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Abstract. Robonaut2 (R2) is a humanoid robot onboard the Interna-
tional Space Station (ISS), performing specialized tasks in collabora-
tion with astronauts. After deployment, R2 developed an unexpected
emergent behavior. R2’s inability to distinguish between knee-joint faults
(e.g., due to sensor drift versus violated environmental assumptions) be-
gan triggering safety-preserving freezes-in-place in the confined space of
the ISS, preventing further motion until a ground-control operator de-
termines the root-cause and initiates proper corrective action. Runtime
verification (RV) algorithms can efficiently disambiguate the temporal
signatures of different faults in real-time. However, no previous RV en-
gine can operate within the limited available resources and specialized
platform constraints of R2’s hardware architecture. An attempt to de-
ploy the only runtime verification engine designed for embedded flight
systems, R2U2, failed due to resource constraints. We present a signif-
icant redesign of the core R2U2 algorithms to adapt to severe resource
and certification constraints and prove their correctness. We further de-
fine an optimization enabled by our new algorithms and implement the
new version of R2U2. We encode specifications describing real-life faults
occurring onboard Robonaut2 using Mission-time Linear Temporal Logic
(MLTL) and detail our process of specification debugging, validation,
and refinement. We deployed this new version of R2U2 on Robonaut2,
demonstrating successful real-time fault disambiguation and mitigation
triggering of R2’s knee-joint faults without false positives.

Keywords: Online Runtime Verification · Temporal Logic specifica-
tion · Steam-based Runtime Verification · MLTL · R2U2

1 Introduction

Safe integration of autonomous robotic systems necessitates embedding runtime
checks into specialized, domain-specific platforms designed for utility and effi-
ciency. Robonaut2 (R2) [8] is a humanoid robot capable of performing complex
tasks on-board the International Space Station (ISS) while interacting safely
with humans [12]. Even carefully-designed, formally-verified cyber-physical sys-
tems experience unanticipated emergent behaviors when deployed to complex,
? Supported by NASA ECF NNX16AR57G and NSF CAREER Award CNS-1552934.
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dynamic environments like the ISS. In R2’s case, position sensors within rota-
tional joints can return faulty position data indistinguishable from high-torque
data to the control system. Disambiguating between sensing errors and high-
torque states would enable autonomous operation, rather than freezing for safety
reasons and contacting Houston ground-control for help; choosing the incorrect
mitigation action can have disastrous consequences. Autonomous operation de-
mands the real-time reasoning and safety guarantees provided by runtime veri-
fication, on increasingly domain-specific hardware, including post-deployment.

This fault-disambiguation problem poses several challenges that previously
prevented an effective solution. Runtime Verification (RV) could detect the
faults, but R2 is already deployed on the ISS; no new resources will be launched
to run an RV engine. Low-level joint control resides on a heavily-optimized Field
Programmable Gate Array (FPGA) adjacent to the knee with limited remain-
ing space. Consequently, the only available resources in which to implement a
solution are tightly-constrained. RV needs to run in hardware in the remaining
space on that critical FPGA with provable non-interference with the existing
joint controller. The RV engine must be real-time, online, and stream-based to
continuously evaluate faults throughout R2’s operation. RV on R2 must be a
remotely-configurable process; we cannot bring R2 back to Earth or requisition
astronaut time to change the runtime observer specification. Given that systems
on the ISS are frequently repurposed and operate in a continuously-changing
environment, we need to be able to change RV observers without re-synthesizing
hardware, and quickly adapt to updated conditions and requirements.

Most RV tools are implemented in software, require significant resources and
overhead, or have incompatible expression languages. R2 is running the Robot
Operating System (ROS) [20] and some formal verification tools for ROS exist;
however, none of these fit the requirements of the R2 project. Others have de-
veloped a generic approach to formally verify real-time properties of ROS-based
applications [10], at design time, using timed automata and a model checker in an
approach that cannot be scaled to R2’s resource constraints. Similarly, ROSCoq
extends the Coq theorem prover to enable reasoning about the cyber-physical
behavior for developing certified ROS systems [7]. ROSRV [11] and Declarative
Robot Safety (DeRoS) [1] integrate RV into ROS by generating ROS nodes that
monitor properties during execution. But, they are software-based, limited to
data published on the ROS message bus, and incur significant runtime overhead.
EgMon eagerly checks for violations of specifications in a future-bounded, propo-
sitional metric temporal logic that avoids instrumentation of already-certified
components [13]. But, EgMon is a software implementation that would not work
in R2’s architecture: it reads previously-logged inputs, adds significant overhead,
and allows a high level of false positives that would be unacceptable. Formal ver-
ification of autonomous robot systems is a burgeoning research area; see [16] for
a survey.

R2 requires a hardware-based solution with consideration for resource con-
straints; Table 1 summarizes four options. IoTA considers some resource con-
straints in implementing RV, but for software [5]. RVS is the only other modern
hardware RV implementation; its limited expression language only monitors the
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Table 1. Comparison of Hardware Monitor Tools.

