deliver them immediately. If the vehicle
is not available at the time, wait until the vehicle returns to the manufacturer
and deliver the batches. When the last µB batches are delivered to the cus-
tomer, production and distribution are finished, and the obtained deliveries are
D1, ..., Da+1.

To analyze the performance of algorithm A2, recall that for the bin-packing
problem, the number of bins obtained by FFD is no more than the sum of 6/9
and 11/9 times the optimal number of bins. In algorithm A2, Steps 1 and 2
assign the jobs to batches by the FFD rule, so we have the following results on
N and a.

Lemma 3. ([16]) N ≤ 11
9 N∗ + 6

9 , where N∗ is the optimal number of batches.

Lemma 4. a∗ ≤ a < 11
9 a∗ + 14

9 .

Proof. It is clear that a∗ ≤ a.
By Lemma 3, we have N ≤ 11

9 N∗ + 6
9 ≤ 11

9 a∗µ + 11b∗+6
9 and N

µ ≤ 11
9 a∗ +

11b∗+6
9µ . Since 0 < b∗ ≤ µ and µ ≥ 2,

a ≤ N

µ
≤ 11

9
a∗ +

11b∗ + 6

9µ
≤ 11

9
a∗ +

11

9
+

6

9µ
≤ 11

9
a∗ +

14

9
.

But if a = 11
9 a∗ + 14

9 , by N ≤ 11
9 N∗ + 6

9 , N = aµ + b, and N∗ = a∗µ + b∗,
we have 11

9 a∗µ+ 14
9 µ+ b ≤ 11

9 (a∗µ+ b∗) + 6
9 , i.e.,

14

9
µ <

11

9
b∗ +

6

9
≤ 11

9
µ+

6

9
.

So, we deduce that µ < 2, which contradicts the assumption µ ≥ 2.

Title Suppressed Due to Excessive Length 7

As a result, we can easily obtain the maximal value of a when a∗ ≤ 4 in
Table 1.

Table 1. The maximal values of a∗ when a∗ ≤ 4.

a∗ 1 2 3 4

Maximal value of a 2 3 5 6

For convenience, we use L and L∗ to denote the numbers of deliveries in
schedules π and π∗, respectively, which means L = a + 1 and L∗ = a∗ + 1.
Meanwhile, we use C(Dj) and C(D∗

j) to denote the completion times of deliveries
Dj and D∗

j in π and π∗, and Dmax and D∗
max to denote the objective values

of π and π∗, respectively. Because every job has a unit processing time, we can
easily obtain the following relationships between π and π∗.

Lemma 5. (1) λ = λ∗, where λ and λ∗ are the numbers of batches completed
before the unavailability interval [t1, t2] in π and π∗, respectively;

(2) δ ≤ δ∗, where δ and δ∗ are the idle times on the machine before [t1, t2]
in π and π∗, respectively.

The results are obvious and we omit the proof.

Lemma 6. k − 1 ≤ l ≤ k + 1, where l and k are the first deliveries completed
after the unavailability interval [t1, t2] in π and π∗, respectively.

Proof. Because k is the first delivery completed after t2, there are at most kµ
batches completed in the total k deliveries in π∗. We prove the result by contra-
diction.

If l ≥ k + 2, there are at least (k + 1) deliveries before t1 in π, i.e., there are
at least kµ batches completed before t1. So it is a contradiction.

If l ≤ k − 2, there are (k − 1) deliveries before t1 in π∗, i.e., there are no
fewer than (k− 2)µ batches completed before t1, which is a contradiction to the
situation that at most (k − 2)µ batches completed after t2 in π.

In the following we analyze the worst-case ratios of algorithm A2 for (P2)
according to a∗ ≥ 5 and a∗ ≤ 4, respectively.

Lemma 7. When a∗ ≥ 5, the worst-case ratio of algorithm A2 is 5
3 .

Proof. We prove the result in three cases.
Case 1: C(D∗

1) ≥ t2, which means k = 1 and l = 1 or 2.
• If D∗

max = C(D∗
L∗) + T = N∗ + I + δ∗ + T , then we deduce that µ ≥ 2T .

