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Abstract. Model checkers for timed automata are widely used to verify
safety-critical, real-time systems. State-of-the-art tools achieve scalabil-
ity by intricate abstractions. We aim at further increasing the trust in
their verification results, in particular for checking liveness properties.
To this end, we develop an approach for extracting certificates for the
emptiness of timed Büchi automata from model checking runs. These
certificates can be double checked by a certifier that we formally verify
in Isabelle/HOL. We study liveness certificates in an abstract setting and
show that our approach is sound and complete. To also demonstrate its
feasibility, we extract certificates for several models checked by TChecker
and Imitator, and validate them with our verified certifier.
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1 Introduction

Real-time systems are notoriously hard to analyze due to intricate timing con-
straints. A number of model checkers for timed automata (TA) [1] have been
implemented and successfully applied to the verification of safety-critical timed
systems. Checking liveness properties of timed automata has revealed to be
particularly important, as emphasized by a bug in the standard model of the
CSMA/CD protocol that has been discovered only recently [16]. Several algo-
rithms have been implemented to scale the verification of liveness specifications
to larger systems [33,32,26,22,16]. Users of timed automata model checkers put
a high amount of trust in their verification results. However, as verification al-
gorithms get more complex, it becomes highly desirable to justify the users’
confidence in their correctness.

There are two main approaches to ensure high degrees of trustworthiness
of automated tools: verification and certification. In the first approach, correct-
ness of the verification tool (its implementation and its theory) is proved us-
ing another semi-automated method. This technique has been applied to model
checkers [34,13] and SAT solvers [7]. In the second approach, the automated tool
produces a certificate, i.e. a proof for its verification result. Then an indepen-
dent tool, the certifier, checks that the proof is indeed valid. In the best case,
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the certifier itself is formally verified. Examples include SAT certificate checking
[23,20] and unreachability checking of TA [37].

The certification approach promises many advantages over verification, since
certificate checking is much simpler than producing the certificate. This dras-
tically reduces the burden of semi-automated verification, which is a laborious
task. While proving correctness of a competitive verification tool might be pro-
hibitively complicated, it may be feasible to construct an efficient verified certifier
instead (in the case of SAT [23], the verified certifier was even faster than the orig-
inal SAT solvers). Finally, there is a wide variety of model checking algorithms
and high-performance implementations, which are suited for different situations.
Instead of verifying them one by one, these tools could produce certificates in a
common format, so they can be checked by a single verified certifier.

1.1 Related Work

Model checking LTL properties for timed automata [1,33,32,26,22,16] consists of
three conceptual steps: the LTL formula is transformed into a Büchi automaton,
the semantics of the TA is computed as a (finite) zone graph, and the cross-
product of these objects is checked for accepting cycles. The two main alternative
algorithms for detecting accepting cycles are Nested Depth-First Search (NDFS)
and the inspection of the Strongly Connected Components (SCC). The NDFS
algorithm was generalized to TA in LTSmin [22,21] and extended to parametric
TA in Imitator [28,2]. The SCC-based algorithm has also been generalized to
TA in TChecker [16,19]. Both algorithms support abstraction and subsumption
between states to reduce the state space.

Verified model checking. An early approach targeted the verification of a
µ-calculus model checker in Coq [27]. The NDFS algorithm was checked in the
program verifier Dafny [31,25], while a multi-core version of it was checked in the
program verifier Vercors [30,8]. A complete, executable LTL model checker was
verified in the interactive theorem prover Isabelle/HOL [13] and later extended
with partial-order reduction [9]. A verified model checker for TA, Munta [34],
has also been constructed in Isabelle/HOL [36,29].

Certification. A certifier for reachability properties in TA has been proposed
very recently [37]. A certification approach for LTL model checking was proposed
in [15]. It uses k-liveness to reduce the problem to IC3-like invariant checking.

Contributions. In this paper, we extend certificates for unreachability of TA
[37] to certificates for liveness properties, i.e. emptiness of timed Büchi automata
(TBA). We propose a common certification approach for tools using different al-
gorithms and various abstractions [16,22]. These certificates can be much smaller
than the original state space, due to the use of subsumption and abstraction.
The difficulty here is that a careless application of subsumption can introduce
spurious accepting cycles. Our new contributions are 4:

– We introduce an abstract theory for certificates of Büchi emptiness, which
can be instantiated for zone graphs of TBA with subsumptions.

4 An artifact containing our code and benchmarks is available on figshare [35].

https://doi.org/10.6084/m9.figshare.12620582.v1
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– We developed a fully, mechanically verified certifier in Isabelle/HOL. In par-
ticular, our certifier retains the ability to check certificates in parallel.

– We show that the previous certifier for reachability and our extension to
Büchi emptiness are compatible with implicit abstraction techniques for TA.

– We demonstrate feasibility by generating and checking certificates for two
external model checkers, representing the NDFS and the SCC approach.

Note that checking counter-examples is easy in practice, but checking “true”
model checking results is much harder. This is exactly what we address with
certifying emptiness of TBA. The main application would be to increase the
confidence in safety-critical real-time applications, which have been verified with
an existing model checker. Another possible application of the certifier would be
to facilitate a new model checking contest for liveness properties of TA.

2 Timed Automata and Model Checking

In this section, we set the stage for the rest of the paper by recapitulating the
basic notions of TA and summarizing the essential concepts of TBA verification.

2.1 Verification Problems for Timed Automata

A TA A = (Q, q0, F, I, T,X) is a finite automaton extended with a finite set of
clocks X. Q is a finite set of states with initial state q0 ∈ Q and accepting states
F ⊆ Q. I associates an invariant constraint to every state and T associates
a guard constraint g and clock reset R ⊆ X to each transition. Here (clock)
constraints are conjunctions of formulas x#c, where x is a clock, c ∈ N and
# ∈ {<,≤,=,≥, >}. Observe that we exclude diagonal constraints of the form
x− y#c. An example of a timed automaton is depicted in Figure 1.

A clock valuation v : X → R≥0 associates a non-negative real value to
each clock x ∈ X. A configuration is a pair (q, v) where q is a state and v is a
clock valuation. The initial configuration is (q0,0). Without loss of generality,
we assume that the initial clock valuation 0 satisfies the invariant I(q0). There
are two kind of steps from a configuration (q, v):

delay (q, v) →δ (q, v′) for a delay δ ∈ R≥0 if for every clock x ∈ X, v′(x) =
v(x) + δ, and v′ satisfies the invariant I(q);

transition (q, v) →t (q′, v′) for transition t = (q, g, R, q′) ∈ T if v satisfies the
guard g, v′(x) = 0 if x ∈ R and v′(x) = v(x) otherwise, and v′ satisfies I(q′).

q0 q1 q2

x ≥ 1 x < 2, x := 0

x ≥ 2

Fig. 1: Timed (Büchi) automaton with initial state q0 and accepting state q1.
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We write (q, v) →δ,t (q′, v′) if there exists a configuration (q, v′′) such that
(q, v) →δ (q, v′′) →t (q′, v′). A run of a timed automaton is an (infinite) se-
quence of transitions of the form: (q0,0) →δ0,t0 (q1, v1) →δ1,t1 · · · . A run is
non-Zeno if the sum of its delays is unbounded.

The reachability problem asks, given a timed automaton A, if there exists
a finite run from the initial configuration (q0,0) to an accepting configuration
(qn, vn) such that qn ∈ F .

In timed Büchi automata (TBA), F is interpreted as a Büchi acceptance
condition. The liveness problem then asks, whether a given TBA A is non-empty,
i.e. if there is an infinite non-Zeno run from the initial configuration (q0,0) that
visits infinitely many accepting configurations (qi, vi) with qi ∈ F . In this paper,
we work under the common assumption that TA only admit non-Zeno runs (see
[33] for a construction to enforce this on every TA).

Both problems are known to be PSPACE-complete [1]. Due to density of
time, these two verification problems cannot be solved directly from the transi-
tion system induced by configurations and steps. A well-known solution to this
problem is the region graph construction of Alur and Dill [1]. Yet, it is not used
in practice, as the region graph is enormous even for rather simple automata.

2.2 Zone Graph and Abstractions

The practical solution that is implemented in state-of-the-art tools like UP-
PAAL [24], TChecker [19] and the Imitator tool [2] is based on zones. Let us fix
a set of clocks X. A zone Z is a set of valuations represented as a conjunction
of constraints of the form x#c or x − y#c for x, y ∈ X, # ∈ {<,≤,=,≥, >}
and c ∈ Z. Zones can be efficiently represented using Difference Bound Matrices
(DBMs) [12]. Moreover, zones admit a canonical representation, hence equality
and inclusion of two zones can be checked efficiently [6].

We now define the symbolic semantics [11] of a TA A. Let q, q′ be two states
of A, and let W,W ′ ⊆ RX≥0 be two non-empty sets of clock valuations. We

have (q,W ) ⇒t (q′,W ′) for some transition t ∈ T , if W ′ is the set of all clock
valuations v′ for which there exists a valuation v ∈W and a delay δ ∈ R≥0 such
that (q, v) →δ,t (q′, v′). In other words, W ′ is the strongest postcondition of W
along transition t. The symbolic semantics of A , denoted by⇒, is the union of all
⇒t over t ∈ T . The symbolic semantics is a sound and complete representation
of the finite and infinite runs of A. Indeed, A admits a finite (resp. infinite) run
(q0, v0) →δ0,t0 (q1, v1) →δ1,t1 . . . (qn, vn) →δn,tn . . . if and only if there exists a
finite (resp. infinite) path (q0,W0) ⇒t0 (q1,W1) ⇒t1 . . . (qn,Wn) ⇒tn . . . such
that vi ∈ Wi for all i ≥ 0 and W0 = {0} [11]. It is well-known that if Z is a
zone, and (q, Z)⇒ (q′,W ′) then W ′ is a zone as well [6]. Since {0} is a zone, all
the reachable nodes in ⇒ are zones as well. The reachable part of ⇒ is called
the zone graph of A. The nodes of the zone graph are denoted as (q, Z) in the
sequel and the zone graph is simply denoted by its transition relation⇒. Fig. 2a
depicts the zone graph of the automaton in Fig. 1.

Still, the zone graph of a timed automaton may be infinite. As a remedy,
finite abstractions have been introduced in the literature [11,4,5].
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q0, x ≥ 0

q1, x ≥ 0 q1, x ≥ 1

q2, x ≥ 0 q2, x ≥ 2

q1, x ≥ 2

(a) Zone Graph

q0, x ≥ 0

q1, x ≥ 0 q1, x ≥ 1

q2, x ≥ 0

q1, x ≥ 2

(b) Liveness compatible

q0, x ≥ 0

q1, x ≥ 0 q1, x ≥ 1

q2, x ≥ 0

q1, x ≥ 2

(c) Not compatible

Fig. 2: Three subsumption graphs for the automaton in Fig. 1.

An abstraction α transforms a zone Z into a zone α(Z) such that Z ⊆
α(Z), α(α(Z)) = α(Z), and every run that is feasible from a valuation v′ ∈
α(Z) is simulated by a run from a valuation v ∈ Z. Such abstractions are
called extrapolations in the literature [5]. An abstraction is finite when the set
of abstracted zones {α(Z) |Z is a zone} is finite. Given an abstraction α, the
abstracted zone graph has initial node (q, α({0})) and transitions of the form
(q, Z) ⇒t

α (q′, α(Z ′)) for each transition (q, Z) ⇒t (q′, Z ′). Let ⇒α denote the
union of all ⇒t

α over t ∈ T . The abstracted zone graph is sound and complete:
there is a run (q0, v0) →δ0,t0 (q1, v1) →δ1,t1 . . . (qn, vn) (→δn,tn . . .) in A if and
only if there is an infinite path (q0, Z0) ⇒t0

α (q1, Z1) ⇒t1
α . . . (qn, Zn) (⇒tn

α . . .)
with vi ∈ Zi for all i ≥ 0. Hence, when α is a finite abstraction, the verification
problems for a TA A can be algorithmically solved from its abstracted zone
graph. The abstraction Extra+LU [5] is implemented by state-of-the-art verification
tools UPPAAL [24] and TChecker [19]. Our results hold for any finite, sound and
complete abstraction. The abstracted zone graph is denoted ⇒α in the sequel.

2.3 Subsumption

Consider the TA in Figure 1 and its zone graph in Figure 2a. Observe that every
run that is feasible from node (q1, x ≥ 1) is also feasible from (q1, x ≥ 0) since
the zone x ≥ 1 is included in the zone x ≥ 0 (recall that zones are sets of clock
valuations). We say that (q1, x ≥ 1) is subsumed by the node (q1, x ≥ 0). As a
result, if an accepting node is (repeatedly) reachable from (q1, x ≥ 1), then an
accepting node is also (repeatedly) reachable from (q1, x ≥ 0).