Tool P2V[15] BusMOP[18] HW-CBMC [17] R2U2 [21]
Method Automata synthesis Formula decomposition

Type Hard-coded Programmable
Target Software COTS Peripheral HW-SW Co-design Sensor

Spec Logic Past time only Future/past time
Last Update 2007 2008 2017 2019

internal behavior of a real-time operating system and RVS requires resynthe-
sis to change monitored properties [27]. The Realizable Responsive Unobtrusive
Unit [22] (R2U2) is the only RV tool that starts an encoding with the resource
constraints and then optimizes the verification configuration to reliably detect as
many faults as possible, rather than, e.g., starting with runtime monitors and cre-
ating resource-consuming implementations. R2U2’s online, stream-based, hard-
ware (FPGA) implementation, provable unobtrusiveness, and ability to change
monitors without resynthesis fit the R2 project. R2U2’s compositional, hierar-
chical design and more flexible specification language made it most likely to fit
in the space left over on R2’s knee joint’s FPGA; these features proved useful
in other case studies on real aerospace systems [9, 26, 24, 25]. However, an initial
trial proved that even R2U2’s most optimized configuration would not fit; no
currently existing RV tools were capable of on-board, real-time fault detection for
R2’s knee joint. We would have to build a custom tool to bridge that gap.

Using R2U2 as a base, we designed and proved correct new observer-encoding
algorithms suitable for R2 and developed an optimization until we were able to
deploy RV on the real Robonaut2 knee joint successfully. A previously unnoticed
fault syndrome prevented the simple original specification from operating cor-
rectly. Our revised specification set provided the required accuracy but utilized
significantly more resources. The new specifications only fit on the FPGA be-
cause of the optimization enabled by our new encoding, resulting in successful
fault disambiguation.

This paper contributes: (1) a significant revision of all asynchronous future-
time MLTL monitor encodings of [21] with new proofs of correctness; (2) an
optimization to online RV for operation under resource constraints using these
encodings; (3) an implementation of these monitors with an empirical evaluation
showing improvement in resource consumption; (4) specification design, debug-
ging, validation, refinement techniques, and lessons learned from the deployment
of RV on an autonomous robot; (5) a case study embedding online, stream-based,
hardware RV on Robonaut2 hardware on loan from NASA, demonstrating suc-
cessful real-time fault disambiguation in this resource-constrained environment.
Section 2 overviews the logic MLTL and notation used. section 3 gives the new
monitoring encodings with correctness proofs, then implementions with opti-
mization appear in section 4, along with experimental performance characteri-
zations. Section 5 covers embedding of these observers on Robonaut2 and devel-
opment of specifications for fault disambiguation. Finally, lessons learned and
opportunities for future work appear in section 6.
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2 Preliminaries

R2U2 uses Mission-time LTL (MLTL) for future-time temporal specification [21,
14]. MLTL is a bounded variant of MTL [2] with closed natural number interval
bounds on each temporal operator.
Definition 1. (MLTL Syntax) The syntax of an MLTL formula ϕ over a set of
atomic propositions AP is recursively defined as:

ϕ ::= true | false | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �Iϕ | ♦Iϕ | ϕ1UIϕ2 | ϕ1RIϕ2

where p ∈ AP is an atom, ϕ1 and ϕ2 are MLTL formulas. I is an interval [lb, ub],
lb ≤ ub and lb, ub ∈ N, or simply [ub] if lb = 0. Given two MLTL formulas ϕ1,
ϕ2, we denote ϕ1 ≡ ϕ2 if they are semantically equivalent. In MLTL semantics,
we define false ≡ ¬true, ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), ¬(ϕ1UIϕ2) ≡ (¬ϕ1RI¬ϕ2)
and ¬♦Iϕ ≡ �I¬ϕ. MLTL keeps the standard operator equivalences from LTL,
including ♦Iϕ ≡ (true UIϕ), (�Iϕ) ≡ (false RIϕ). Notably, MLTL discards the
next (X ) operator, which is essential in LTL, since Xϕ is semantically equivalent
to �[1,1]ϕ (see [14]). Let π be a finite computation and let |π| represent the length
of π (where |π| < +∞). Every position π[i] (where i ≥ 0) is an assignment over
2AP ; let πi represent the suffix of π starting from position i (including i).

Definition 2. (MLTL Semantics) The satisfaction of an MLTL formula ϕ,
over a set of propositions AP, by a computation/trace π starting from position
i (denoted as π, i |= ϕ) is recursively defined as:
• π, i |= p ∈ AP iff p ∈ π[0], • π, i |= ¬ϕ iff π, i 6|= ϕ,
• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2,
• π, i |= ϕ1U[lb,ub]ϕ2 iff |π| ≥ i+ lb and there exists j ∈ [i+ lb, i+ ub] such that
π, j |= ϕ2 and for every k < j, k ∈ [i+ lb, i+ ub], π, k |= ϕ1.

