

This is an electronic reprint of the original article. This reprint may differ from the original
in pagination and typographic detail.

Applying Test-Driven Development for Improved Feedback and Automation of Grading
in Academic Courses on Software Development
Truscan, Dragos; Ahmad, Tanwir; Tran, Cuong

Published in:
Frontiers in Software Engineering Education - 1st International Workshop, FISEE 2019, Invited Papers

DOI:
10.1007/978-3-030-57663-9_20

Published: 01/01/2020

Document Version
Accepted author manuscript

Document License
Publisher rights policy

Link to publication

Please cite the original version:
Truscan, D., Ahmad, T., & Tran, C. (2020). Applying Test-Driven Development for Improved Feedback and
Automation of Grading in Academic Courses on Software Development. In J.-M. Bruel, A. Capozucca, M.
Mazzara, A. Naumchev, A. Sadovykh, & B. Meyer (Eds.), Frontiers in Software Engineering Education - 1st
International Workshop, FISEE 2019, Invited Papers (pp. 310–323). (Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12271
LNCS). Springer. https://doi.org/10.1007/978-3-030-57663-9_20

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 18. Apr. 2024

https://doi.org/10.1007/978-3-030-57663-9_20
https://research.abo.fi/en/publications/89fedb9d-01b4-47a0-8229-0cc79630c165
https://doi.org/10.1007/978-3-030-57663-9_20

Applying test-driven development for improved
feedback and automation of grading in

academic courses on software development

Dragos Truscan[0000-0002-4367-6225], Tanwir Ahmad[0000-0003-3416-2422], and Cuong Huy
Tran[0000-0003-1127-4659]

Faculty of Science and Engineering, Åbo Akademi University, Finland
firstname.lastname@abo.fi

Abstract. Grading student assignments and projects in software
development courses is a time-consuming task. The lecturer has to
download individually each assignment, compile it and manually check
that the implementation satisfies the requirements. In addition, the
students would like to get early feedback on their solutions, not only as
guidelines on whether their solution meets the expectations of the
lecturers, but also a way to estimate the current number of points their
solution deserves. In this work, we propose the use of the test-driven
development process as an approach to both guide the students during
the implementation of their projects and as a way to speed up and make
the grading process more scalable. Furthermore, we show how we take
advantage of community-based software development tools such as
GitHub to support our approach. We evaluate the proposed approach by
applying it to an academic course for developing web applications. The
results show that the approach reduces the grading effort by 60% and
that the early feedback it provides was appreciated by students.

Keywords: Test-driven development. Test automation. Academic course.
Software development. Course self-evaluation.

1 Introduction

Evaluating student projects in academic courses on software development can
be a tedious and time-consuming task. In such projects, a software application
is typically developed either individually or in groups by students. Lecturers
formulate the requirement of the application and then students develop it
before the deadline of the task. Then the students submit their project for
grading, typically by uploading the project files to a course management
system such as Moodle. After the deadline, the lecturers download the project,
execute it, and check that the application requirements are satisfied. Then, the
lecturers provide feedback for the solution and a grade for the project.

2 Truscan, D. et al.

There are two issues with the above approach. First, the students receive
feedback and a grade for their project only after the submission deadline and
evaluation period needed by the lecturers. Receiving earlier feedback, during
the development of the project, would allow students to evaluate better their
work and efforts needed to complete the project. The second issue is related to
the time needed by the lecturers to check the project of all the students in the
course. For a large number of student projects, it may take several days or
weeks before all the submissions are evaluated.

As a concrete example, in a course on developing Web applications at our
university, the size of a completed project is between 1500 and 2000 lines of
code. On average, grading a project takes around 20 minutes. The course has a
variable number of students each year, ranging between 50 and 100, which can
result in a high workload for evaluating all projects and providing feedback by
the teaching personnel.

Based on previous experience, following an incremental software
development approach for the projects would be beneficial for students in
receiving feedback faster, but will increase the amount of work of the lecturers
compared to checking the project at the end of the course. This is because the
features implemented in past versions have to be rechecked in case they may
have been updated. So for every increment of the project more time has to be
allocated per student and, in the end, in the last increment the complete project
will have to be checked anyway.

Test-driven Development (TDD) is a software development process that
promotes the development of software based on short iteration cycles. The
starting point is a set of tests that are created, typically from the requirements
of the system, before the implementation of the system is available. During
each cycle, one or several features of the product are implemented to make one
or several of the tests pass. When all the provided tests pass, the development
of the software is considered complete.