This leads to a crucial optimization for the verification of TA: reachability
and liveness verification problems can be solved without exploring subsumed
nodes. This optimization is called inclusion abstraction in [11]. Figure 2b shows
the graph obtained when the exploration is stopped at node (q1, x ≥ 1). All
the runs that are feasible from (q1, x ≥ 1) are still represented in this graph,
as they can be obtained by first taking the subsumption edge from (q1, x ≥ 1)
to (q1, x ≥ 0) (depicted as a blue squiggly arrow), and then any sequence of
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(actual or subsumption) edges from (q1, x ≥ 0). Such graphs with both actual
and subsumption edges are called subsumption graphs in the sequel.

It is tempting to use subsumption as much as possible, and only explore
maximal nodes (w.r.t. zone inclusion). While this is correct for the verification
of reachability properties, subsumption must be used with care for liveness veri-
fication. The bottom node (q1, x ≥ 2) in Figure 2b is also subsumed by the node
(q1, x ≥ 0). A subsumption edge can thus be added between these two nodes as
depicted in Figure 2c. However, due to this new subsumption edge, the graph
has a Büchi accepting path (of actual and subsumption edges) that does not
correspond to any run of the timed automaton in Figure 1. Indeed, subsumption
leads to an overapproximation of the runs of the automaton. While all the runs
from node (q1, x ≥ 2) are feasible from node (q1, x ≥ 0), the converse is not true:

the transition q1
x<2,x:=0−−−−−−→ q2 is not feasible from (q1, x ≥ 2).

The subsumption graphs in Figure 2b and 2c can be seen as certificates
issued by verification algorithms. The graph in Figure 2b is a valid certificate for
liveness verification as 1) it contains no accepting paths, and 2) every run of the
automaton is represented in the graph. In constrast, the graph in Figure 2c is not
a valid certificate for liveness verification as it has an accepting path that does
not correspond to any run of the automaton. In the next sections, we introduce
an algorithm to check the validity of certificates produced by liveness verification
algorithms, as well as a proven implementation of the algorithm.

3 Certificates for Büchi Emptiness

In this section, we study certificates for Büchi emptiness in the setting of a slight
variation of well-structured transition systems [14]. First, we present reachability
invariants, which certify that every run in the original system can be simulated
on the states given in the invariant. Next, we show that the absence of certain
cycles in the invariant is sufficient to prove that the original transition system
does not contain accepting runs. Then, we add a proof of absence of these cycles
to the certificate. Finally, we instantiate this framework for the case of TA.

3.1 Self-Simulating Transition Systems

A transition system (S,→) consists of a set of states S and a transition relation
→⊆ S × S. If S is clear from the context, we simply write →. We say that
s1 → s2 → . . .→ sn is a path or that s1 → s2 → . . . is an (infinite) run in → if
si → si+1 for all i. Given an initial state s0 and a predicate for accepting states
φ, the path s0 → s1 → . . . → sn is accepting if φ(sn). A run s0 → s1 → . . . is
an (accepting) Büchi run if φ(si) for infinitely many i.

A transition system→ is simulated by the transition system→′ if there exists
a simulation relation v such that:

∀s, s′, t. s v s′ ∧ s→ t −→ ∃t′. s′ →′ t′ ∧ t v t′

This simulation property can be lifted to paths and runs:
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Proposition 1. If s1 → s2 → . . . → sn (→ . . .) is a path (run) and s1 v t1,
then there is a path (run) t1 →′ t2 →′ . . .→′ tn (→ . . .) with si v ti for all i.

Definition 1. A self-simulating transition system (SSTS) (S,→,�) consists of
a transition system (S,→) and a quasi-order (a reflexive and transitive relation)
�⊆ S × S on states such that → is simulated by → itself for �.

In comparison to well-structured transition systems [14], our definition is slightly
more relaxed, as we only demand that � is a quasi order, not a well-quasi order.
Intuitively, transitivity of � is needed to allow for correct simulation by arbitrary
“bigger” nodes. In TA, � corresponds to subsumption ⊆, and → corresponds to
⇒.

3.2 Reachability Invariants on Abstract Transition Systems

In this section, we introduce the concept of reachability invariants for SSTS.

Definition 2. A set I ⊆ S is a reachability invariant of an SSTS (S,→,�) iff
for all s ∈ I and t with s→ t, there exists a t′ ∈ I such that t � t′.
A useful invariant is also fulfilled by some inital state. Such states will show up in
theorems below. In the remainder, unless noted otherwise, (S,→,�) is an SSTS
and I is a reachability invariant of it. Figures 2a to 2c all form a reachability
invariant for the zone graph from Figure 2a.

As was observed by Wimmer and von Mutius [37], reachability invariants can
directly be applied as certificates for unreachability.

Definition 3. A predicate φ (for accepting states) is compatible with an SSTS
(S,→,�) iff for all s, s′ ∈ S, if φ(s) and s � s′, then also φ(s′).

An invariant I can now certify that no accepting state s with φ(s) is reachable:

Theorem 1. If ∀s ∈ I. ¬φ(s), for some compatible φ, s0 ∈ S and s′0 ∈ I with
s0 � s′0, then there is no accepting path s0 → s1 → . . .→ sn with φ(sn).

Note that this approach to certifying unreachability is also complete: if no
accepting state is reachable from s0 in (S,→,�), we can simply set I := S.
However, this is not practical for infinite transition systems, of course. Thus we
will revisit the question of completeness for TA below.

Finally, we observe that the invariant can be limited to a restriction of �.

Definition 4. A pair (I,E) of a set I ⊆ S and a binary relation E is a restricted
reachability invariant of an SSTS (S,→,�) iff:

1. For all s ∈ I and t with s→ t, there exists a t′ ∈ I such that t E t′.
2. For all s, t, if s E t, then also s � t.

In Figure 2, the  -arrows would play the role of E. In Figure 2b, (q1, x ≥ 0)
is subsumed by both (q1, x ≥ 1) and (q1, x ≥ 2), but as we have seen in Figure
2c, it is crucial to disregard these subsumptions. Therefore we need to consider
restricted reachability invariants.

For any restricted reachability invariant, we can define a simulating transition
system →E:



8 S. Wimmer et al.

Definition 5. The transition system (S,→E) is defined such that s →E t′ iff
there exists a t such that s→ t and t E t′.

This simulation theorem is the key property of restricted reachability invariants
5:

Theorem 2. Given s1 E t1 with t1 ∈ I, if s1 → s2 → . . . → sn (→ . . .) is a
path (run), then there is a path (run) t1 →E t2 →E . . .→E tn (→ . . .) such that
si E ti and ti ∈ I for all i.

Analogously to →E, the transition system →� can be defined, and Theorem 2
can be proved for →�. This is used for the proof of Theorem 1 (see [37]).

3.3 Büchi Emptiness on Abstract Transition Systems

In this section, we first give a general means of certifying that a transition system
does not contain a cycle, and then combine the idea with reachability invariants
to certify the absence of Büchi runs on SSTS.

Definition 6. Given a transition system → and an accepting state predicate φ,
a topological numbering of → is a function f with an integer range such that:

1. For all s, t, if s→ t, then f(s) ≥ f(t).
2. For all s, t, if s→ t and φ(s), then f(s) > f(t).

Proposition 2. Let f be a topological numbering of → and φ. If there exists a
path of the form s→ s1 → s2 → . . .→ s, then ¬φ(s).

These certificates are also complete:

Proposition 3. If there is no path s → s1 → s2 → . . . → s with φ(s) in →,
then the following are topological numberings for →.

1. The number of accepting states that are reachable from a node: f(s) :=
|{x | s→∗ x ∧ φ(x)}| (assuming {x | s→∗ x ∧ φ(x)} is finite for any s).

2. If h is a topological numbering (in the classical sense) of the strongly con-
nected components (SCCs) of →, then set g(s) := h(C) if s ∈ C.

We now lift this idea to the case of (restricted) reachability invariants.

Definition 7. Given an SSTS (S,→,�), an accepting state predicate φ, and
a corresponding restricted reachability invariant (I,E), a restricted topological
numbering of (S,→,�) is a function f with an integer range such that:

1. For all s, t′ ∈ I and t ∈ S, if s→ t, and t E t′, then f(s) ≥ f(t′).
2. For all s, t′ ∈ I and t ∈ S, if s→ t, t E t′, and φ(s), then f(s) > f(t′).

Moreover, let  E be the restriction of →E to I, i.e. the transition system such
that s E t′ iff s, t′ ∈ I and there exists a t such that s→ t and t E t′.

5 All proofs are omitted for brevity and can be found in the appendix.
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Now, f is clearly a topological numbering for  E. Thus  E is free of accepting
cycles. Additionally, the transition system E trivially simulates→E with s v s′
iff s′ = s and s ∈ I. Therefore, any accepting cycle s →+

E s in →E with s ∈ I
and φ(s) yields an accepting cycle s +

E s. Hence→E is free of accepting cycles.
From this, we conclude our main theorem that allows one to certify absence

of Büchi runs in a transition system →.

Theorem 3. Let f be a restricted topological numbering of (S,→,�) for a com-
patible predicate φ and a finite restricted reachability invariant (I,E). Then, for
any initial state s0 ∈ S with s0 E t0 for t0 ∈ I, there is no Büchi run from s0.

In practice, a certificate can now be given as a finite restricted reachability invari-
ant I as described above, and a corresponding restricted topological numbering
f . Both properties can be checked locally for each individual state in I.

3.4 Instantiation for Timed Automata

We now want to instantiate this abstract certification framework for the concrete
case of TBA. Our goal is to certify that the zone graph ⇒ does not contain any
Büchi runs. As the zone graph is complete, this implies that the underlying
TBA is empty. Thus we set → := ⇒. Subsumptions in the zone graph shall
correspond to the self-simulation relation of the SSTS. Hence we define � such
that (q, Z) � (q′, Z ′) iff q′ = q and Z ⊆ Z ′.

To certify unreachability, it is sufficient to consider arbitrary subsumptions
in the zone graph, i.e. E := � [37]. In other words it is sufficient to check that
the given certificate I is a reachability invariant for (S,→,�). We have not yet
given the set of states S. Abstractly, S is simply the set of non-empty states, i.e.
S := {(q, Z) |Z 6= ∅}. If it was allowed to reach empty zones, then soundness
of the zone graph would not be given. In practice, the certifier needs to be
able to compute ⇒ effectively, typically using the DBM representation of zones.
To this end one wants to add the assumption on states that all DBMs are in
canonical form. One needs to ensure that states are split according to φ, i.e.
∀(q, Z) ∈ S.Z ⊆ Φ(q) ∨ Z ∩ Φ(q) = ∅ where Φ(q) = {v |φ(q, v)}. This is trivial
for commonly used properties that concern only the finite state part.

Following these considerations, we propose the following certifier for the
emptiness of TBA. A certificate C is a set of triplets (q, Z, i) where q is a discrete
state, Z is a corresponding zone, and i is the topological number for (q, Z). The
certifier runs Algorithm 1 on this certificate. The algorithm extends the one by
Wimmer and Mutius [37] with the topological numbers for liveness checking.

Theorem 4. If Büchi-Emptiness(φ,C, q0) accepts the certificate, then ⇒DBM

has no Büchi run for φ. Consequently, the underlying TBA is empty.

The proof constructs a suitable E such that (q, Z) E (q, Z ′) if Z ⊆ Z ′ and
(q, Z ′, k) ∈ C, where k is selected to be minimal. Setting I := {(q, Z) | ∃i. (q, Z, i) ∈
C)} and f(q, Z) := min{i | (q, Z, i) ∈ C}, Theorem 3 can be applied.
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Algorithm 1 Certifier for the emptiness of TBA

1: procedure Büchi-Emptiness(φ,C, q0)
2: for all (q, Z, i) ∈ C do . All DBMs are well-formed
3: if Z = ∅ ∨ Z is not canonical
4: then reject certificate

5: if @(q0, Z0, i) ∈ C. {0} ⊆ Z0 . The initial state is covered
6: then reject certificate
7: for all (q, Z, i) ∈ C do . The certificate is:
8: for all (q1, Z1) s.t. (q, Z)⇒ (q1, Z1) do
9: if (@(q1, Z

′
1, j) ∈ C.Z1 ⊆ Z′1 . an invariant,

∧ (φ(q) −→ i > j) ∧ i ≥ j) . and a topological numbering
10: then reject certificate

11: accept certificate

The algorithm inherits several beneficial properties from [37]. First, it can
easily be parallelized. Most importantly however, the certifier does not need
to compute an abstraction operation α. Suppose the model checker starts with
a state (q0, {0}) and explores the transition (q0, {0}) ⇒ (q1, Z1). The model
checker could then abstract zone Z1 to α(Z1), and explore more edges from
(q1, α(Z1)), e.g. (q1, α(Z1)) ⇒ (q2, Z2). The certificate just needs to include
(q0, {0}), (q1, α(Z1)), and (q2, α(Z2)), and the certificate checker just needs to
check the following inclusions: {0} ⊆ {0}, Z1 ⊆ α(Z1), and Z2 ⊆ α(Z2). The
checker does not need to compute α as α(Z1) and α(Z2) are part of the certificate.