2.1 Abstract Syntax Tree and Execution Sequence

As a reconfigurable monitor, R2U2 uses external specification data. This allows
changes to the specification without recompilation or resynthesis of the R2U2
engine. R2U2 executes runtime reconfigurable specifications by constructing an
Abstract Syntax Tree (AST) of logical observers wherein each node produces an
execution sequence as output that can be used by other nodes in the tree.
Definition 3. (Execution Sequence) (adapted from [21]) An execution se-
quence for an MLTL formula ϕ, denoted by 〈Tϕ〉, over computation π is a
sequence of verdict tuples Tϕ = (v, τ) where τ ∈ N0 is a time stamp and
v ∈ {true, false} is a verdict. We use a superscript integer to access a par-
ticular element in 〈Tϕ〉, e.g., T 0

ϕ is the first element in execution sequence 〈Tϕ〉.
We write Tϕ.τ to access τ and Tϕ.v to access v of element Tϕ. We say Tϕ holds if
Tϕ.v is true and Tϕ does not hold if Tϕ.v is false. For a given execution sequence
〈Tϕ〉 = T 0

ϕ, T
1
ϕ, T

2
ϕ, T

3
ϕ, . . . , the tuple accessed by Tn

ϕ represents a non-empty set
of verdicts: for all time stamps i ∈ [Tn−1

ϕ .τ + 1, Tn
ϕ .τ ], π, i |= ϕ in case Tn

ϕ .v

is true and π, i 6|= ϕ in case Tn
ϕ .v is false. Intuitively, if T 0

ϕ = (false, 0) and
T 1
ϕ = (true, 5) then T 1

ϕ represents that ϕ holds from τ = 0 through τ = 1.
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2.2 Propagation Delay

Each temporal operator in MLTL is accompanied by a closed natural integer
bound, I = [lb, ub]. A node of the AST is decidable at a given time when sufficient
information is known to determine the verdict at that time. As these observers
chain together, the decidability of a given node becomes a function of its bound
and the bounds of its inputs.

Definition 4. (Propagation Delay) The propagation delay of an MLTL formula
ϕ is the time between when a set of propositions π[i] (i.e., input) arrives at
ϕ, and when it is possible to know if π, i |= ϕ (i.e., output). A node’s worst
propagation delay (wpd) is the maximum propagation delay it can experience,
and the minimum value is the best propagation delay (bpd).

Definition 5. (Propagation Delay Semantics) Let ϕ be an MLTL formula where
ϕ.bpd is the best-case propagation delay of formula ϕ and ϕ.wpd is its worst-case
propagation delay. If ϕ is a unary operator, then let its direct subformula be
ψ; else, if ϕ is a binary operator, then let ψ1, ψ2 be its direct subformulas. Let
Propagation Delay of formula ϕ be defined as follows:

if ϕ ∈ AP :

{
ϕ.wpd = 0

ϕ.bpd = 0
if ϕ = ¬ψ :

{
ϕ.wpd = ψ.wpd

ϕ.bpd = ψ.bpd

if ϕ = �[ϕ.lb,ϕ.ub]ψ or ϕ = ♦[ϕ.lb,ϕ.ub]ψ :

{
ϕ.wpd = ψ.wpd+ ϕ.ub

ϕ.bpd = ψ.bpd+ ϕ.lb

if ϕ = ψ1 ∨ ψ2 or ϕ = ψ1 ∧ ψ2 :

{
ϕ.wpd = max(ψ1.wpd, ψ2.wpd)

ϕ.bpd = min(ψ1.bpd, ψ2.bpd)

if ϕ = ψ1U[ϕ.lb,ϕ.ub]ψ2 or ϕ = ψ1R[ϕ.lb,ϕ.ub]ψ2 :

{
ϕ.wpd = max(ψ1.wpd, ψ2.wpd) + ϕ.ub

ϕ.bpd = min(ψ1.bpd, ψ2.bpd) + ϕ.lb

3 New Future-Time Algorithms for R2U2

To improve real-time performance and reduce resource usage, we contribute new
encodings of asynchronous, future time MLTL operators. Single-writer, many-
reader, ring buffers called shared connection queues (SCQs) replace the single-
writer, single-reader buffers of the original operators [21]. The SCQ-backed oper-
ators enable a further implementation optimization, discussed in section 4. While
developed to reduce real-time resource requirements, we found SCQ-backed op-
erators necessary for other advancements like model-predictive runtime verifica-
tion [29].

3.1 Shared Connection Queues

A SCQ is a circular buffer of verdict tuples with one write pointer and one or
more read pointers that buffers verdicts from a child subformula to be read by
multiple parent expressions. These supplant the synchronization queues utilized
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Algorithm 1: Function: write()
input: execution sequence tuple: Tϕ

1 if SCQ[wr_ptr].v == Tϕ.v then //Setup aggregation
2 wr_ptr −−;
3 end
4 SCQ[wr_ptr]← Tϕ;
5 wr_ptr ++;
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Algorithm 2: Function: read()
input : rd_ptr, τe
output: Tϕ or Empty

1 if rd_ptr == wr_ptr then
2 return Empty;
3 end
4 Tϕ ← SCQ[rd_ptr];
5 while Tϕ.τ < τe do
6 rd_ptr ++;
7 if rd_ptr == wr_ptr then
8 return Empty;
9 end

10 Tϕ ← SCQ[rd_ptr];
11 end
12 return data;

Fig. 1. Representative AST fragment showing a ∧ operation (N3) and it’s children/in-
puts. The output of all three nodes are buffered with SCQs where N3 holds read
pointers to S1 and S2. The SCQs are arranged linearly in memory as shown.

in [21]. Shared Ring Buffers, which are similar structures from multi-threading
software (e.g., [28]), inspired the SCQ. Figure 1 shows how SCQs are embedded
in an MLTL AST, with read pointers for each parent and a write pointer for the
child.