Moreover, Dmax = C(DL) + T = N + I + δ + T , so

Dmax −D∗
max

D∗
max

≤ N −N∗

N∗ =
N

N∗ − 1.

8 F. et al.

Since a∗ ≥ 5 and µ ≥ 2, N∗ ≥ 10. Similar to [15], we can find positive
integers α ≥ 1 and 1 ≤ β ≤ 9 such that N∗ = 9α + β, and we can obtain an
upper bound on N

N∗ from Table 2 as follows:

N

N∗ ≤ 9α+ 2

11α+ 3
≤ 9

11
+

5

9(9α+ 2)
≤ 14

11
<

5

3
. (1)

Table 2. Upper bounds on N
N∗ .

N∗ 9α+1 9α+2 9α+3 9α+4 9α+5 9α+6 9α+7 9α+8 9α+9

Maximal value of N 11α+1 11α+3 11α+4 11α+5 11α+6 11α+8 11α+9 11α+10 11α+11
Upper bound on N

N∗
11
9

14
11

5
4

16
13

11
9

19
15

5
4

21
17

11
9

• If D∗
max = C(D∗

1) + (2a∗ + 1)T = b∗ + I + δ∗ + (2a∗ + 1)T , then µ < 2T
and the objective value of schedule π is

Dmax =

{
C(D1) + (2a+ 1)T , for l = 1 or 2,
C(Dl) + (2(a− l) + 3)T , for l = 2.

For the first case, Dmax ≤ b+ I+ δ+(2a+1)T . By Lemma 5 and b− b∗ ≤ µ,
we have

Dmax −D∗
max

D∗
max

≤ (b− b∗) + 2(a− a∗)T

C(D∗
1) + (2a∗ + 1)T

<
a− a∗ + 1

a∗ + 1
2

.

Moreover, because of a∗ ≥ 5 and Lemma 4, we have

a− a∗ + 1

a∗ + 1
2

≤ 2

9
+

22

9(a∗ + 1
2)

≤ 2

3
. (2)

For the second case, we have b < b∗; otherwise, C(D1) > t2, which contradicts
l = 2. Hence,

Dmax−D∗
max

D∗
max

≤ (b−b∗)+(l−1)µ+2(a−a∗−l+1)T
C(D∗

1)+(2a∗+1)T

= (b−b∗)+2(a−a∗)T+µ−2T
C(D∗

1)+(2a∗+1)T

≤ a−a∗

a∗+ 1
2

< 2
3 .

Case 2: C(D∗
k) > t2 for 1 < k < L∗ , where D∗

k is the first delivery completed
after the unavailability interval [t1, t2] in π∗.

• If D∗
max = C(D∗

L∗) + T = N∗ + I + δ∗ + T and Dmax = C(DL) + T =
N + I + δ + T , we obtain the same result as (1).

• If D∗
max = C(D∗

1) + (2a∗ + 1)T = b∗ + I + δ∗ + (2a∗ + 1)T , then µ < 2T
and 2(k− 1)T > (k− 1)µ+ I + δ∗. Therefore, the objective vale of schedule π is

Dmax =

{
C(D1) + (2a+ 1)T , for l = k − 1, k or k + 1,
C(Dl) + (2(a− l) + 3)T , for l = k − 1.

Title Suppressed Due to Excessive Length 9

For the first case, we obtain the same result as (2). For the second case, we
have

Dmax −D∗
max

D∗
max

≤ (b− b∗) + (l − 1)µ+ I + δ + 2(a− a∗ − l + 1)T

b∗ + (2a∗ + 1)T
.

Because of b−b∗ ≤ µ and l = k−1, (b−b∗)+(l−1)µ+I+δ+2(a−a∗− l+1)T ≤
2(a− a∗ + 1)T . Moreover,

Dmax−D∗
max

D∗
max

≤ 2
3 .

• IfD∗
max = C(D∗

k)+(2(a∗−k)+3)T = b∗+(k−1)µ+I+δ∗+(2(a∗−k)+3)T ,
then µ < 2T and 2(k − 1)T ≤ (k − 1)µ + I + δ∗. Hence, the objective value of
schedule π is

Dmax =

{
C(D1) + (2a+ 1)T , for l = k + 1,
C(Dl) + (2(a− l) + 3)T , for l = k − 1, k or k + 1.

