Skip to main content

Reachability Analysis of Nonlinear Systems Using Hybridization and Dynamics Scaling

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12288))

Abstract

Reachability analysis techniques aim to compute which states a dynamical system can enter. The analysis of systems described by nonlinear differential equations is known to be particularly challenging. Hybridization methods tackle this problem by abstracting nonlinear dynamics with piecewise linear dynamics around the reachable states, with additional inputs to ensure overapproximation. This reduces the analysis of a system with nonlinear dynamics to the one with piecewise affine dynamics, which have powerful analysis methods. In this paper, we present improvements to the hybridization approach based on a dynamics scaling model transformation. The transformation aims to reduce the sizes of the linearization domains, and therefore reduces overapproximation error. We showcase the efficiency of our approach on a number of nonlinear benchmark instances, and compare our approach with Flow*.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://ths.rwth-aachen.de/research/projects/hypro/biological-model-i/.

References

  1. Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 173–182. ACM (2013)

    Google Scholar 

  2. Althoff, M., et al.: Arch-comp18 category report: continuous and hybrid systems with linear continuous dynamics. In: Proceedings of the 5th International Workshop on Applied Verification for Continuous and Hybrid Systems, pp. 23–52 (2018)

    Google Scholar 

  3. Althoff, M., Le Guernic, C., Krogh, B.H.: Reachable set computation for uncertain time-varying linear systems. In: Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, pp. 93–102. ACM (2011)

    Google Scholar 

  4. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: Proceedings of the 47th IEEE Conference on Decision and Control (2008)

    Google Scholar 

  5. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 20–35. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36580-X_5

    Chapter  MATH  Google Scholar 

  6. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Informatica 43(7), 451–476 (2007)

    Article  MathSciNet  Google Scholar 

  7. Azuma, S., Imura, J., Sugie, T.: Lebesgue piecewise affine approximation of nonlinear systems. Nonlinear Anal. Hybrid Syst. 4(1), 92–102 (2010)

    Article  MathSciNet  Google Scholar 

  8. Bak, S., Bogomolov, S., Althoff, M.: Time-triggered conversion of guards for reachability analysis of hybrid automata. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp. 133–150. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65765-3_8

    Chapter  MATH  Google Scholar 

  9. Bak, S., Bogomolov, S., Schilling, C.: High-level hybrid systems analysis with Hypy. In: ARCH@ CPSWeek, pp. 80–90 (2016)

    Google Scholar 

  10. Bak, S., Duggirala, P.S.: Hylaa: a tool for computing simulation-equivalent reachability for linear systems. In: Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control, pp. 173–178. ACM (2017)

    Google Scholar 

  11. Bak, S., Tran, H.D., Johnson, T.T.: Numerical verification of affine systems with up to a billion dimensions (2018). arXiv preprint arXiv:1804.01583

  12. Bogomolov, S., Forets, M., Frehse, G., Podelski, A., Schilling, C., Viry, F.: Reach set approximation through decomposition with low-dimensional sets and high-dimensional matrices. In: 21th International Conference on Hybrid Systems: Computation and Control, HSCC 2018, pp. 41–50. ACM (2018)

    Google Scholar 

  13. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a toolbox for set-based reachability. In: 22nd ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2019, pp. 39–44. ACM (2019)

    Google Scholar 

  14. Borwein, J., Lewis, A.S.: Convex Analysis and Nonlinear Optimization Theory and Examples. Springer, New York (2010). https://doi.org/10.1007/978-0-387-31256-9

    Book  Google Scholar 

  15. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  16. Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear systems. In: 2016 IEEE Real-Time Systems Symposium (RTSS), pp. 13–24. IEEE (2016)

    Google Scholar 

  17. Dang, T., Le Guernic, C., Maler, O.: Computing reachable states for nonlinear biological models. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 126–141. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03845-7_9

    Chapter  Google Scholar 

  18. Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 11–20. ACM (2010)

    Google Scholar 

  19. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_17

    Chapter  Google Scholar 

  20. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_5

    Chapter  Google Scholar 

  21. Franzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. J. Satisfiability Boolean Model. Comput. 1, 209–236 (2007)

    Article  Google Scholar 

  22. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  23. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2_19

    Chapter  MATH  Google Scholar 

  24. Gurung, A., Deka, A.K., Bartocci, E., Bogomolov, S., Grosu, R., Ray, R.: Parallel reachability analysis for hybrid systems. In: 14th ACM-IEEE International Conference on Formal Methods and Models for System Design, MEMOCODE 2016, pp. 12–22. ACM-IEEE (2016)

    Google Scholar 

  25. Han, Z., Krogh, B.H.: Reachability analysis of nonlinear systems using trajectory piecewise linearized models. In: 2006 American Control Conference, p. 6. IEEE (2006)

    Google Scholar 

  26. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Trans. Autom. Control 43(4), 540–554 (1998)

    Article  MathSciNet  Google Scholar 

  27. Johnson, T.T., Green, J., Mitra, S., Dudley, R., Erwin, R.S.: Satellite rendezvous and conjunction avoidance: case studies in verification of nonlinear hybrid systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 252–266. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_22

    Chapter  Google Scholar 

  28. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice: Concepts, Implementation and Application. Wiley, Hoboken (2008)

    Google Scholar 

  29. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \({\delta }\)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

    Chapter  Google Scholar 

  30. Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous dynamics. Ph.D. thesis, Université Joseph-Fourier-Grenoble I (2009)

    Google Scholar 

  31. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_40

    Chapter  Google Scholar 

  32. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010)

    Article  MathSciNet  Google Scholar 

  33. Li, C., Chen, L., Aihara, K.: Synchronization of coupled nonidentical genetic oscillators. Phys. Biol. 3(1), 37 (2006)

    Article  Google Scholar 

  34. Li, D., Bak, S., Bogomolov, S.: Reachability analysis of nonlinear systems using hybridization and dynamics scaling: Proofs. Technical report CS-TR-1534, Newcastle University (2020)

    Google Scholar 

  35. Matthias, A., Ahmed, E.G., Bastian, S., Goran, F.: Report on reachability analysis of nonlinear systems and compositional verification. https://cps-vo.org/node/24199

  36. Prigogine, I., Balescu, R.: Phénomènes cycliques dans la thermodynamique des processus irréversibles. Bull. Cl. Sci. Acad. R. Belg 42, 256–265 (1956)

    MATH  Google Scholar 

  37. Rand, R., Holmes, P.: Bifurcation of periodic motions in two weakly coupled van der pol oscillators. Int. J. Non-Linear Mech. 15(4–5), 387–399 (1980)

    Article  MathSciNet  Google Scholar 

  38. Smith, A.P., Muñoz, C.A., Narkawicz, A.J., Markevicius, M.: Kodiak: an implementation framework for branch and bound algorithms (2015)

    Google Scholar 

  39. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPY array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Air Force Office of Scientific Research under award numbers FA2386-17-1-4065 and FA9550-19-1-0288. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Air Force.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Bogomolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, D., Bak, S., Bogomolov, S. (2020). Reachability Analysis of Nonlinear Systems Using Hybridization and Dynamics Scaling. In: Bertrand, N., Jansen, N. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2020. Lecture Notes in Computer Science(), vol 12288. Springer, Cham. https://doi.org/10.1007/978-3-030-57628-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57628-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57627-1

  • Online ISBN: 978-3-030-57628-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics