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Abstract. Task-based programming models are emerging as a promis-
ing alternative to make the most of multi-/many-core systems. These
programming models rely on runtime systems, and their goal is to im-
prove application performance by properly scheduling application tasks
to cores. Additionally, these runtime systems offer policies to cope with
application phases that lack in parallelism to fill all cores. However, these
policies are usually static and favor either performance or energy effi-
ciency. In this paper, we have extended a task-based runtime system
with a lightweight monitoring and prediction infrastructure that dynam-
ically predicts the optimal number of cores required for each application
phase, thus improving both performance and energy efficiency. Through
the execution of several benchmarks in multi-/many-core systems, we
show that our prediction-based policies have competitive performance
while improving energy efficiency when compared to state of the art
policies.

Keywords: Energy efficiency · Resource management · Resource shar-
ing · OmpSs-2 · Predictions · Monitoring · Cost

1 Introduction

High-performance computing (HPC) systems are widely used to execute appli-
cations from many domains, such as financial computing, medical applications,
and video and image processing. These systems are usually based on many-
/multi-core architectures with heterogeneous memory and computing devices.
Often, this implies the existence of complex memory hierarchies and technolo-
gies that evolve each year. Hence, application developers need productive and
efficient tools to keep pace with the growing power of HPC systems. Task-based
programming models have emerged as a promising alternative to develop com-
plex applications on those systems. These models provide high-level abstractions
to increase the productivity of application developers, and they rely on runtime
systems to cope with system complexity. The main goal of a runtime system
is to dynamically schedule application tasks to cores to optimize performance.
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However, these runtime systems must also cope with application phases with
low parallelism that leave some of the cores without any task to execute. In this
scenario, runtimes implement resource management policies to handle idle cores.

Commonly, resource managing policies focus on either improving perfor-
mance or energy efficiency. Policies aiming to improve application performance
adopt greedy strategies that always use all the available computational resources.
A clear example would be OpenMP’s [17] active policy, in which idle threads are
actively checking for new work, consuming processor cycles and energy. On the
other hand, techniques such as the ones in OpenMP’s passive policy are used
when the goal is to improve energy efficiency. In this case, idle threads imme-
diately yield the processor to avoid contention inside the runtime and minimize
the energy consumed. However, neither of these policies is adaptive enough to
optimize both energy consumption and performance.

In order to tackle this challenge, two different hybrid approaches have been
explored in the past [4,24]. The first one tries to improve performance-driven
policies by adopting a greedy strategy for some time and, if no work is found in
this period, yielding the processor to minimize energy consumption. Although it
has positive effects on energy efficiency, the explored proposals struggle to find
an optimal frequency to switch between policies. The second approach is based
on policies that favor energy efficiency, in which idle resources are woken up at
a specific frequency to check if new work is available. Similarly for both, finding
a frequency that suffices all cases is a hassle.

In this work, we propose a novel resource management policy that can simul-
taneously optimize performance and energy efficiency. Our policy relies on the in-
formation provided by our monitoring and prediction framework to dynamically
predict the number of cores that are required for each application phase. The
main contributions of this work are: (i) the creation of the monitoring and pre-
diction infrastructure, which is capable of making precise workload predictions
for task-based programming models; (ii) the design of prediction-based resource
managing policies; and (iii) the enhancing of existent resource-sharing policies
through predictions. Through the execution of distinct well-known benchmarks
across different many-core/multi-core architectures, we show that:

– We equal – and sometimes beat – the performance of state of the art policies
that prioritize performance.

– Our policies also equal and, in some scenarios, beat the energy efficiency of
state of the art policies that prioritize energy efficiency.

– Enhancing resource-sharing techniques through predictions simultaneously
improves performance and energy efficiency.