For the first case, we have

Dmax−D∗
max

D∗
max

≤ (b−b∗)+2(a−a∗)T−((k−1)µ+I+δ∗+(2−2k)T)
b∗+(k−1)µ+I+δ∗+(2(a∗−k)+3)T

≤ (b−b∗)+2(a−a∗)T
b∗+2(k−1)T+(2(a∗−k)+3)T

≤ 2(a−a∗+1)T
2(k−1)T+(2(a∗−k)+3)T

= a−a∗+1
a∗+ 1

2

≤ 2
3 .

For the second case, we have

Dmax−D∗
max

D∗
max

≤ (b−b∗)+2(a−a∗)T+(l−k)(µ−T))
b∗+(k−1)µ+I+δ∗+(2(a∗−k)+3)T

≤ (b−b∗)+2(a−a∗)T+(l−k)(µ−T))
(2a∗+1)T .

When l = k−1 or k, we easily obtain
Dmax−D∗

max

D∗
max

≤ a−a∗+1
a∗+ 1

2

≤ 2
3 . When l = k+1,

we have b ≤ b∗; otherwise, C(Dl−1) > t2, which contradicts the definition of l.
Hence, we obtain the same result.

Case 3: C(D∗
L∗) ≥ t2, i.e., the last delivery D∗

L∗ is completed after the un-
availability interval [t1, t2] in π∗. Obviously, L∗ = a∗ + 1.

• If D∗
max = C(D∗

L∗)+T = b∗+(L∗−1)µ+I+δ∗+T = b∗+a∗µ+I+δ∗+T ,
then we deduce that 2a∗T ≤ a∗µ+ I + δ∗. Moreover,

Dmax =

C(DL) + T , for l = L∗ − 1, L∗ or L∗ + 1,
C(Dl) + (2(a− l) + 3)T , for l = L∗ − 1, L∗,
C(D1) + (2a+ 1)T , for l = L∗ + 1.

For the first case, we obtain the same result as (1). For the second case, we
have µ < 2T , Dmax = b+ (l − 1)µ+ I + δ + (2(a− l) + 3)T , and

Dmax−D∗
max

D∗
max

≤ (b−b∗)+(l−L∗)µ+2(a−l+1)T
b∗+(L∗−1)µ+I+δ∗+T

≤ (b−b∗)+(l−L∗)µ+2(a−l+)T

2(L∗− 1
2)T

.

10 F. et al.

When l = L∗− 1, (b− b∗)+ (l−L∗)µ+2(a− l+1)T ≤ µ−µ+2(a−a∗+1)T =
2(a−a∗+1)T . When l = L∗, (b−b∗)+(l−L∗)µ+2(a−l+1)T ≤ µ+0+2(a−a∗)T ≤
2(a− a∗ + 1

2)T < 2(a− a∗ + 1)T . Therefore,

Dmax −D∗
max

D∗
max

≤ a− a∗ + 1

a∗ + 1
2

≤ 2

3
.

For the third case, since µ < 2T and Dmax = C(D1)+ (2a+1)T = b+(2a+
1)T , we have

Dmax−D∗
max

D∗
max

= (b−b∗)−(a∗µ+I+δ∗)+2aT
b∗+a∗µ+I+δ∗+T

≤ (b−b∗)+2(a−a∗)T

2(a∗+ 1
2)T

≤ a−a∗+1
a∗+ 1

2

≤ 2
3 .

• If D∗
max = C(D∗

1) + (2a∗ + 1)T = b∗ + (2a∗ + 1)T , then µ < 2T and
2(L∗ − 1)T > (L∗ − 1)µ+ I + δ∗, i.e., 2a∗T > a∗µ+ I + δ∗. We obtain

Dmax =

{
C(D1) + (2a+ 1)T , for l = L∗ − 1, L∗ or L∗ + 1,
C(Dl) + (2(a− l) + 3)T , for l = L∗ − 1.