It is rather easy to see that these certificates are also complete for timed
automata. For any finite abstraction α, the abstracted zone graph ⇒α is finite
and complete. Thus, for a starting state (q0, {0}) the set

I := {(q, Z) | (q0, {0})⇒∗α (q, Z)}

is a trivial finite reachability invariant that can be computed effectively for com-
mon abstractions α. Moreover, if the underlying TBA is empty, then⇒α cannot
contain a Büchi run either, since the abstract zone graph is complete. Because
⇒α is finite, this means it cannot contain a cycle through φ. Hence a forward
numbering of I can be given by computing the strongly connected components
of I. However, this type of certificate is not of practical interest as subsump-
tions are not considered. How certificates can be obtained for model checking
algorithms that make use of subsumption is the topic of Section 5.1.

4 Incorporating Advanced Abstraction Techniques

We have already discussed that the techniques that were presented above are in
principle agnostic to the concrete abstraction α used. This, however, is only true
for standard verification algorithms for T(B)A that use zone inclusion Z ⊆ Z ′ as
a simulation relation on the abstract zone graph. There is also the noteworthy
abstraction α�LU [5], which is the coarsest zone abstraction that can be defined
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from clock bounds L,U [18]. Herbreteau et al. have shown that even though
α�LU (Z) is usually not a zone, it can be checked whether Z ⊆ α�LU (Z ′) directly
from the DBM representation of Z and Z ′, without computing α�LU (Z ′) [18].
Hence, one can use α�LU -subsumption over zones, Z ⊆ α�LU (Z ′), instead of
standard inclusion Z ⊆ Z ′ to explore fewer symbolic states. This technique can
also be integrated with our certification approach. This time, we will need more
knowledge about the concrete abstraction α, however.

We first describe the concept of time-abstract simulations, on which the def-
inition of α�LU is based.

Definition 8. A time-abstract simulation between clock valuations is a quasi-
order � such that if v � v′ and (q, v) →δ,t (q1, v1) then there exist δ′ and v′1
such that (q, v′)→δ′,t (q1, v

′
1) ∧ v1 � v′1.

Behrmann et al. defined the simulation �LU based on the clock bounds L and
U , and showed that it is a time-abstract simulation [5] (in fact one can show
that �LU is even a simulation, i.e. δ′ = δ). For any �, one can define the
corresponding abstraction α�(Z) = {v | ∃v′ ∈ Z. v � v′}. This yields a sound
and complete abstraction for any time-abstract simulation � [5]. Observe that
α�(Z) is the set of all valuations that are simulated by a valuation in Z w.r.t.
�. As a result, every sequence of transitions feasible from α�(Z) is also feasible
from Z (although with different delays).

The implicit abstraction technique based on the subsumption check Z ⊆
α�(Z ′) is compatible with our certification approach for any α� for which � is
a time-abstract simulation, and in particular α�LU . Actually, we are still able to
use algorithm Büchi-Emptiness with the only modification that the condition
Z1 ⊆ Z ′1 is replaced with Z1 ⊆ α�(Z ′1). We will justify this by showing that if
the algorithm accepts the certificate, then it represents a restricted reachability
invariant with a suitable topological numbering for ⇒α� . This means that ⇒α�

does not have a Büchi run (Theorem 3), which, as α� is a complete abstraction,
implies that the underlying TBA does not have a Büchi run either.

We first prove the following monotonicity property (which can be seen as a
generalization of Lemma 4 in the work of Herbreteau et al. [18]).

Proposition 4. Let � be a time-abstract simulation. If α�(W ) ⊆ α�(W ′),
(q,W )⇒t (q1,W1), and (q,W ′)⇒t (q1,W

′
1), then α�(W1) ⊆ α�(W ′1).

Reminding ourselves that α� is idempotent, if follows that if (q,W )⇒t (q1,W1)
and (q, α�(W )) ⇒t (q1,W

′
1) for some states q, q1, and sets of valuations W ,

W1, and W ′1, then α�(W1) = α�(W ′1). In other words, ⇒ simulates ⇒α� for w
defined as (q,W ) w (q, Z)←→W = α�(Z).

Now, we show that the conditions of Definitions 4 and 7 can be transferred
along this simulation.

Theorem 5. Assume that the following conditions hold:

1. For all states q, and zones Z, Z ′, Z ′′, if (q, Z) E (q, Z ′), then Z ⊆ α�(Z ′).
Moreover, if α�(Z) = α�(Z ′) and (q, Z) E (q, Z ′′), then (q, Z ′) E (q, Z ′′).
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2. For all q, Z, if φ((q, α�(Z))), then φ((q, Z)).
3. (I,E) satisfies condition (1) of Definition 4 for ⇒.
4. f is a restricted topological numbering for ⇒, (I,E), and φ.

Let (q,W ) E′ (q,W ′)←→ ∃Z,Z ′.W = α�(Z)∧W ′ = α�(Z ′)∧ (q, Z) E (q, Z ′),
I ′ := {s′ | ∃s ∈ I. s v s′} and f ′(s′) := Min {f(s) | s ∈ I ∧ s v s′}. Then

1. (I ′,E′) is a restricted reachability invariant for (⇒α� ,⊆).
2. f ′ is a restricted topological numbering for ⇒α� , (I ′,E′), and φ.

Algorithm Büchi-Emptiness ensures that there exist an invariant (I,E) and
a numbering f that fulfill the conditions of Theorem 5 for ⇒ (as indicated after
Theorem 4). Thus, if the algorithm accepts the certificate, there is a restricted
reachability invariant (I ′,E′) with a corresponding topological numbering f ′ for
⇒α� . Hence ⇒α� does not have a Büchi run.

5 Evaluation

In this section, we first give a brief description of the model checking algorithms
we consider and describe how certificates can be extracted from them. Then,
we outline the general architecture of our certification tool chain, and finally we
present some experiments on standard TA models.

5.1 Extracting Certificates From Model Checkers

We consider the two state-of-the-art algorithms for checking Büchi emptiness for
TA: the NDFS-based algorithm by Laarman et al. [22] and the iterative SCC-
based algorithm by Herbreteau et al. [16]. Both algorithms can be applied to
any abstracted zone graph ⇒α for a finite, sound and complete abstraction α.
As was noted by Herbreteau et al. [16], they also have in common that their
correctness can be justified on the basis that they both compute subsumption
graphs that are liveness compatible, in the sense that they do not contain any
cycle with an accepting node and a subsumption edge.

Considering NDFS for TA from [22] more closely, it prunes the search space
by using subsumption in certain safe places. In particular, the outer (blue) search
is pruned when it reaches a state s that is subsumed by a state on which the
inner (red) search has been called, i.e. s v t and t is red. In order to generate
a liveness-compatible subsumption graph, the blue search exports all the states
which are not subsumed along with their→-successors. Moreover, the algorithm
exports  -edges as soon as the pruning by subsumption is applied.

The iterative algorithm from [16] interleaves reachability analysis and SCC
decompositions. The reachability analysis computes a subsumption graph with
maximal subsumption: a subsumption edge s t′ is added whenever a new state
t is visited from s, and t is subsumed by some visited state t′. The resulting
graph → ∪  is a subsumption graph that preserves state reachability, but
that may not be liveness compatible. Therefore, an SCC decomposition is run,
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and all subsumption edges from SCCs that contain both an accepting node
and a subsumption edge are removed. States which are not subsumed anymore
are re-explored in the next iteration of the main loop. Upon termination, the
subsumption graph → ∪ is liveness compatible.

Both algorithms compute liveness compatible subsumption graphs. In order
to obtain a certificate we run one extra SCC decomposition of the graph with
→∪ -edges from which we compute a topological ordering.

5.2 General Architecture

Our certifier is implemented as an extension of the tool Munta [34], which has
been fully verified in Isabelle/HOL [36,37]. Figure 3 depicts the architecture of
our tool chain to certify the emptiness of a given TBA. The model (a TBA)
and the acceptance property are given in the input format of Munta. For the
model checker in the middle, we used Imitator and TChecker. In a first step,
the Munta model is translated to an input model for the model checker. The
model checker decides whether the given TBA is empty. If not, then either the
model checker’s answer is correct or it has found a spurious counterexample; in
both cases no certificate can be extracted. Otherwise, the model checker emits
a certificate consisting of a number of symbolic states and the set of edges in
the subsumption graph. The latter can either include proper transitions (→)
and subsumptions ( ) (this is done for Imitator with NDFS and subsumption),
or the edges that merge these two types ( ’) (which is done for TChecker and
for Imitator with state merging enabled, see Section 5.3). In either case, in the
next step where the certificate is translated to Munta’s binary input format for
certificates, the SCC numbers (c.f. Proposition 3) are re-computed blindly from
these edges. This step additionally makes use of a renaming dictionary to map
from human readable labels for states, actions, etc., to natural numbers.

Finally, the TBA model, the translated certificate, and the renaming are given
to Munta. If it accepts the certificate, then there is an Isabelle/HOL theorem
that guarantees that the given TBA is indeed empty. If the certificate is rejected,

Translation

No

YesMC:
model empty?

Munta
model

& property

Certificate
(.dot format)

Renaming

Translation &
SCC computation

Yes

No

Munta:
certificate valid?

Model not empty
or error in MC

Error in pipeline

Formal proof:
model empty

Fig. 3: Workflow of the certifier pipeline. The dashed line is the trust boundary.
If the correct model is given, then the answer on the right can be trusted.
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any of the steps in the tool chain could have failed. Note that the basis of trust
is minimal. One just needs to ensure that the model represents what one has
in mind, and to trust the correctness of Munta. To trust Munta, one essentially
needs to trust its TBA semantics, which is less than 200 lines long, some core
parts of Isabelle/HOL, and an SML compiler (MLton in our case). For details,
we refer the interested reader to previous publications on Munta [34,37].

5.3 Experiments

We have evaluated our approach on the TBA models that were also used by
Herbreteau et al. [16]. These are inspired by standard TA benchmarks, and all
consist of the product of a TA model and an additional Büchi automaton that
encodes the complement of the language of a given LTL formula that one wants
to check. Details are given by Herbreteau et al. [16].

For Imitator we tried two methods: NDFS with subsumption and reachability
analyis with merging [3]. Imitator does not apply abstractions (since it was
designed for parametric TA), so the full zone graph is often infinite and most
NDFS runs fail. The one that succeeds generates a valid certificate. Merging
tries to reduce the number of zones, by computing the exact convex hull of
zones. This creates new zones that could subsume several existing ones, and
often yields a finite zone graph. The certificate produced by merging is always
a reachability invariant but not necessarily a subsumption graph. Merging may
introduce spurious cycles, in which case the certificate is not liveness compatible;
these cases are caught by the Munta certifier. If there are no (spurious) accepting
cycles, we obtain a valid and quite small certificate. Note that the generalization
from subsumption graphs to our certificates is crucial to allow for merging.

Table 1 summarizes our experimental results. TChecker was run with the
algorithm from [16] and [22] and Imitator with the algorithm from [22], and with
a reachability procedure with full merging. The *** entries indicate cases where
Imitator did not terminate within 30s. The results show that the certifier accepts
those certificates that we expect it to accept, but also rejects those that stem from
subsumption graphs that are not liveness compatible. Moreover, the certifier was
fully verified in Isabelle/HOL and still yields reasonable performance, certifying
models with more than a 100k symbolic states in under 230s.

6 Conclusion

Starting from an abstract theory on self-simulating transition systems, we have
presented an approach to extract certificates from state-of-the-art model check-
ing algorithms (including state-of-the-art abstraction techniques) that decide
emptiness of timed Büchi automata. The certificates prove that a given model
is indeed Büchi empty. We have verified the theory and a checker for these cer-
tificates in Isabelle/HOL, using the tool Munta as a basis. We demonstrated
that our approach is feasible by extracting certificates for some standard bench-
mark models from the tools TChecker and Imitator. We hope that our work can
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Model TChecker Imitator

Iterative SCC NDFS Merge NDFS

CC1 3 57 0.01 3 3281 0.06 3 58 0.01 ***
CC4 3 195858 221.56 3 32575 7.75 *** ***
CC5 3 65639 30.63 3 143057 218.98 *** ***
FD1 3 214 0.02 3 677 0.03 7 294 0.02 3 1518 0.11
FI1 3 65 0.01 3 71 0.00 3 136 0.00 ***
FI2 3 314 0.01 3 344 0.01 3 589 0.01 ***
FI4 3 204 0.00 3 224 0.01 3 793 0.01 ***
FI5 3 3091 0.13 3 2392 0.09 7 863 0.03 ***

Table 1: Benchmark results on a 2017 MacBook Pro with 16 GB RAM and a
Quad-Core Intel Core i7 CPU at 3.1 GHz. For each algorithm, we show whether
the certificate was accepted, the number of DBMs in the certificate, and the time
for certificate checking on a single core in seconds.

help to increase confidence in safety-critical systems that have been verified with
timed automata model checkers. Furthermore, we envision that our tool could
help in the organization of future competitions for such model checkers.

To close, we want to illuminate some potential future directions of research.
First, one is usually not only interested in the emptiness of TBA per se, but more
generally in the question if a TA model satisfies some LTL requirements. Thus,
our tool would ideally be combined with a verified translation from LTL formulas
to Büchi automata or with a certifier for such a construction. The former has
been realized by the CAVA project [13], while an avenue towards the latter is
opened by the recent work of Seidl et al. [10].

Second, Herbreteau et al. have developed a technique of computing abstrac-
tions for TA on the fly, starting from very coarse abstractions and refining them
as needed [17]. It seems that our approach is in principle compatible with this
technique when augmenting certificates with additional information on the com-
puted abstractions, whose validity would have to be checked by the certifier.

Third, one could attempt to reduce the size of the certificates. In one ap-
proach, reachability certificates have been compressed after model checking (c.f.
[37]). On the other hand, model checking algorithms could speculate that the
given TBA is empty, and use this fact to use additional subsumptions to reduce
the search space, while risking to miss accepting runs. However, given the cer-
tification step afterwards, this is of no concern. For instance, one could remove
the red search from the NDFS algorithm, and use subsumption on blue nodes
instead of red nodes, as a quick pre-check. If the result passes the certifier, we
are done.

Finally, as our theory is not specific to timed automata per se, it could be
interesting to find other application domains for this approach to certification.
In light of the large body of existing work on well-structured transition systems,
this looks particularly promising as any such system is also self-simulating.
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2. André, É., Fribourg, L., Kühne, U., Soulat, R.: Imitator 2.5: A tool for analyzing
robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM
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Appendix

The appendix restates all propositions of the paper together with their proofs.
For coherence, some propositions are stated slightly more precisely than in the
paper.

Proposition 1. If s1 → s2 → . . . → sn (→ . . .) is a path (run) and s1 v t1,
then there is a path (run) t1 →′ t2 →′ . . .→′ tn (→ . . .) with si v ti for all i.

Theorem 1. Let I be an invariant and φ be a compatible predicate for an SSTS
(S,→,�). If ∀s ∈ I. ¬φ(s), then for all s0 ∈ S for which there exists an s′0 ∈ I
with s0 � s′0, there is no accepting path s0 → s1 → . . .→ sn with φ(sn).

Proof. Assume that there is a path s0 → s1 → . . .→ sn with φ(sn) in (S,→,�).
By the invariant simulation property (Theorem 2) we get a path t0 →� t1 . . .→�
tn with sn � tn and tn ∈ I. Because φ is compatible, we have φ(tn). However,
this contradicts tn ∈ I. ut

We state this theorem again for � instead of E as we did above. The proofs
are the same.

Theorem 2. Let I be a reachability invariant for (S,→,�). Then, for all s1 �
t1 with t1 ∈ I, if s1 → s2 → . . . → sn is a path, then there is a path t1 →�
t2 . . .→� tn such that si � ti and ti ∈ I for all i. Similarly, if s1 → s2 → . . . is
a run, then there is a run t1 →� t2 →� . . . such that si � ti and ti ∈ I for all i.

Proof. By induction (coinduction) on the inductive (coinductive) definition of
s1 → s2 → . . .→ sn (s1 →� s2 →� . . .). ut

Proposition 2. Let f be a topological numbering of →. If there exists a path of
the form s→ s1 → s2 → . . .→ s, then ¬φ(s).

Proof. For the sake of contradiction, assume φ(s). From s→ s1, we have f(s) >
f(s1). Moreover, from s1 → s2 → . . .→ s, we have f(s1) ≥ f(s) by induction on
the path definition. Together, we arrive at the contradiction f(s) > f(s). ut

Proposition 3. If there is no path s → s1 → s2 → . . . → s with φ(s) in →,
then the following are topological numberings for →.

1. The number of accepting states that are reachable from a node: f(s) :=
|{x | s→∗ x ∧ φ(x)}| (assuming {x | s→∗ x ∧ φ(x)} is finite for any s).

2. If h is a topological numbering (in the classical sense) of the strongly con-
nected components (SCCs) of →, then set g(s) := h(C) if s ∈ C.

Proof. 1. Clearly, if s→ t, then f(s) ≥ f(t). Suppose s→ t, φ(s), and {x | s→∗
x ∧ φ(x)} ⊆ {x | t →∗ x ∧ φ(x)}. Then, we have t →∗ s and thus s →+ s.
Because of φ(s), this contradicts the assumption and hence f(s) > f(t).
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2. As h is a topological numbering (in the classical sense, i.e. without condition
(2) of definition 6) of the SCCs of→, we have g(s) ≥ g(t) if s→ t. Moreover,
any state s with φ(s) has to form its own trivial SCC as otherwise the SCC
of s would form an accepting cycle. Thus g(s) > g(t) if φ(s) and s→ t.

ut

Theorem 3. Let f be a restricted topological numbering of (S,→,�) for a com-
patible φ and a restricted reachability invariant (I,E) such that I is finite. Then,
for any initial state s0 ∈ S such that there exists a t0 ∈ I with s0 E t0, there is
no Büchi run from s0 in →.

Proof. Working towards a contradiction, suppose that there is an accepting
Büchi run s0 → s1 → . . .. By proposition 2, there exists a run t0 → t1 → . . .
such that si E ti and ti ∈ I for all i. As there are infinitely many si with φ(si),
and φ is compatible with (S,→,�), there are also infinitely many ti with φ(ti).
Because I is finite, accepting states have to repeat eventually and there is an
accepting lasso, i.e. there exists an accepting tk (with φ(tk)) such that t0 →∗ tk
and tk →+ tk. This contradicts proposition 2. ut

Theorem 4. If Büchi-Emptiness(φ,C, q0) accepts the certificate, then ⇒DBM

has no Büchi run for φ. Consequently, the underlying TBA is empty.

The proof will make clear why we needed to define the concept of a restricted
reachability invariant in the first place: to only select certain subsumptions that
go downward as far as possible.