The remainder of this paper is structured as follows. In Section 2, we discuss
state of the art resource managing strategies in different parallel programming
models. Next, in Section 3, we give insight into our monitoring and prediction
infrastructure and improved prediction-based policies. In Section 5, we present
the evaluation of our proposals across different systems and various benchmarks.
In Section 6 we go over related work and state of the art policies. Finally, in
Section 7 we give concluding remarks and comment on future work.
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2 Background

In this paper, we study the enhancement of performance and energy efficiency
through resource management policies for one of the most widespread parallelism
strategies: tasking. In tasking, parallelism is specified through tasks, – i.e., the
basic unit work – which are blocks of code that can be executed concurrently.
The data flow of an application is specified through dependencies between tasks,
which are annotated by users. OpenMP and OmpSs-2 are some programming
models that can be used to exploit task-level parallelism. In OpenMP, users
define parallelism through regions of code in which two or more threads may
execute simultaneously. On the other hand, in OmpSs-2, there is an implicit
parallel region that covers the whole application. This allows resource manage-
ment to be more malleable since, at any point in the execution, the runtime
system can idle or resume threads.

Regardless of the programming model, threads that are not doing useful
computation at a given time – e.g., while they are in a barrier – must wait for
a new workload. While waiting, threads behave differently depending on the
underlying resource managing policies. Next, we describe conventional policies
in the literature, along with their advantages and flaws.

Active or Busy Policies: In these, waiting threads are kept busy-waiting
until work is available. Depending on the underlying runtime, this policy allows
for an instant reaction to the creation of work. Nevertheless, it is a static policy
that cannot adapt to workload changes. This exposes two main drawbacks in
most OpenMP implementations. The first one is dealing with the contention
caused by threads constantly polling shared data structures. In OmpSs-2, this
problem is resolved through subscription locking techniques. However, energy
efficiency – the second drawback – is ignored in the policies of both models, as
threads consume processor cycles while busy-waiting.

Figure 1 exemplifies the number of active CPUs over time for a parallel region
which has two different workload phases. The first phase (α) has enough work
for six CPUs, while the second one (β) has enough work, on average, for four
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Fig. 1: Behavior of busy (left), idle (middle), and prediction policies (right)
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and a half CPUs. In this scenario, in busy policies – left part of the figure – at
all times there are eight threads actively polling for work.

Passive or Idle Policies: In these, waiting threads do not consume pro-
cessor cycles. These policies are usually not reactive, as they are implemented
by idling threads for a constant amount of time. This causes benefits for en-
ergy efficiency but may be adverse for performance. In OmpSs-2, as tasks are
created, threads are resumed so they may poll once again. This allows for an in-
stantaneous reaction to the addition of work, which makes it more reactive than
OpenMP. Taking into account the previous example, the middle part of Figure 1
shows that, in these policies, threads are regularly being resumed and idled onto
CPUs as the workload varies. Often, in fine-grained or irregular applications,
this causes substantial amounts of overhead.

Hybrid Policies: To solve all the previously listed issues, OpenMP users
can tune the rate at which waiting threads are idled and resumed. This enables
users to find a balance between energy efficiency and performance. However, the
chosen rate is a static value that cannot be changed at run-time. Therefore, this
method cannot cope with variability in irregular applications, as these may need
different rates throughout their executions.

Resource Sharing: OmpSs-2 offers an execution mode that integrates Dy-
namic Load Balancing (DLB). DLB [9] is a tool that is transparent to users
and enables runtimes or applications to share processing elements between each
other. This sharing is implemented through the Lend When Idle (LeWI) mecha-
nism. It showcases similarities when compared to the idle policy. When threads
poll for tasks and receive none, the CPU onto which they are executing is shared
– instead of being idle. For this reason, depending on the application, this pol-
icy is excessively reactive and makes adverse decisions when lending/acquiring
CPUs.

3 Improving Resource Managing Policies

As previously discussed, policies that do not look ahead are too naive to cope
with the challenge of enhancing both energy efficiency and performance. There-
fore, we advocate for policies that take into account workload predictions to
make better decisions when handling processing elements. Next, we describe (i)
the necessary elements to create a monitoring and prediction infrastructure to
equip runtime systems with the required information to create better policies,
and (ii) our approach towards finding a solution to the trade-off between energy
efficiency and performance with prediction-based resource managing policies.