The proposed approach applies TDD for evaluation and grading of student
projects. We create a set of acceptance tests that are provided to students at the
beginning of the project. These tests are used as a reference by both the
students during the implementation of their projects and by lecturers to
evaluate the solutions implemented by students. The approach allows the
students to receive continuous feedback during their work on the quality of
their solutions and simplifies the grading process by the lecturers. To automate
our approach, we use the Github repository hosting service and a set of custom
scripts. Using our approach, the lecturers can save time from the grading
process and allocate it to providing more in-class feedback during the course.

The work presented in this chapter is an extension of the work published in
(Cuong Huy Tran, Dragos Truscan, Tanwir Ahmad 2020). We extend the
previous work with a more thorough introduction of the software development
concepts and more details on the approach. Moreover, we provide more details
on the case study and its evaluation.

https://paperpile.com/c/QrfOTC/E8OCH

3

The structure of this chapter is as follows. We start by introducing different
concepts of the software engineering field that are relevant for this chapter.
Section 3 introduces a generic approach in which TDD is employed for grading
student projects and discusses the design decisions and the benefits of the
approach. Section 4 presents a case study on how we have applied the
approach in practice. We analyze the results in Section 5. Finally, we draw
conclusions in Section 6.

2 Software development concepts

Traditionally software is developed in phases starting from the requirements of
the application, then its design and implementation. When the implementation
is completed, it is tested to see if it satisfies the requirements. In software
testing, the implementation (code) is executed with different test inputs and the
test outputs are checked if they correspond to the expected outputs. The latter
are typically derived from the requirements or specification of the software.
Whenever the test outputs correspond to the expected outputs we assign a
passed verdict to the test, otherwise a failed one.

The development phases are typically combined into different software
development processes such as waterfall, agile, etc depending on the
characteristics of the application to be developed and of the structure of the
development team.

2.1 Test-Driven Development

Originating from Extreme Programming practices, Test-Driven Development
(TDD) (Beck 2003) is a software development process that requires tests to be
written before the implementation of the code is started. The TDD process is a
cycle that is repeated over and over until all the tests pass (Beck 2003), as
shown in Figure 1.

Fig. 1. Test-driven development cycle.

https://paperpile.com/c/QrfOTC/0EnNt
https://paperpile.com/c/QrfOTC/0EnNt

4 Truscan, D. et al.

● Write a test. Every new feature begins with writing a test. The test should
be brief and clearly expressed. Writing a test before the code is
implemented motivates the developers to think first about the requirements,
the design of the system and the way it should work.

● Run and check if the test fails. The test is expected to fail since the
application code does not exist yet. This step emphasizes the target feature
for the developers. If the test passes, it must be re-written to fail.

● Write code. Write just enough production code to fulfill the test.
Programmers need to be careful not to implement further than the
functionality of the test.

● Run all tests. If all tests pass, it means the new code does not break any
existing features and the new test is satisfied. If they fail, the new code has
to be modified until all tests pass.

● Refactor code. In this step, the code is refactored, by cleaning it up,
removing duplication, or improving its readability and maintainability. The
test cases are re-run frequently to ensure the refactoring code does not alter
unrelated features.

The main benefit of TDD is that when writing new code, the test cases can act
as a guideline, so the developers can conveniently follow, resting assured that
they are on track and no feature’s specification is missing (IBM n.d.).
Additionally, by running tests throughout the development process, feedback is
given regularly and no code left untested. Moreover, developers spend less
time on debugging and fixing errors. Although TDD is not a miracle solution
to eliminate all bugs, more tests mean better code coverage, and that will
reduce the cost of maintenance and a large number of bugs (IBM n.d.).
Combined with a version control system, when a test fails, TDD helps to
identify the error quickly and more productively. TDD can also lead to more
clean, modularized, and extensible code because of the constant refactoring.
The code is tidier, well documented, which allows other team members to
understand it. This makes the application under development more suitable for
future enhancement or expansion.

TDD also has some limitations. Different authors report that TDD‘s slow
learning curve makes it difficult to adopt. In addition, the final product may be
too biased by the way the tests were created and the requirements provided
may not be complete or well-specified. Furthermore, if the project
specifications and requirements are not studied and analyzed well enough,
passing tests could cause a false sense of safety. Due to the nature of TDD, it
has a long learning curve. Additionally, writing and maintaining an
overwhelming number of tests costs time and resources, particularly for small
teams. It takes approximately as much as 16% more development time than
that of the traditional approach where tests are created after the implementation
is completed (George and Williams 2004).

https://paperpile.com/c/QrfOTC/W6gP0
https://paperpile.com/c/QrfOTC/W6gP0
https://paperpile.com/c/QrfOTC/YTjUq

5

2.2 Software version control system

A version control system (VCS) (Spinellis 2005) is a tool that helps developers
to manage changes to source code over time so that they can recall them later if
needed. VCS keeps track of every modification from add or edit to move or
delete in a special kind of database. The types of file VCS can track are not
only source code, but also images, audio files, movies, or any other type of
digital asset.