For the first case, we achieve the same result as (2). For the second case,
since l = L∗ − 1, we have 2(L∗ − 2)T ≤ (L∗ − 2)µ + I + δ∗ and Dmax =
b+ (l− 1)µ+ I + δ+ (2(a− l) + 3)T ≤ b+ 2(L∗ − 2)T + 2(a−L∗ +1)T +3T =
b+ (2a+ 1)T = C(D1) + (2a+ 1)T . Hence, we obtain the inequalities in (2).

Lemma 8. When a∗ ≤ 4, the worst-case ratio of algorithm A2 is 5
3 .

Proof. We prove the result in two cases.
Case 1: b ≤ b∗. In fact, this inequality holds for a∗ ≤ 4 and the values of a

satisfy Lemma 4 except a∗ = 3 and a = 4. Now we show it by contradiction.
If b > b∗, then aµ + b∗ < aµ + b ≤ 11

9 (a∗µ + b∗) + 6
9 = 11

9 a∗µ + 11
9 b∗ + 6

9 , i.e.,
(a− 11

9 a∗)µ < 2
9b

∗ + 6
9 ≤ 2

9µ+ 6
9 . So

(a− 11

9
a∗ − 2

9
)µ <

6

9
.

Using the corresponding data in Table 1, we obtain µ < 2, contradicting µ ≥ 2.
Most parts of the remaining proof are similar to Lemma 7. Here we discuss

two different situations.
The first situation is that D∗

max = C(D∗
L∗) + T = N∗ + I + δ∗ + T = a∗µ+

b∗+I+δ∗+T and Dmax = C(DL)+T = N+I+δ+T = aµ+bI+δ+T . Hence,
Dmax−D∗

max

D∗
max

= (b−b∗)+(a−a∗)µ
b∗+a∗µ+I+δ∗+T ≤ a−a∗

a∗ . For a∗ = 2, 3, 4 and the corresponding

maximal value of a in Table 1, we obtain
Dmax−D∗

max

D∗
max

≤ 2
3 . For a∗ = 1 and

a = 2, we have
Dmax−D∗

max

D∗
max

≤ N−N∗

N∗ = N
N∗ − 1. Given the upper bounds on N

N∗

for N∗ ≤ 9 in Table 3, we have N
N∗ ≤ 3

2 < 5
3 .

Title Suppressed Due to Excessive Length 11

Table 3. The upper bounds on N
N∗ .

N∗ 1 2 3 4 5 6 7 8 9

Maximal value of N 1 3 4 5 6 8 9 10 11
Upper bound on N

N∗ 1 3
2

4
3

5
4

6
5

4
3

9
7

5
4

11
9

The second situation corresponds to other combinations of D∗
max and Dmax.

We always obtain

Dmax −D∗
max

D∗
max

≤ (b− b∗) + 2(a− a∗)T

2(a∗ + 1
2)T

≤ a− a∗

a∗ + 1
2

=
a+ 1

2

a∗ + 1
2

− 1.

The upper bounds on
a+ 1

2

a∗+ 1
2

is 5
3 , which we deduce from Table 4.

Table 4. The upper bound on
a+ 1

2

a∗+ 1
2

when a∗ ≤ 4.

a∗ 1 2 3 4

Upper bound on
a+ 1

2

a∗+ 1
2

5
3

7
5

11
7

13
9

Case 2: b > b∗ for a∗ = 3 and a = 4. Note that k − 1 ≤ l ≤ k, i.e., l ̸= k + 1.
Most parts of the remaining proof are similar to Lemma 7. Here we discuss two
different situations.

The first situation is that D∗
max = C(D∗

L∗) + T = a∗µ+ b∗ + I + δ∗ + T and

Dmax = C(DL) + T = aµ + b + I + δ + T . Since b − b∗ ≤ µ,
Dmax−D∗

max

D∗
max

=
(b−b∗)+(a−a∗)µ
b∗+a∗µ+I+δ∗+T ≤ a−a∗+1

a∗ = 2
3 .

The second situation is that D∗
max = C(D∗

1) + (2a∗ + 1)T = b∗ + (2a∗ + 1)T
and Dmax = C(D1) + (2a + 1)T = b + I + δ + (2a + 1)T for k = 2 and l = 1.

Given that µ+I+δ ≤ 2T in this situation,
Dmax−D∗

max

D∗
max

= (b−b∗)+I+δ+2(a−a∗)T
b∗+(2a∗+1)T ≤

µ+I+δ+2(a−a∗)T
b∗+(2a∗+1)T < 4

7 < 2
3 .