3.1 Monitoring and Prediction Infrastructure

In order to tackle the drawbacks of current policies and the challenges exposed in
Section 2, we used a lightweight infrastructure capable of providing precise pre-
dictions with negligible overhead. Our infrastructure pinpoints critical changes
in tasks, threads, or CPUs. Whenever possible, these changes are tracked outside
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	#pragma	oss	task	label(merge)	cost(end-start)
	void	merge(int	start,	int	end,	float	*A)	{
			(...)
	}
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Monitoring

CPU	Manager
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	createTask(Task	*task,	void	*taskArgs)	{
			(...)
			Monitoring::taskCreated(...);
			Scheduler::addReadyTask(task);
			(...)
	}

Application	Code Runtime

Runtime	Code

Fig. 2: A glimpse of the monitoring and prediction infrastructure

the critical path of the runtime (i.e., synchronization points) so that the mod-
ule is as lightweight as possible. Furthermore, to produce negligible overhead in
fine-grained task scenarios, we combine the usage of atomic structures and the
aggregation of metrics in a per-thread and per-task type basis.

Another critical attribute is the precision of predictions. Averaging task ex-
ecution times is not precise enough due to the variability discussed in previous
sections. On top of that, two tasks of the same type may behave unexpectedly de-
pending on their input size. For instance, one of the inputs may be too large to fit
within the same cache hierarchy level. Thus, to solve this, we use the cost clause,
already proposed in previous works [15]. This clause specifies, in a rough way,
the computational weight of a task. Such information allows normalizing metrics
in order to extrapolate predictions for any task of the same type. Furthermore,
this clause is user-friendly and requires little effort, as its filler value should be
well-known to application developers. Figure 2 generally exposes all the elements
involved in the computation of predictions. Upon a task is created and placed
in the scheduler, the monitoring module predicts its metrics using past informa-
tion from similar tasks. Predictions are then accumulated and passed onto the
prediction module, which aids the resource manager by predicting the number
of resources to use for the current workload.

Algorithm 1 shows a pseudo-code that describes how resource utilization pre-
dictions are computed. As previously mentioned, timing metrics are aggregated
on a per-task type basis. This allows at any given time to have a precise pre-
diction of the available workload (Wij ) for every runtime status (i) and every
task type (j). With these and normalized information from the execution of past
tasks of every task type (αj), we can precisely approximate the elapsed execu-
tion time of the available workload (β). Once a prediction rate is chosen (f),
we can compute the optimal number of CPUs to utilize over that period (∆),
which takes into account the number of available tasks as well as their expected
execution time. This information is then passed to the resource manager so that
the current number of CPUs can progressively be trimmed or increased to meet
the prediction. Finally, to adapt to variability with haste, the normalized met-
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Algorithm 1 Algorithm to predict the optimal CPU utilization (∆)

Ti: Execution time of task i
Ci: Cost of task i
f : Prediction frequency
NCPUs: Maximum number of CPUs
Wij : Workload for runtime status i
and tasktype j
αj : Normalized cost for tasktype j
Mj : Number of tasks of type j

Ensure: 0 < ∆ ≤ NCPUs

1: function getCPUPrediction(...)
2: γ ← 0
3: j ← 0
4: while (γ < NCPUs) do

5: β ←
(Wreadyj

+Wexecutionj
)∗αj

f

6: γ ← γ + β
7: j ← j + 1
8: if i > Nruntime status then
9: break

10: end if
11: end while
12: ∆← min(γ,

∑tasktypen
j=0

Mj)
13: end function

rics are computed using a rolling window, which weights past metrics by their
occurrence. The more recent these previous metrics are, the more weight they
have towards the computation of their respective α.

3.2 Adaptive Prediction-Based Policies

Throughout Section 2, we describe the main flaws of current resource managing
policies. To enhance these policies, we propose predicting the optimal number
of CPUs at every point in time and at run-time. In other words, at a point in
time Ti, we decide the number of CPUs to be used until Ti + f , where f is the
time interval until the next prediction is made.