For almost all software projects, the source code is the most critical central
part, and the teams are responsible for protecting it. A VCS, which is updated
frequently during the development, can also act as a backup storage. If some
files are lost due to accidents or human error, the team can quickly recover
them from VCS.

There are two popular types of version control systems: centralized and
distributed. Centralized version control systems store all files and the full
version history in one shared server. The developers retrieve some of the
source files from the central location, modify it and store it back to the central
location. In contrast, in distributed VCSs, the developers completely mirror the
project or repository, including the full version history. Then they make
changes locally to the files and submit them later to the centralized location.

Git is one of the most popular open-source versioning control systems and
several deployment servers are available for public use. For instance,
github.com is a Git repository hosting service where developers can version
and share their software. It provides services for both public and private
repositories. It offers several additional functionalities, such issue tracking
system, wiki pages, etc.

One interesting feature of github.com is that it is free to use for educational
purposes via the GitHub Classroom initiative. GitHub Classroom allows
lecturers to create assignments for which students submit code via the VCS,
track student progress, and integrate with useful third-party tools. It also scales
up for courses with a large number of students.

3 Approach

The proposed solution is to apply the concepts of TDD to evaluating and
grading student projects. We provide students with a set of acceptance tests at
the beginning of the project to be used as a reference by both the students
during the development of the project and by lecturers to evaluate and grade
the project after the deadline. The students are not allowed to modify the
provided acceptance tests, but they can add additional tests if they consider
them helpful for their implementation.

The approach is illustrated in Figure 2. The requirements of the project are
first specified. Then, the lecturers implement a reference project (similar to the
one expected to be delivered by students). The set of tests is created from the

https://paperpile.com/c/QrfOTC/8Laoo

6 Truscan, D. et al.

requirements of the project by the lecturers. However, in order to execute the
tests against the implementations created by the students, lecturers need to
decide and clearly specify the interface of the application in advance. The tests
are executed to verify the implementation of the project. This is an iterative
process which ends when tests for all requirements have been implemented.

The requirements specification, interface specification and the tests are
used to create a GitHub Classroom assignment. The assignment link is
provided to students. Whenever a student accesses the link, a new source code
repository is automatically created on GitHub, to which both the student and
the lecturers of the course have access. If a starter code is provided in the
initial assignment repository, it will be copied to the newly created student
repository. When students download (clone) their assignment repository to
their computer, they receive a copy of the started code, including the tests, and
they can start the implementation of their projects.

Fig. 2. Workflow of the proposed approach

The first time the tests are run against the project they will all fail since the
project is not yet implemented. The students will proceed with developing their
project and can run the tests regularly. As more features are implemented, the
tests will start passing. The tests serve as self-evaluation to the students on the

7

progress of their project. At the same time, the students should push their
project regularly to the repository for versioning and backing up the code.

When the deadline of the project is over, the code is already available in the
repository and the lecturers can evaluate the projects by pulling all student
projects from their corresponding repositories and running the tests to check
the progress and the completeness of the projects. In our approach, the last two
activities are performed automatically using a set of scripts and the Application
Programming Interface (API) of GitHub.

When the deadline of the project is over, the code is already available in the
repository. Lecturers can pull students’ projects and run acceptance tests to
evaluate their progress and completeness. In our approach, pulling and running
tests are performed automatically using a set of scripts and the Application
Programming Interface (API) of GitHub. Based on the result of the tests,
lecturers can create an overview report including the grades. Manual inspection
of the code can still take place if lecturers consider it necessary.

4 Case study

As an example of our approach, we show how we have applied it in practice in
an academic course on the development of web applications. In this course, the
students have to develop a web application, called YaaS (Yet Another
Application) similar to ebay.com, in which different users (sellers) can create
auctions to sell products, whereas other users (buyers) can make bids on ing
auctions. When the deadline for a given bid passes, the auction is adjudicated
to the highest bidder and the seller, buyer and other bidders are notified.

A Web Application is a computer program that provides dynamically
created content to be displayed in a web browser (Shklar and Rosen 2003). The
information between the client (i.e., the web browser) and the server is
exchanged via the HyperText Transfer Protocol (HTTP) (Fielding and Reschke
2014). HTTP is a stateless request/response protocol. In a typical interaction,
the client submits a request to a server, the server processes the request and
returns a response to the client, most often formatted using the HyperText
Markup Language (HTML) (Krause 2016).

In this course, we required that the YaaS application was implemented by
students using the Django Web framework (Holovaty and Kaplan-Moss 2009),
which is based on the Python programming language (van Rossum et al. 2008).

4.1 Initial Project artefacts

In order to apply the process proposed in Section 3, the lecturers of the course
created three artefacts to be delivered to students: requirements specification,
interface specification, and the acceptance tests. We detail them in the
following.

https://paperpile.com/c/QrfOTC/FhhNQ
https://paperpile.com/c/QrfOTC/9y0GZ
https://paperpile.com/c/QrfOTC/9y0GZ
https://paperpile.com/c/QrfOTC/gVD92
https://paperpile.com/c/QrfOTC/6oWtK
https://paperpile.com/c/QrfOTC/JnRBK

8 Truscan, D. et al.

Requirements specification document. The requirements of the project are
specified using use cases, for instance, the user should be able to sign up, sign
in, sign out, create items, delete items, etc. In total, the YaaS application has 12
use cases, each having different levels of complexity. Each use case is
decomposed into several functional requirements, such as the user should be
able to log in with valid credentials or an error message should be displayed if
invalid credentials are used. To summarize, the YaaS application has 41
functional requirements.

With respect to the grading of the project, each use case gives a predefined
number of points depending on its complexity. The number of points given by
each use case is clearly mentioned in the requirements specification document
as a hint to the students on the importance and expected complexity of the use
case. The points for a use case are obtained only if all the requirements
associated with the use case are implemented correctly. This grading approach
is specific for this particular course and project, but it can be customized in
other courses.

Interface specification. An interface specification is created to reflect all the
requirements of every use case in terms of the interface of the application. The
interface specification file describes what are the URLs used by each user case,
what HTTP requests can be sent to those URLs, what parameters they require,
and what is the expected response. An example of interface specification for
use case UC1-Create user account is given in the following Table 1.

Table 1. Example of interface specification for UC1

Use case UC1 - Create a user account

URI /signup/

Allowed HTTP methods GET – get a signup form, return code 200.
POST – create a user with username and password
● Sign up without a password, means invalid data, return status code

200.
● Sign up with an already taken username, return status code 400, and

an error message is present in the response content (HTML).
● Sign up with an already taken email, return status code 400, and an

error message is present in the response content (HTML).
● Sign up with valid data, return status code 302 because the page

would redirect to the index page after a successful signup.

Example request: HTTP1.1 POST /signup

Example expected response: HTTP1.1 302 Redirect
{
“username”: “user1”,
“password”: “Password1”,
“password1”: “Password1”,
“password2”: “Password1”,
“email”: “user1@mail.com”
}

mailto:user1@mail.com

9

Acceptance tests. In order to verify that different project requirements are
implemented successfully by students, we create one or several tests for each
requirement. Since each requirement belongs to one use case, we group the
tests belonging to requirements of the same use case under one test case (see
Figure 6). The tests are implemented based on the given interface specification.
For convenience we have implemented them in the Python programming
language, using the Python unit testing library. However, other programming
languages can be considered because the application interface is clearly
specified and the acceptance tests are not dependent on the programming
language used for the implementation of the application.

For instance, use case UC1 has five requirements. One of the tests for one
of the requirements is shown in Figure 3 as a test method. The test verifies
requirements REQ1.1 (lines 2-3) by sending an HTTP POST request to the
signup/ URL (line 9) and providing a set of parameters via the context variable
defined at lines 4-8. The test expects (line 10) that the application will return an
HTTP response message with status code 302, in which case the test will be
marked as PASS otherwise as FAIL.

1

2

3

4

5

6

7

8

9

10

11

12

def test_sign_up_with_valid_data(self):
REQ1.1 Sign up with valid username, password and
password confirmation, should return status code 302
 context = {
 "username": "testUser3",
 "password": "!@ComplicatedPassword123",
 "email": "user1@mail.com"
 }
 response = self.client.post("signup/", context)
 self.assertEqual(response.status_code, 302)
 # calculate points
 self.class.number of passed tests += 1

 Fig. 3. Example of a test of requirement REQ1.1

When the test is successful (PASS verdict), line 12 will be executed and the

number of points scored by the entire project will be increased by 1.

4.2 Support for automatic grading

Every test case corresponding to a use case has some class-level variables to
track and show the number of tests, passed tests, and points of the test case, as
shown in Figure 4.

1

2

3

number_of_passed_tests = 0 # passed tests in this test case
tests_amount = 5 # number of tests in this suit
points = 1 # points granted by this use case if all test pass

 Fig. 4. Example of points awarded for a given use case

10 Truscan, D. et al.

When a test case completes its execution, a global method is invoked to
calculate points aggregated from the individual tests. The method in Figure 5
checks if all tests of the test case are passed (line 3). If there is a failed test, the
system will prompt a failure message (line 4). Otherwise, the method adds the
points of this use case to the total number of points of the project (line 6-7) and
the system will print a success message (line 11) to the user.

1

2

3

4

5

6

7

8

9

10

11

def calculate_points(number_of_passed_tests, amount_of_tests,
 points_of_the_use_case, use_case_name):

 if number_of_passed_tests < amount_of_tests:
 print("{} fails!".format(use_case_name))
 else:
 global current_points
 current_points += points_of_the_use_case
 msg = """{} passed, {} points,
 Current points: {}/30""".format(use_case_name,
 points_of_the_use_case, current_points)

 print(msg)

Fig. 5. Code for calculating the points of the project

4.3 Feedback to students

During the course, the students receive three types of feedback:
● From the execution of the acceptance tests, students receive feedback

when a feature is implemented or not (if its tests pass or not). In addition,
we have tried to implement the tests to provide informative error
messages. As mentioned in the paper, after each execution of the tests, the
students get an automated evaluation of the grade of the project. This is a
continuous process.

● Throughout the course, during lectures and labs, the students can ask
questions on different aspects related to the teaching material, coding
practice or the project implementation from course assistants and
lecturers. This is also a continuous process.

● When their project is evaluated, besides checking the project with
automated tests, the lecturers also inspect the code and provide the final
feedback on the project.

In the following, we will focus on the first type of feedback that is an outcome
of our proposed method.

At the beginning of the project implementation, all acceptance tests will
fail, since no implementation is yet available. A simplified example of a test
report where all the tests fail is shown in Figure 6.

11

Fig. 6. Example of failed tests.

By having the acceptance tests readily available, the students can check at
any moment the status of their implementation. After each execution of the
acceptance tests, a report will show what tests have failed or passed and how
many points a project has currently earned. Students can inspect the test failure
in more detail. Figure 7 shows the test report for the same tests as in Figure 6,
when the functionality of the web application satisfies the requirements of the
project.

Fig. 7. Example of passed tests.

The students should frequently commit their projects to the GitHub for
backup and versioning purposes. When the deadline for project submission has
passed, the latest version in the repository will be considered for grading.

4.4 Support for automatic grading by lecturers

In order to automate the grading process, a set of scripts has been implemented
to automate different steps performed by the lecturers. The scripts, written in
Python, use the GitHub API to download all student projects from GitHub
Classroom and store them in a local folder. Then, they execute the tests on
each project and save the test report results in a grading report file with the
structure presented in Table 2. For each student, the report includes: name of
the student, date of running the script, points received by each use case, the
total number of points earned by the student, and the link to the repository of
the project.

12 Truscan, D. et al.

Table 2. Example of the grading report for the course

Student Date UC1 UC2 … Total Repo link
Student A 25/03/2020 1 1 … 16 https://github.com/…
Student B 25/03/2020 1 0 … 18 https://github.com/…
Student C 25/03/2020 0 1 … 15 https://github.com/…

These scripts can be run not only at the end of the course after the deadline

for project submission has passed, but also regularly (e.g., weekly) to check the
progress of the students during the course. This allows them to provide
additional support or change the pace of the lectures according to the needs of
the students.

5 Discussion and evaluation

As discussed earlier in this work, TDD brings some benefits but it may also
have some limitations. In order to cope with the slow learning curve, we have
provided detailed requirements and interface specifications, and a project
skeleton to facilitate quick adoption of TDD concepts. In order to make sure
that the requirements and the tests were well-specified, the initial effort was
allocated by lecturers to create the tests, the reference project, and the interface
specification. Having the reference project implemented in advance, also
allowed us to make sure that all requirements are testable and to detect and
remove possible inconsistencies.

Another perceived limitation of TDD, is that one can create an
implementation that passes the tests without implementing the expected
behavior of the application and thus providing a false level of confidence. In
our approach, this risk is reduced by the way the tests were designed. Some
tests were inherently dependent on each other and sharing data. For instance,
one test checked if the user can create an account, another test checked if the
user can log in with the specified account which should have been created by
the previous tests. This is not a complete bullet-proof approach, and for that
reason, the lecturers also inspect the code manually to detect possible problems
practices.

Additional effort has been required to specify the application interface, but
this was a tradeoff for having automated tests for the project. When creating
the interface several design decisions had to be made which limited the
implementation freedom of the students, in our opinion, but that was an
acceptable compromise and we consider that it still satisfied the learning
objectives of the course.

For the YaaS application, we have implemented 41 tests in total. We have
evaluated the approach in one edition of the course in which 60 students
submitted projects. After the deadline, we were able to run the automated tests

13

on all 60 projects submitted by students in around 110 minutes on a Windows
10 laptop featuring an Intel i7-7500U CPU with two cores at 2.90GHz and
16GB of RAM. This means less than two minutes per project. Roughly 5
minutes of additional time was allocated on average for manual code
inspection. This activity was largely performed for giving feedback and
recommendations to the students. Overall, we have observed a reduction of
more than 65% in the grading time.

The submitted student projects, which received the highest grade, had more
than 90% of the project requirements implemented and between 1490 and 2050
lines of code. The acceptance tests we provided achieve between 77% and 91%
coverage of the source code, which shows that the acceptance tests give a good
metric for the overall quality of the project.

The feedback from the students, collected via interviews and course
feedback forms, was in general positive. Most of them liked the approach and
considered useful to have the acceptance tests available from the beginning. In
addition, they appreciated not only the fact that they could estimate the grade
in advance, but they can also utilize the tests as guidelines during the
development of their project. However, there were some students that
considered that the TDD approach and the use of GitHub for versioning
required a different mindset and new technical skills. Nonetheless, we consider
that these technical skills are useful and mandatory for any computer
engineering student.

Based on this preliminary evaluation, we plan to re-apply the approach in
the next editions of the course and, in addition, to extend it to other software
development courses at our university.

6 Related work

Automatic grading of assignments is not a novel topic and several researchers
have already addressed this topic in the past with similar approaches.

Edwards (S. H. Edwards 2003) presents his vision and tool support for
automatic grading (S. Edwards 2003) in which TDD should be used in all
programming assignments starting from the first year of the Computer Science
education. Differently from our approach, Edwards suggests that the students
are required to create their own tests to accompany the code that they write,
and these tests are evaluated against a reference implementation. Similar to
our approach, he proposes an automated assessment tool to which the students
submit their code, with the difference the tool is assessing both the correctness
of the student tests and of the application. In addition, the tool provides static
checks and feedback on the coding style which in our approach is performed
manually in class and at the end of the course.

Janzen and Saiedian (Janzen and Saiedian 2006) propose test-driven
learning as a way of using TDD for teaching both testing and programming. In
practice, they suggest that different programming examples and small

https://paperpile.com/c/QrfOTC/9NLU
https://paperpile.com/c/QrfOTC/EI4w
https://paperpile.com/c/QrfOTC/d98c

14 Truscan, D. et al.

assignments are accompanied by tests (assert statements) that would indicate
to students both the expected interface and the expected behavior of the
program. The main benefits perceived from their approach is that they can
improve the teaching of programming via examples accompanied by tests.
Differently from their approach, the goal of our work is automated acceptance
testing of student programming projects as a way of guiding the students
during their work.

Pilla (Pilla 2017) utilized GitHub and Travis CI, a continuous integration
(CI) service that integrates with GitHub, to build an automatic testing
environment for students. Although the work was conducted on some simple
C-code assignments, the preliminary results showed great potential.
Comparably, Cai and Tsai (Cai and Tsai 2019) applied a similar solution to an
Android application development course with improved security.

However, neither of them used a starter repository in their solution. Our
approach is also different from theirs because we follow TDD to create a
starter repository. Students should download the repository and start working
immediately. We do not use any continuous integration (CI) service; instead,
we have implemented our approach to automatically download student
projects, grade them and generate a detailed course-level report. From our
experience, a continuous integration does not provide a global view on all
student repositories, and it requires students to commit code frequently to be
relevant. With our approach, we can retrieve student projects at any time we
want and have all the information about those projects in the report. Our
approach also allows lecturers to update the starter repository and even student
repositories.

7 Conclusions

This chapter introduced an automated approach for evaluating student projects
by employing the concepts of the test-driven development approach and by
taking advantage of community-based tools such as GitHub. We have applied
and evaluated the approach in an academic course on developing web
applications. Even though we used a specific development framework in that
course such as Django, the approach can be easily adapted and applied with
other tools and development environments.

The approach required some extra efforts in the beginning, when creating
the tests and the interface specification and developing the scripts used for
automatic grading and reporting of all student projects. But these artefacts were
created only once and they can be reused in future editions of the course.

Depending on the course settings, the implementation of the reference
project can be omitted, which will be in the true spirit of TDD. However, to
make sure that the expectations from student projects are realistic we consider
it advisable.

https://paperpile.com/c/QrfOTC/JGhnr
https://paperpile.com/c/QrfOTC/SnIOa

15

The evaluation showed benefits with respect to both the early feedback that
the approach provides to students, but also in speeding up the course grading
process. The latter makes the approach a good candidate for online courses
with a large number of participants.

In future work, we plan to evaluate the approach in future editions of the
course and to measure its impact on the grades of the students. To this extent,
we plan to run controlled experiments in which a part of the students will use
the TDD approach and the other part the manual approach. In addition, we
plan to reapply the approach in other courses on software development in order
to evaluate its benefits and limitations.

Last but not least, we consider that by having an automatic grading
approach, we are not aiming at minimizing the lecturer-student interaction, but
by providing clear quantifiable expectations on the course goals and in
automating tedious tasks.

Acknowledgements

This work has received partial funding from the Electronic Component
Systems for European Leadership Joint Undertaking under grant agreement No
737494. This Joint Undertaking receives support from the European Union’s
Horizon 2020 research and innovation programme and Sweden, France, Spain,
Italy, Finland, the Czech Republic.

References

Beck, Kent. 2003. Test-Driven Development: By Example,. Boston, MA:
Addison-Wesley.

Cai, Yun-Zhan, and Meng-Hsun Tsai. 2019. “Improving Programming Education
Quality with Automatic Grading System.” In Innovative Technologies and
Learning, edited by L. Rønningsbakk, T. T. Wu, F. Sandnes, and Y. M. Huang,
11937:207–15. Lecture Notes in Computer Science. Springer, Cham.

Cuong Huy Tran, Dragos Truscan, Tanwir Ahmad. 2020. “Applying Test-Driven
Development to Evaluating Student Projects.” In 6th International Conference on
Higher Education Advances (HEAd’20).

Edwards, Stephen. 2003. “Using Test-Driven Development in the Classroom: Providing
Students with Automatic, Concrete Feedback on Performance.” In Proceedings of
the International Conference on Education and Information Systems: Technologies
and Applications EISTA. Vol. 3.
http://web-cat.org/publications/Edwards-EISTA03.pdf.

Edwards, Stephen H. 2003. “Rethinking Computer Science Education from a Test-First
Perspective.” Companion of the 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications - OOPSLA
’03. https://doi.org/10.1145/949344.949390.

Fielding, R., and J. Reschke. 2014. “Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. RFC 7230.”

George, Boby, and Laurie Williams. 2004. “A Structured Experiment of Test-Driven

http://paperpile.com/b/QrfOTC/0EnNt
http://paperpile.com/b/QrfOTC/0EnNt
http://paperpile.com/b/QrfOTC/0EnNt
http://paperpile.com/b/QrfOTC/0EnNt
http://paperpile.com/b/QrfOTC/SnIOa
http://paperpile.com/b/QrfOTC/SnIOa
http://paperpile.com/b/QrfOTC/SnIOa
http://paperpile.com/b/QrfOTC/SnIOa
http://paperpile.com/b/QrfOTC/SnIOa
http://paperpile.com/b/QrfOTC/SnIOa
http://paperpile.com/b/QrfOTC/E8OCH
http://paperpile.com/b/QrfOTC/E8OCH
http://paperpile.com/b/QrfOTC/E8OCH
http://paperpile.com/b/QrfOTC/E8OCH
http://paperpile.com/b/QrfOTC/E8OCH
http://paperpile.com/b/QrfOTC/EI4w
http://paperpile.com/b/QrfOTC/EI4w
http://paperpile.com/b/QrfOTC/EI4w
http://paperpile.com/b/QrfOTC/EI4w
http://paperpile.com/b/QrfOTC/EI4w
http://paperpile.com/b/QrfOTC/EI4w
http://web-cat.org/publications/Edwards-EISTA03.pdf
http://paperpile.com/b/QrfOTC/EI4w
http://paperpile.com/b/QrfOTC/9NLU
http://paperpile.com/b/QrfOTC/9NLU
http://paperpile.com/b/QrfOTC/9NLU
http://paperpile.com/b/QrfOTC/9NLU
http://paperpile.com/b/QrfOTC/9NLU
http://paperpile.com/b/QrfOTC/9NLU
http://dx.doi.org/10.1145/949344.949390
http://paperpile.com/b/QrfOTC/9NLU
http://paperpile.com/b/QrfOTC/9y0GZ
http://paperpile.com/b/QrfOTC/9y0GZ
http://paperpile.com/b/QrfOTC/YTjUq