Proof. We define I := {(q, Z) | ∃i. (q, Z, i) ∈ C)}. The whole proof hinges on
the fact that we are able to define a suitable E such that the certificate can
form a restricted reachability invariant (I,E) for (S,→,�), and in addition we
can define a suitable numbering f which is a restricted topological numbering
for (S,→,�) with respect to →E. The main idea for this is to only consider
subsumptions that go downward as far as possible. That is, we have (q, Z) E
(q′, Z ′) iff q′ = q, Z ⊆ Z ′, and if there exists a k∗ such that (q, Z ′, k∗) ∈ C
and k∗ is minimal among all k for which there exists a Z ′′ with Z ⊆ Z ′′ and
(q, Z ′′, k) ∈ C. Lines 7-10 of the algorithm ensure that there exists one such
triplet (q, Z ′′, k) for each (q, Z) ∈ I. Thus the first condition of definition 4 is
verified. The condition I ⊆ S is ensured by lines 2-4. The second condition,
finally, is trivially met by the definition of E.

Now let f(q, Z) be the minimal i such that (q, Z, i) ∈ C. We need to prove
that the conditions of definition 7 are met. Suppose (q, Z) ∈ I, (q, Z)⇒ (q1, Z1)
and (q1, Z1) E (q1, Z

′
1). We know that (q, Z, f(q, Z)) ∈ C by the definition of f .

Lines 7-10 of the algorithm ensure that there exists a triplet (q1, Z
′, k) ∈ C such

that Z ⊆ Z ′, f(q, Z) ≥ k, and φ(q) −→ f(q, Z) > k. Then, by the definition of
E, there exists a k∗ such that (q1, Z

′
1, k
∗) ∈ C and k ≥ k∗. Thus k ≥ f(q1, Z

′
1)

by the definition of f and both conditions of 7 are met.
Finally, together with the fact that (q0, {0}) is covered by C, which is ensured

by lines 5-6, we can invoke theorem 3 to show that → does not have a Büchi
run. Then, by completeness of ⇒ the underlying TBA is empty as well. ut
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Proposition 4. Let � be a time-abstract simulation. If α�(W ) ⊆ α�(W ′),
(q,W )⇒t (q1,W1), and (q,W ′)⇒t (q1,W

′
1), then α�(W1) ⊆ α�(W ′1).

Proof. Suppose v ∈W1 and u � v. We need to show that there exists a v′ ∈W ′1
such that u � v′. By the definition of ⇒t there exists a δ and u0 ∈ W such
that (q, u0)→δ,t (q1, v). Because � is reflexive and α�(W ) ⊆ α�(W ′) there is a
v0 ∈W ′ with u0 � v0. As � is a time-abstract simulation, we can find a v′ such
that (q, v0) →δ,t (q1, v

′) and v � v′. Thus we have v′ ∈ W ′1 by definition of ⇒t

and u � v′ by transitivity. ut

In comparison to the main part of the paper (Sec. 4), we will first prove a
more abstract version of Thm. 5 and then instantiate it for the concrete case of
timed automata.

Theorem 5. Assume that → simulates →′ with w and that the following con-
ditions hold:

1. E′ simulates E with v.
2. For all s, s′, t, and t′, if s v s′, t v t′ and s′ E′ t′, then s E t.
3. For all s and s′, if s v s′ then φ′(s′) −→ φ(s).

Let I ′ := {s′ | ∃s ∈ I. s v s′} and f ′(s′) := Min {f(s) | s ∈ I ∧ s v s′}.

1. Suppose that (I,E) verifies condition (1) of definition 4 for →. Then (I ′,E′)
verifies conditions (1) of definition 4 for →′.

2. Suppose that f verifies conditions (1) and (2) of definition 7 for →, E, I,
and φ. Then f ′ verifies conditions (1) and (2) of definition 7 for →′, E′, I ′,
and φ′.

Proof. 1. Assume s ∈ I, s v s′ and s′ →′ t′. We need to show that there is
an r′ ∈ I ′ with t′ E′ r′. By simulation we can find a t such that s → t and
t v t′. Thus there is an r ∈ I with t E r. With (1), we know there is an r′

with t′ E′ r′ and r v r′.
2. Assume s ∈ I, s v s′, s′ →′ t′, t′ E′ r′, r ∈ I, and r v r′. There is

an s0 ∈ I such that f ′(s′) = f(s0) and s0 v s′. By simulation we can
find a t such that s0 → t and t v t′. With (2), we have t E r. Thus we
have f(s0) ≥ f(r) and φ(s0) −→ f(s0) > f(r). Moreover, f ′(r′) ≤ f(r) by
definition of f ′. Finally, with (3) and f ′(s′) = f(s0), we get f ′(s′) ≥ f ′(r′)
and φ′(s′) −→ f ′(s′) > f(r′).

ut

Instantiation of theorem 5 for timed automata. As mentioned above, we in-
stantiate the theorem for → := ⇒, →′ := ⇒α� , and (q, Z) v (q,W ) ←→ W =
α�(Z). To satisfy condition (3), any φ which is compatible with α� and the
instantiation φ′ := φ suffice. Let E∗ be the subsumption relation defined in the
proof of theorem 3. That is:

(q, Z) E∗ (q, Z ′)

←→ ∃k. Z ⊆ α�(Z ′) ∧ (q, Z ′, k) ∈ C
∧ (∀(q, Z ′′, k′) ∈ C.Z ⊆ α�(Z ′′) −→ k′ ≥ k)
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We set 6:

– (q, Z) E (q′,W ′)←→ ∃Z ′. W ′ = α�(Z ′) ∧ (q, Z) E∗ (q′, Z ′) and
– (q,W ) E′ (q′,W ′)
←→ ∃Z,Z ′. W = α�(Z) ∧W ′ = α�(Z ′) ∧ (q, Z) E∗ (q′, Z ′).

Then condition (1) is trivially satisfied. Condition (2) can be verified by observing
that E∗ is constructed in a way such that it is deterministic, i.e. if (q, Z) E∗

(q′, Z1) and α�(Z) = α�(Z ′), then (q, Z ′) E∗ (q′, Z1) (because Z ⊆ α�(Z1)←→
Z ′ ⊆ α�(Z1) if α�(Z) = α�(Z ′)). Finally, it follows from proposition 4 that ⇒
simulates ⇒α for w as outlined in Sec. 4.

6 In the statement of Thm. 5 given in Sec. 4, we set E :=E∗ for brevity.
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