As shown in Section 3.1, our resource managing predictions are based on
task timing predictions. To compute the latter, we normalize task timing metrics
using their cost values in order to obtain normalized or unitary costs per task
type. These unitary costs roughly represent the amount of time spent in the
execution for each unit of cost of the task [15]. Then, we aggregate task costs
per task type and runtime status separately. With these two metrics, at run-time,
we compute the product of the accumulation of cost of all the task instances of
a specific type by the respective unitary cost metric. Since these unitary values
may vary over time, computing the product at run-time makes it susceptible
to changes, which is precisely our goal. Furthermore, we average these unitary
metrics using exponential moving averages. This allows them to be susceptible
to variability and update as executions progress.

To compute the current amount of available workload in the system, we take
into account ready and executing tasks. However, tasks in the executing status
cannot account for their entire predicted time, as they may already be deep
into their execution. To solve this, we aggregate task execution times through
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Algorithm 2 Pseudo-code of the behavior of threads within the CPU manager

∆: An atomic variable that holds the predicted optimal number of CPUs
δ: The current number of active CPUs
a: The action that triggered the call (polling or adding tasks)

1: function executePolicy(thread, a) . δ is updated in a thread-safe manner
2: if a == POLL then
3: if queue == ∅ then
4: if δ > ∆ then
5: δ ← δ − 1
6: idle(thread)
7: cpu ← getCPU(thread)
8: releaseCPU(cpu)
9: end if
10: end if
11: else [a == ADD]
12: if δ < ∆ then
13: idleThread ← getIdleThread()
14: idleCPU ← acquireCPU()
15: if idleCPU 6= ∅ then
16: δ ← δ + 1
17: resume(idleCPU, idleThread)
18: end if
19: end if
20: end if
21: end function

the parent-child link between tasks. When a task finishes, its execution time is
subtracted from the parent’s task predicted time, if it is available.

In Algorithm 2, we show a pseudo-code of how our CPU manager uses these
predictions. Rather than forcing the runtime to comply with the predicted num-
ber of CPUs (∆), we save this value in an atomic variable. Then, when threads
poll for tasks and none exist, if this value marks that the current number of
active CPUs must be decreased, the thread idles until further notice, so that it
does not consume CPU cycles. Reversely, when tasks are added into the sched-
uler and this value marks that more CPUs are required, idle threads are resumed
to execute these newly created tasks.

The main benefits of our policy are twofold. If we compare our prediction
policy to the idle or passive policies, a common feature is that they are both
highly reactive to changes in the available workload. However, predictions occur
at a specific rate. This allows our policy to avoid the overhead of continuously
waking and idling threads in fine-grained or irregular applications. This benefit
can also be seen as a middle ground between idle and busy policies. Taking into
account the example introduced in Section 2, Figure 1 shows the behavior of our
prediction policy (right part). The rate at which predictions are inferred avoids
multiple idling and resuming operations which, in the long run, adds up to avoid
substantial overhead.

Another primary benefit of our policy is the adaptiveness to the granularity
of tasks. Managing resources by only considering the number of ready tasks is
enough in some scenarios. Nonetheless, for applications with fine-grained tasks,
it would end up utilizing an excessive amount of CPUs for their workload. With
the prediction policy this is resolved, as it takes into account the predicted
granularity of tasks.
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3.3 Prediction-Based Sharing of Resources

Section 2 briefly introduces the DLB integration of OmpSs-2. This mode of exe-
cution, as previously mentioned, resembles the idle policy. As it is as reactive, it
may produce huge amounts of calls to the DLB library when lending or acquiring
CPUs. Such calls do not come for free; they introduce non-negligible overhead.

To fix this flaw, we propose to modify the mechanism within OmpSs-2 to
avoid making eager decisions. Our idea follows the same concept as the one
adopted in the prediction policy. Instead of letting threads decide when CPUs
are lent or acquired, we offload such decisions to an external prediction heuristic.
Similarly, this heuristic predicts the amount of workload currently available in
the system. Nonetheless, it is slightly modified to allow a superior number of
CPUs, as DLB may provide more CPUs than the ones currently available to the
runtime. When a thread polls for tasks and receives none, it will use the heuristic
to decide whether its CPU must be lent. Simultaneously, as soon as predictions
are inferred, the heuristic makes a single call to DLB in order to acquire as many
CPUs as required. Therefore, threads do not require to do it progressively.