From Lemma 7 and Lemma 8, we derive the performance of A2 as follows:

Theorem 4. Solving (P2) : 1, h1|nr − a, p − batch, sj , pj = 1|V (1, v)|1|Dmax,
algorithm A2 has the worst case ratio of 5

3 , which is tight.

Proof. It is obvious that the worst-case ratio of algorithm A1 is 5
3 by Lemma 7

and Lemma 8.
Next, consider the following instance: n = 12, B = 7, µ = 2, [t1, t2] = [1, 1+ϵ],

s1 = s2 = s3 = s4 = 3, and s5 = s6 = ... = s12 = 2. The delivery time is
T > 2+ϵ

2 . The schedule produced by algorithm A2 is as follows: the first delivery
including J1 and J2 is delivered at time 1; the second delivery including J3, ...,
J7 and the third delivery including J8, ..., J12 are delivered at 1+2T and 1+4T ,

12 F. et al.

respectively. Hence, Dmax = 1+5T . However, in the optimal schedule, there are
two deliveries: the first delivery consisting of J1, J2, J5, J6, J7, and J8, and the
second delivery consisting of the remaining jobs. The optimal objective value is
D∗

max = 2 + 3T . When T → +∞, Dmax

D∗
max

= 1+5T
2+3T → 5

3 .

References

1. Potts, C.N.: Analysis of a heuristic for one machine sequencing with release dates
and delivery times. Operations Research 28, 1436-1441 (1980).

2. Hall, N.G., Potts, C.N.: Supply chain scheduling: batching and delivery. Operatioans
Reseatch 51(4), 566-584 (2003).

3. Chen, Z.L., Vairaktarakis, G.L.: Integrated scheduling of production and distribu-
tion operations. Management Science 51(4), 614-628 (2005).

4. Lee, C.Y., Chen Z.L.: Machine scheduling with transportation considerations. Jour-
nal of Scheduling 4, 3-24 (2001).

5. Chang. Y.C., Lee C.Y.: Machine scheduling with job delivery coordination. Euro-
pean Journal of Operational Research 158, 470-487 (2004).

6. He, Y., Zhong W.Y., Gu H.K.: Improved algorithms for two single machine schedul-
ing problems. Theoretical Computer Science 363, 257-265 (2006).

7. Zhong, W., Dosa G., Tan Z.Y.: On the machine scheduling problem with job delivery
coordination. European Journal of Operational Research 182(3), 1057-1072 (2007).

8. Lee, C. Y.: Machine scheduling with an availability constraints. Journal of Global
Optimization 9, 363-382 (1996).

9. Wang, X., Cheng T.C.E.: Machine scheduling with an availability constraint and
job delivery coordination. Naval Research Logistics 54, 11-20 (2007).

10. Chen Z.L.: Integrated production and outbound distribution scheduling: Review
and extensions. Operations Research 58, 130-148 (2010).

11. Ma Y., Chu C.B., Zuo C.R.: A survey of scheduling with deterministic machine
availability constraints. Computers & Industrial Engineering 58, 199-211 (2010).

12. Li S.S., Yuan J.J., Fan B.Q.: Unbounded parallel-batch scheduling with family jobs
and delivery coordination. Information Processing Letters 111(12), 575-582 (2011).

13. Gong H., Chen D.H., Xu K.: Parallel-batch scheduling and transportation coordi-
nation with waiting time constraint. The Scientific World Journal 15, 1-8 (2014).

14. Lu L.F., Yuan J.J.: Unbounded parallel batch scheduling with job delivery to
minimize makespan. Operations Research Letters 36, 477-480 (2008).

15. Cheng B.Y., Pei J., Li K., Pardalos P.M.: Integrated scheduling of production and
distribution for manufacturers with parallel batching facilities. Optimization Letters
12, 1609-1623 (2018).

16. Dosa, G., Tan Z., Tuza, Z., Yan Y., Lnyi, C.S.: Improved bounds for batch schedul-
ing with nonidentical job sizes. Naval Research Logistics 61(5), 351-358 (2014).