Reading and Writing. Algorithms 1 and 2 show SCQ read and write opera-
tions. Each SCQ manages a write pointer while observers maintain read point-
ers for each child queue. SCQs store verdict intervals using aggregation [21],
wherein the latest tuple’s timestamp is overwritten by subsequent timestamp
values if their truth values (and therefore verdicts) are equal. For example, if the
SCQ contains {(true, 10), (false, 15)}, then during the timestamp interval [11, 15]
the verdicts are all false. If the next input is (false, 16), the content becomes
{(true, 10), (false, 16)}.

Reading from a non-empty SCQ returns verdicts with monotonically increas-
ing time steps. This prevents reprocessing verdicts a reader has already observed.
To enforce monotonic reads, the last timestamp seen by each reader is tracked in
the variable τe. When reading, the first verdict found after the read pointer with
a timestamp greater or equal to τe is returned; else, it returns empty. The circu-
lar structure of the SCQ is omitted from the algorithms for clarity. In practice,
the pointer increments and decrements by the size of a verdict tuple, modulo
the size of the queue.

Queue Sizing. The required buffer size for each observer is computed a priori by
recursively sizing the SCQs in its MLTL AST based on the best and worst-case
delays of their subexpressions. We call the maximum number of verdicts a SCQ
can hold the depth, and the individual positions we call slots. We compute the
size of the output queue for a node g with sibling nodes Sg that share a common
parent with:

size(g.Queue) = max(max{∀s ∈ Sgs.wpd} − g.bpd, 0) + 1.
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The minimum queue size is one because even with no delay the verdict must
be passed between nodes. Sizing queues based on the worst-case delay guaran-
tees that verdicts are consumed by the parent nodes before the write pointer
recirculates, overwriting old data. This safely bounds the memory required to
evaluate each node in the worst case. Software RV monitors can use these pre-
computed bounds to avoid dynamic allocation when desired. In hardware RV,
we build SCQs using Block RAMs (BRAMs), an FPGA memory resource. Each
BRAM can be partitioned into multiple SCQs.

3.2 MLTL Operator Observers with SCQs

Algorithms 3–6 in Figure 2 demonstrate our new encodings of the four required
future-time MLTL asynchronous observers using SCQs. Whereas [21] used one
of two observers for �[lb,ub] depending on the bounds, this encoding only uses
one observer. Negation (algorithm 3) returns all input verdicts after inverting

Algorithm 3: NEGATION Operator: ¬ϕ
Init: τmin = −1

1 if Tϕ.τ > τmin then
2 τmin = Tϕ.τ ;
3 return (!Tϕ.v, Tϕ.τ);
4 end

Algorithm 4: UNTIL Operation: ϕU[lb,ub]ψ

Init: τ↓ψ = τprevψ = τout = 0, τmin = −1
1 if Tϕ.τ > τmin and Tψ.τ > τmin then
2 τmin = min(Tϕ.τ, Tψ.τ);
3 if of Tψ.v occurs then
4 τ↓ψ = τprevψ + 1;
5 end
6 τprevψ = Tψ.τ ;
7 if Tψ holds then
8 result = (true, τmin − lb);
9 else if Tϕ does not hold then

10 result = (false, τmin − lb);
11 else if τmin ≥ (ub− lb) + τ↓ψ then
12 result = (false, τmin − ub);
13 end
14 if result.τ ≥ τout then
15 τout = result.τ + 1;
16 return result;
17 end
18 end

Fig. 2. Implementations of asynchronous, future-time MLTL ob-
servers using SCQs. For each algorithm: N is the current node,
N .SCQ is the output SCQ of N , and N .iSCQ is input SCQ
being read. In binary operators, there are two input queues:
N .iSCQ_0 and N .iSCQ_1

Algorithm 5: AND Operation: ϕ ∧ ψ
Init: τmin = −1

1 if Tϕ.τ > τmin or Tψ.τ > τmin then
2 if Tϕ holds and Tψ holds then
3 τmin = min(Tϕ.τ, Tψ.τ);
4 return (true,min(Tϕ.τ, Tψ.τ));
5 else if Tϕ does not hold and Tψ does not hold

then
6 τmin = max(Tϕ.τ, Tψ.τ);
7 return (false,max(Tϕ.τ, Tψ.τ));
8 else if Tϕ does not hold then
9 τmin = Tϕ.τ ;

10 return (false, Tϕ.τ);
11 else if Tψ does not hold then
12 τmin = Tψ.τ ;
13 return (false, Tψ.τ);
14 end
15 end