16 Truscan, D. et al.

Development.” Information and Software Technology 46 (5): 337–42.
Holovaty, Adrian, and Jacob Kaplan-Moss. 2009. “The Definitive Guide to Django.”

https://doi.org/10.1007/978-1-4302-1937-8.
IBM. n.d. “Test-Driven Development.” Accessed April 20, 2020.

https://ibm.com/garage/method/practices/code/practice_test_driven_development/.
Janzen, David S., and Hossein Saiedian. 2006. “Test-Driven Learning.” Proceedings of

the 37th SIGCSE Technical Symposium on Computer Science Education - SIGCSE
’06. https://doi.org/10.1145/1121341.1121419.

Krause, Jörg. 2016. “HTML: Hypertext Markup Language.” In Introducing Web
Development, 39–63. Apress, Berkeley, CA.

Pilla, Mauricio Lima. 2017. “Teaching Computer Architectures through Automatically
Corrected Projects: Preliminary Results.” International Journal of Computer
Architecture Education 6 (1): 62–67.

Rossum, Guido van, Raymond Hettinger, Nicholas Coghlan, Jack Diedrich, David
Beazley, and David Mertz. 2008. The Python Programming Language. Prentice
Hall Open Source Software Development Series. Prentice Hall PTR.

Shklar, Leon, and Richard Rosen. 2003. Web Application Architecture: Principles,
Protocols and Practices. Wiley.

Spinellis, D. 2005. “Version Control Systems.” IEEE Software 22 (5): 108–9.

http://paperpile.com/b/QrfOTC/YTjUq
http://paperpile.com/b/QrfOTC/YTjUq
http://paperpile.com/b/QrfOTC/YTjUq
http://paperpile.com/b/QrfOTC/6oWtK
http://paperpile.com/b/QrfOTC/6oWtK
http://dx.doi.org/10.1007/978-1-4302-1937-8
http://paperpile.com/b/QrfOTC/6oWtK
http://paperpile.com/b/QrfOTC/W6gP0
https://ibm.com/garage/method/practices/code/practice_test_driven_development/
http://paperpile.com/b/QrfOTC/W6gP0
http://paperpile.com/b/QrfOTC/d98c
http://paperpile.com/b/QrfOTC/d98c
http://paperpile.com/b/QrfOTC/d98c
http://paperpile.com/b/QrfOTC/d98c
http://paperpile.com/b/QrfOTC/d98c
http://dx.doi.org/10.1145/1121341.1121419
http://paperpile.com/b/QrfOTC/d98c
http://paperpile.com/b/QrfOTC/gVD92
http://paperpile.com/b/QrfOTC/gVD92
http://paperpile.com/b/QrfOTC/gVD92
http://paperpile.com/b/QrfOTC/gVD92
http://paperpile.com/b/QrfOTC/JGhnr
http://paperpile.com/b/QrfOTC/JGhnr
http://paperpile.com/b/QrfOTC/JGhnr
http://paperpile.com/b/QrfOTC/JGhnr
http://paperpile.com/b/QrfOTC/JGhnr
http://paperpile.com/b/QrfOTC/JnRBK
http://paperpile.com/b/QrfOTC/JnRBK
http://paperpile.com/b/QrfOTC/JnRBK
http://paperpile.com/b/QrfOTC/JnRBK
http://paperpile.com/b/QrfOTC/JnRBK
http://paperpile.com/b/QrfOTC/FhhNQ
http://paperpile.com/b/QrfOTC/FhhNQ
http://paperpile.com/b/QrfOTC/FhhNQ
http://paperpile.com/b/QrfOTC/FhhNQ
http://paperpile.com/b/QrfOTC/8Laoo
http://paperpile.com/b/QrfOTC/8Laoo
http://paperpile.com/b/QrfOTC/8Laoo