4 Experimental Setup

The experiments we performed were run on Intel Xeon and KNL multi-core
systems, as shown in Table 1. In the same table, we also show the compilers
used in each system. We present all results as the arithmetic mean of five runs
for all metrics. To measure the energy efficiency, we consider the energy-delay
product (EDP), which correlates both performance and energy consumption
in only one value. To retrieve energy consumption metrics, we used the Intel
Running Average Power Limit library [7]. The evaluation is partitioned into
two phases. The first phase targets the measuring of overhead of our strategies
and a comparison between the policies in two versions of OmpSs-2 and different
OpenMP implementations. The second targets the evaluation of our prediction-
based strategy for resource sharing using DLB.

In our experiments, we used the Cholesky Factorization benchmark and the
High Performance Computing Conjugate Gradients1 (HPCCG) mini-application.

Table 1: Architectures used in our experimental setup
Name MN4 KNL
Processor Intel Xeon Platinum 8160 Intel Xeon Phi CPU 7230
Architecture Skylake Knights Landing
Frequency 2.10GHz 1.30GHz
# of Sockets 2 1
# of Cores 48 (24 x 2) 64
Memory 96 GB 96 GB
OS SUSE 12 SP2 SUSE 12 SP2
Intel Compiler 19.1.0.166 19.1.0.166
GNU Compiler 9.2.0 9.2.0

1HPCCG is implemented using multidependences, available in OpenMP 5.0 [17]. As
the Intel 2020.0 compiler does not support them, HPCCG-IOMP results are missing.
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The former decomposes a matrix into the product of a lower triangular matrix
and its conjugate transpose. The latter is based on the CG benchmark for a 3D
chimney domain. They are both highly scalable benchmarks that present varying
compute-intensive workloads. Furthermore, to test irregularity in applications,
we used two versions of Cholesky; one that produces coarse-grained tasks, and
another that creates an excessive amount of fine-grained tasks. Similarly, we
also covered both granularity scenarios for the MultiSAXPY benchmark, which
performs the SAXPY level one operation from the Basic Linear Algebra Subpro-
grams package [12]. Finally, to test our policies in memory-bound benchmarks,
we used Gauss-Seidel and STREAM. The former is a solver that simulates the
distribution of heat over time, and the latter is a benchmark that measures
memory transfer rates in MB/s. While Gauss-Seidel could be highly parallel,
to have a fair comparison against OpenMP, in the OmpSs-2 implementation we
include a barrier after each time step. This produces load imbalance but, simul-
taneously, makes it an ideal candidate to be combined with STREAM, which is
highly parallel and balanced.

5 Evaluation

Even though assessing the accuracy of our predictions was done in previous
works, in Table 2 we include results of the accuracy of task timing predictions
for all benchmarks and machines. In this table, we showcase the number of task
instances used to compute the accuracy results and the average accuracy of all
predictions. These predictions are then used towards calculating the optimal
number of CPUs to use, as shown in Algorithm 1. The (F) and (C) shown
next to benchmark names indicate whether the results are for the fine-grained
scenario or the coarse-grained scenario, respectively. Due to the low number of
task instances in coarse-grained Cholesky, CPU utilization predictions are based
only on the number of available tasks, which is the go-to approach when task
timing predictions are not available. Throughout the whole evaluation we used
the same prediction rate – f in Algorithm 1 – of 50 µs.

To measure the overhead of our monitoring infrastructure, we ran all the
previously mentioned benchmarks with varying task granularities. We compared
OmpSs-2s current busy policy against a modified version of the busy policy that
monitors metrics and infers predictions, but uses neither. We observed that for
extreme situations with millions of fine-grained tasks, our infrastructure adds,

Table 2: Average prediction accuracy of each benchmark and architecture
MN4

Benchmark Cholesky (F) Cholesky (C) HPCCG Gauss-Seidel Multisaxpy (F) Multisaxpy (C)
# of Instances 3*106 600 15000 25600 1*105 20000
AVG Accuracy 88.25% NA 78.45% 99.91% 70.63% 79.49%

KNL
# of Instances 3*106 600 15000 25600 1*105 20000
AVG Accuracy 92.65% NA 75.32% 99.81% 76.83% 86.12%
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in the worst case, a maximum overhead of 3% to the execution time. We believe
these overheads are negligible in comparison to the benefits we obtain.