Algorithm 6: GLOBALLY Operation: �[lb,ub]ϕ

Init: m↑ = 0, τmin = −1
1 if Tϕ.τ > τmin then
2 if of Tϕ occurs then
3 m↑ = τmin + 1;
4 end
5 τmin = Tϕ.τ ;
6 if Tϕ holds and Tϕ.τ ≥ max((ub− lb) +m↑, ub)

then
7 return (true, Tϕ.τ − ub);
8 else if Tϕ.τ ≥ lb then
9 return (false, Tϕ.τ − lb);

10 end
11 end

their truth values. Until (algorithm 4) tracks the falling edges of ψ and the latest
seen timestamp of ϕ. If ψ is true or ϕ is false, then the output is trivially true or
false, respectively. Additionally, failure by elapsed time is detected from the time
since the falling edge of ψ. And (algorithm 5) considers 4 cases to eagerly eval-
uate false verdicts. If both inputs are true, the output is true up to the smaller
input timestamp. If both inputs are false, the output is false up to the largest
observed timestamp; this is classic Boolean “short-circuiting” behavior. Other-
wise, the verdict is false up to the timestamp of the false input. The Globally
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operator (algorithm 6) counts time stamps since the last rising edge. It outputs
true when the length of the true signal meets or exceeds the duration of the
interval. Operators with non-zero lower bounds can be treated as zero-bounded
operators of equivalent duration by offsetting the returned timestamps. This
shift equivalence (a separate operator in [21]) is directly embedded in our new
encoding.

3.3 Correctness of New MLTL Observers

Correctness of algorithm 3 follows immediately from the SCQ read and write
operations.

Theorem 1 (Correctness of the �-operator). Let execution sequence 〈Tϕ〉
be the output of Algorithm 6 with interval [lb, ub] over computation π. Algorithm 6
correctly implements �[lb,ub]ϕ, that is ∀i Tϕ = (i, true) ⇔ π, i |= �[lb,ub]ϕ.

Proof (Proof of Theorem 1). In [21] the following equivalence with the globally
operator is developed: ∀i : (i− lb ∈ [τ, τ+ub− lb] → π, i |= ϕ) ⇔ π, τ |= �[lb,ub]ϕ

Since (ub − lb) ≮ 0, �lb,ubϕ holds at τ iff π, i |= ϕ where (i − ub) ≤ τ ≤
(i− lb). From these conditions, we see that �[lb,ub]ϕ is equivalent to the verdicts
�[0,ub−lb]ϕ shifted back by lb, i.e., ϕ must hold for ub− lb or longer.

⇐: In Algorithm 6, a rising edge of ϕ is detected by line 2-5 which account for
aggregation. If ϕ has held for at least ub− lb, then line 7 returns a true verdict,
shifted by ub. Otherwise, a false verdict is returned (line 9) which eagerly fails
all time steps unable to meet the condition π, i |= ϕ for (i− lb) ≥ τ . The check
on line 8 prevents premature output of false verdicts on initialization.

⇒: True verdicts are only returned from line 7, which requires ϕ to have
held for at least ub− lb per the check in line 6. False verdicts are only returned
from line 9, which requires ϕ has not sufficiently held (line 9) but sufficient
information is available (line 8).

Verdicts are returned iff they satisfy the original equivalence. ut

Due to size, proofs for Algorithm 4 and Algorithm 5 are available online.1

4 Optimization and Experimental Performance Analysis

In a set of MLTL formulas, repeated sub-expressions can generate redundant
observer instructions, needlessly increasing required queue space and execution
time. Compilers use common subexpression elimination (CSE) [6] to share the
output of repeated expressions. Figure 3 demonstrates the application of CSE to
MLTL ASTs. CSE is not possible with single-reader buffers and requires SCQs
with multiple readers. Algorithm 7 removes duplicate branches of a formula’s
AST. Sub-expressions are eliminated both within and between formulas.

1 http://temporallogic.org/research/FORMATS20
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load AP(a0)
f�[0,3](S0)

f¬(S1)
load AP(a0)
f�[0,3](S3)

fU[0,5](S2, S4)

 

(¬⏞
2
□[0,3]⏞  
3
𝑎0⏞
4
)𝒰[0,5]⏞  

1

(□[0,3]⏞  
5
𝑎0⏞
6
) 

load AP(a0)
f�[0,3](S0)

f¬(S1)
fU[0,5](S2, S1)

Fig. 3. Example of CSE on an MLTL formula where nodes 3 and 5 have identical
children. On the left is the AST and resulting R2U2 institution representing the above
formula. The AST and instructions on the right are produced by applying CSE. Sharing
the output of node 3 removes one repetition of this sequence, saving two queues and
two instructions.

Algorithm 7: CSE(T, S)
Input : AST Tree: T , Set: S = {(label, node)}
Output: optimized AST: T

1 // Recuse through T in post-order
2 Let N = root(T )
3 if leftChild(N) 6= ∅ then CSE(leftChild(N), S)
4 if rightChild(N) 6= ∅ then

CSE(rightChild(N), S)
5 // Build expression label
6 N.label = [′(′]
7 if leftChild(N) then

N.label += leftChild(N).label
8 N.label += N.name
9 if rightChild(N) then

N.label += rightChild(N).label
10 N.label += [′)′]
11 // Trim common subexpressions
12 if (N.label, •) /∈ S then
13 // Unique subtree, store reference
14 S = S ∪ (N.label, N)

15 else
16 // Common subtree, link existing
17 Let M ∈ T such that (N.label,M) ∈ S
18 T = T ∪ (parent(N),M)
19 T = T − (parent(N), N)

20 end

Experimental Demon-
stration of Improved
Average Performance.
To measure the im-
pact of CSE with
SCQs, we tested the
10, 000 random MLTL
benchmark formulas
used in [14] by con-
verting them to ob-
server trees and queue
configurations with and
without CSE enabled.
The benchmark set
formulas vary in length,
number of variables,
and probability of choos-
ing the U-operator.

The R2U2 config-
uration compiler is
a single-threaded Python
application and was
run in parallel (12 in-
stances at a time) on
a 2019 MacBook Pro
with a i9-9880H Intel
CPU and 32 GB sys-
tem RAM. The dura-
tion of each process was measured using the Python 3.7.7 standard time library
process_time function which counts system and user CPU (but not sleep) time
with the most precise clock available. In total, the 10,000 runs across 12 parallel
processes completed in under 15 seconds wall clock time.
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Fig. 4. Reduction in AST nodes (left) and SCQ slots (right) as percentage of un-
optimized size. The y-axis indicates the number of formulas from MLTL benchmark
set [14].

Over the whole set, the number of R2U2 observer nodes dropped 27.06%
from 788, 095 to 574, 822 and the total queue slots required decreased 4.28%
from 42, 300, 361 to 40, 491, 507. Adding CSE to the R2U2 configuration compiler
increased the configuration time 10.25% from 57.66 to 63.57 total seconds of CPU
time. Figure 4 shows histograms of AST and SCQ reduction respectively. Only
30 of the 10,000 saw no improvement.

The reduction in AST nodes is significant and translates proportionally to
execution time. The 24% AST node reduction over random formulas gives hope
for similar or greater reductions in encoding real specifications due to the greater
repetition in human-written specifications. The queue space reduction saved a
median of 100 slots per formula, which is important as BRAMs are less plentiful
on FPGAs. The benchmark formulas use large operator intervals, which limit
our SCQ reductions by requiring sufficient space for their worst-case propagation
delays. We expect to see increased queue space savings on formulas with shorter
intervals; we will explore this in future work.

5 Theory into practice: Robonaut2

Robonaut2’s legs are comprised of series-elastic actuators with torsional springs,
causing external force to register on the internal position sensors [19]. Pre-
cise measurements of the spring displacement cap applied force, affording near-
human dexterity while remaining safe in confined spaces with astronauts [3].
After deployment, NASA observed that the Absolute Position Sensors (APSs)
sporadically initialize incorrectly by ≈ 2.1 rad (120 deg). In this fault condition,
safety checks fail due to a perceived high torque loading. This is well beyond the
physical hard-stop of the joint, but R2 cannot distinguish it from sensor drift.
To increase availability and resilience, Robonaut2 must be able to automatically
trigger corrective action without compromising existing safety guarantees.

Constraints. The Robonaut2 team requested fault disambiguation directly on
the joint controller FPGA. This provides increased observability, minimizes ad-
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ditional messages on the control bus, and does not invalidate the flight code
certification of the paired microcontroller. However, the left-over space on the
FPGA is limited and additional runtime verification logic must not impact the
response time of the existing controller. Additionally, the system’s remote de-
ployment limits available debug information. We derived our initial specification
from a plain-language description of the fault mechanics by subject-matter ex-
perts while awaiting a real trace.

Bus Interface

PC

FPGA
Observer

Preprocessing

Bus Communicate IP

Target
Bus Port

D
irect Port

Sensor Sensor

Actuator

...

Formal 
Specification .binAST

Fig. 5. R2U2 observers, encoded on
the FPGA, monitor internal sensor
values passed over the R2 control bus.

Solution Architecture. Figure 5 shows the
desired architecture. During development,
a serial debug port loads specifications
and returns verdicts. In flight, Robonaut2’s
configuration system will handle specifica-
tion loading. R2U2 is realizable, responsive,
and unobtrusive [22]; it embeds observers
for Robonaut2’s symptoms in hardware,
returns observer verdicts at the system
clock rate, and is adaptable to the highly-
constrained operational environment with-
out affecting existing joint control, respec-
tively. We apply two of R2U2’s reasoning
layers: signal processing (which processes incoming signals into Boolean atom-
ics) and temporal observation (which evaluates MLTL specifications). Our use-
case requires early-as-possible identification of failure, necessitating using R2U2’s
asynchronous mode. The existing flight configuration routes all sensors, actua-
tor control, and communications through the FPGA while a microcontroller runs
high-rate model-based control algorithms [4]. Since the FPGA is the nexus of
the actuator’s sensors, all required data can be accessed on-chip.

5.1 Embedding Runtime Verification
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Fig. 6. LUT resource usage for timestamp
length LTS . Growth is linear, but the rate
is dependent on FPGA process type.
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Fig. 7. BRAM resource usage for times-
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ber of binary operators N , times T =
maxn.wcd ∀n ∈ N i.e. total queue space.

R2U2 allows runtime configuration of the observer specifications, while the
size and duration limits of these specifications are design-time parameters. For
R2U2 to dynamically reconfigure specifications at runtime (without resynthesis
or recertification), we utilize BRAMs for instruction memory, variable memory,
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and queues; see [22]. Memory requirements are driven by queue depth and times-
tamp length. We can compute the minimum required resources of a given spec-
ification, or the maximum parameters that fit within a given design. Figures 6
and 7 show the scaling of FPGA look-up-tables (LUTs) and BRAM required
as timestamp width is increased, respectively. We selected a max queue depth
of 20 and timestamp length of 16-bits from expert and system operator’s rec-
ommendations. This increased the LUT utilization of the FPGA from 51.2% to
79.81% and increased the number of BRAMs used from 2 to 27 out of 32. A video
demo2 shows R2U2 running live on the R2 platform, reasoning over the joint
state, evaluating temporal observers, and dynamically configuring specifications
without stopping the robot.

Sensor_1

n1

n2Sensor_2

X

X
+

Compare
≥,≤,
>, <,
=, ≠n3

𝐴𝑃

Select

Fig. 8. R2U2 atomic checker. Orange
blocks are configurable online.

Boolean Checker Construction. R2U2’s
runtime-configurable Atomic Checkers, shown
in Fig. 8, convert the native sensor format
to Boolean variables used in specification.
For example, the EncPos sensors value in-
dicates the rotation degree of the motor.
Robonaut2’s native encoder format is a 19-

bit integer, where the highest bit is an error flag and the lower 18 bits represent
the encoder count. This presents two challenges: (1) the EncPos is reset to 0
at initialization regardless of the actual position; (2) to compare with the APS
values, this count must be scaled and offset. Taken together, R2U2 must recon-
figure the offset before using encoder values. For EncPos, we let sensor_1 take
the raw value as input while sensor_2 always returns 1. In this configuration,
n1 is the scale factor, and n2 is the configurable offset. The final AP output is
the Boolean result of comparison with the n3 reference value.

5.2 Specification

Design. Our specifications need to disambiguate between three modes (APS1
faulty, APS2 faulty, or no fault) without false positives. We initially encode
Robonaut2’s team’s fault description: If the differences between APSs are larger
than 1 radian, then the APS that disagrees with the encoder by more than 0.01
radian is at fault. We assume: (1) agreement with the encoder value implies
correct APS position, (2) agreement between any two position sources implies
the minority opinion is incorrect, i.e., sensor voting. To prevent false positives
due to sensor outliers, we ensure states hold for at least three timesteps before
reporting a fault. Robonaut2’s existing logic sets an “encoder fault position” sig-
nal when the encoder and APS1 disagree. Our MLTL specifications reason over
the APS1 position, APS2 position, encoder position, and encoder fault position
sensor inputs; see Table 2. The corresponding R2U2 configuration for this set
of specifications requires 17 instructions, 14 SCQs, and 29 queue slots with a
max depth of 4 without CSE. Applying CSE reduces that to 14 instructions, 11
SCQs, and 26 queue slots with a max depth of 4.
2 http://temporallogic.org/research/R2U2/R2U2-on-R2_demo.mp4
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Table 2. Fault disambiguation specification – revision 1

R2U2 Configuration

Bus Values Temporal Formulas

APS1: Position [ rad ] ϕ1 = �[0,3](Vthreshold)

APS2: Position [ rad ] ϕ2 = FaultEncPos ∧�[0,3](AgreeEnc,APS2)→ APS1Wrong

EncPos: Position [ rad ] ϕ3 = ϕ1∨!FaultEncPos→ APS2Wrong

EncFaultPos: Encoder Fault [ bool ] Observer Tree

Signal Processing ϕ3ϕ1

EncFaultPos

ϕ2

AgreeEnc,APS2Vthreshold

APS1 APS2 EncPos

Vthreshold = |APS1−APS2| > 1 rad

AgreeEnc,APS2 = |APS2− EncPos| < 0.01 rad
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Fig. 9. Ground R2: APS Fault
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Fig. 10. Ground R2: Unsuccessful Recovery

Validation. After initial specification development, a terrestrial Robonaut2 de-
veloped the fault of interest. To validate our specifications, we ran R2U2 over
the recorded traces. In Fig. 9-10 the top timeline shows the encoder (red), APS1
(blue, labeled motor), and APS2 (yellow, labeled joint) positions in radians. The



14 B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier

lower timeline shows the R2U2 verdicts of the fault-case specifications. In Fig. 9
the APS fault occurs at 43 seconds. The expected > 2.1 rad shift in APS position
is flagged by Vthreshold correctly. Notice that the encoder jumps to an implau-
sible 998 radians, violating the sensor voting assumption. Figure 10 records an
attempted recovery. While appearing successful, the difference between the three
sensors after time 19 is still too wide to unlock the emergency stop. Additionally,
the Boolean Vthreshold correctly detects that we are not in the failure mode of
interest after time 19. This data reveals an implicit assumption that encoder
values freeze during a fault.

Revision. With our new insight on the fault behavior, we revise the specification
strategy: If there is a sudden, large jump in the encoder and an APS’s position
report, the APS that jumped is at fault. The assumptions of our new strategy
are: (1) a sufficiently large discontinuity in the data is the fault signature, (2)
in the fault case, only the faulty APS “moves.” To compare the APS value
before and after a fault, we must identify the timestep of the fault – which is
when the encoder goes out-of-range. To determine the “moving” APS, we can
divide the joint range into sections and use the signal processing layer to get a
Boolean an indicating the signal from APS1 is in region n (and similarly with
bn and APS2). Now the temporal observers can check if each APS is in the same
region before and after the encoder jump. The size of n dictates the maximum
rotation distance before triggering a region change. We select n such that the
maximum rotation is about half the fault discontinuity: ≈ 1 rad. The range
of the APS is [−π, π], requiring 6 regions, (a1, a2, . . . , a6) and (b1, b2, . . . , b6)
to meet the target region size. The fault only occurs when arming a parked
actuator so we are not concerned with rotation during a fault. Also, encoder
range errors do not register in the EncPos signal stream when an actuator
experiences nominal joint rotation across a boundary, further preventing false
positives. Table 3 lists the MLTL and signal layer specification. The final R2U2
configuration requires 154 instructions, 140 SCQs, and 196 SCQ slots with a max
depth of 3 without CSE. CSE reduces this to 100 instructions, 86 SCQs, and 142
SCQ slots with a max depth of 3. The 33% reduction in instructions shows the
impact of CSE optimization on human-written specifications that necessarily
contain repeated references to important subsystems. While CSE results in a
38% reduction in SCQ quantity, the significance of this reduction is that the
number of SCQs in the unoptimized R2U2 configuration crosses a power-of-two
boundary, requiring 8 bits to encode but the same specification requires only 7
bits with CSE enabled. When embedding hardware monitors, bus size increases
account for multiplicative jumps in resource requirements (as in Fig. 7). Our RV
specification would not fit in Robonaut2’s knee’s available FPGA space without
SCQ-based encodings reduced by CSE.

Verification. Following the best-practices for specification debugging established
in [23], we checked each specification, its negation, and the conjunction of all
specifications for satisfiability. We utilized the MLTL SMT solver from [14] to
prove the specifications were both satisfiable and falsifiable. Finally, we played
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Table 3. Fault disambiguation specification – revision 2

R2U2 Configuration
Bus Values Temporal Formulas

APS1: Position [ rad ] ϕn = (an ∧ ¬e) ∧ �[1,2](¬an ∧ e)→ APS1Fault ∀n ∈ [0, 5]

APS2: Position [ rad ] ϕm+6 = (bm ∧ ¬e) ∧ �[1,2](¬am ∧ e)→ APS2Fault ∀m ∈ [0, 5]

EncPos: Position [ rad ] Observer Tree
Signal Processing ϕ[0,5]

a[0,5] e

ϕ[6,11]

b[6,11]

APS1 APS2 EncPos

e = EncPos > 100

an = π(n
6
− 1) < APS1 < π(n+1

6
− 1)∀n ∈ [0, 5]

bn = π(n
6
− 1) < APS2 < π(n+1

6
− 1)∀n ∈ [0, 5]

back all available recorded traces of both faulty and nominal operation through
the real hardware, with our final R2U2 configuration running, to check that we
successfully catch the fault with no false positives during nominal operation.

6 Conclusion

We have successfully embedded R2U2 to provide trusted fault-disambiguation for
automatic mitigation. Our new encodings enabled CSE optimization, a crucial
step in meeting the resource limitation challenges of the R2 platform. Impor-
tantly, the techniques presented in sections 3 and 4 are not exclusive to this
application or to R2U2, but could be ported to other RV algorithms, tools, and
application domains.

Working with FPGA limitations provided important lessons on the relation
between specification complexity and hardware resources. In Fig. 6 LUT re-
quirements scale linearly with timestamp length; however, transistor count (and
therefore chip space and power) scales exponential with LUT size. Also, the dis-
continuities in Fig. 7 are due to BRAM width alignment. Since both LUT type
and BRAM width are properties of the FPGA, the target hardware can drasti-
cally change the maximum size of a specification’s encoding, even with the same
amount of LUTs and BRAM free. For a hardware R2U2 deployment, BRAM will
probably be the limiting resource. This may not be true for other RV engines,
but it’s the price of reconfigurability, which allows RV to be embedded, certified,
and deployed flexibly, and which was a requirement of the R2 team.

Future Work. In the current implementation, we utilize the equivalence relations
in section 2 to represent full MLTL semantics; next we plan to implement direct
encodings, e.g., for the R operator. Encoding every operator directly would
reduce the number of negations in the AST and therefore, the amount of SCQ
space required. We will then investigate additional design-time optimizations to
the AST.

On the application side, we are working toward distributing specifications
across RV monitors on multiple FPGAs. This extension has the potential to
increase the number of specifications we can monitor on a given platform, both
by utilizing more of the leftover fabric on the platform, and by allowing observers
to reason over proprieties that cannot by observed from a single location.
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