Our evaluation comprises four different implementations: GCC OpenMP [16]
(gomp), Intel OpenMP [11] (iomp), OmpSs-2 using its linear regions depen-
dency system (oss2L), and OmpSs-2 using its improved discrete dependency
system (oss2D). For the OpenMP implementations, we evaluate all their avail-
able thread-waiting policies: active, passive, and a hybrid between both. For
the OmpSs-2 counterparts, we evaluate their current resource managing poli-
cies, busy and idle, and our prediction policy. Due to the similarities in their
concepts, we group the comparison as follows: Active/Busy, Passive/Idle, and
Hybrid/Prediction. In all figures, from left to right, we show the results of gomp,
iomp, oss2L, and oss2D.

Figure 3 showcases the normalized performance of all benchmarks, architec-
tures, and between all policies. For Cholesky’s coarse-grained scenario, Gauss-
Seidel, and HPCCG, the performance obtained using the prediction policy in
both OmpSs-2 versions either equals or surpasses the performance of all other
policies in MN4. In fine-grained Multisaxpy, comparing all the OmpSs-2 policies,
our policy yields either similar performance (in KNL) or surpasses other policies
(in MN4). Nonetheless, in the coarse-grained scenario in KNL, busy yields better
performance than prediction. We attribute this to the precision in predictions,
as shown in Table 2. This accuracy could be enhanced by taking into account
other metrics – as it is a memory-bound benchmark. Last but not least, in the
fine-grained Cholesky scenario, the prediction policy yields similar performance
when compared to OmpSs-2’s linear version. However, in the discrete version,
its performance remains between the busy and idle policies, being busy the most
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Fig. 3: Normalized performance w.r.t. the best scenario on each application
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performant. This difference between versions led us to find out that the moni-
toring infrastructure adds slightly more overhead in OmpSs-2’s discrete version,
as contention is minimal and the overhead shifts to other runtime modules.

Figure 4, shows the comparison of EDP between all policies and architec-
tures. Thus, in these plots, lower values are better. For coarse-grained Cholesky,
prediction policies obtain better results than any other policies in MN4. In KNL,
the only configuration that beats the prediction policy of OmpSs-2 discrete is
OmpSs-2 linear’s idle policy. As for the fine-grained scenario, OmpSs-2 discrete’s
prediction policy yields less EDP than any other policy for both architectures
except when compared to GOMP’s passive policy in KNL, as their results are
similar. In both Gauss-Seidel and HPCCG, prediction policies beat any other
policy in any implementation and architecture. Finally, for the coarse-grained
Multisaxpy scenario, EDP results in KNL are very similar across policies and im-
plementations. However, in MN4, prediction policies achieve considerably lower
EDP than any other policy except when compared to GOMP’s hybrid policy,
which obtains similar results. Both fine-grained and coarse-grained scenarios
present similarities. However, as predictions benefit from fine-grained and irreg-
ular applications, in MN4 prediction policies beat any other policy in EDP.

To further evaluate our predictions, we created a prediction-based policy for
the DLB execution mode of OmpSs-2. We chose to run the Gauss-Seidel simula-
tion along with the STREAM benchmark in MN4, as they vary in features and,
thus, combine perfectly when executed concurrently. For the former, we used an
input size that generates slightly coarse-grained tasks, while in the latter, we
chose an input size that generates fine-grained tasks. Thus, STREAM benefits
from the lack of workload of Gauss-Seidel after each time-step. In Table 3, we
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Table 3: Comparison of metrics between OmpSs-2 + DLB policies

Config.
Time (s) EDP # DLB Calls

Gauss-Seidel Stream Gauss-Seidel Stream Gauss-Seidel Stream
Single 87.4 78.3 1097330 1223111 – –
Concurrent 87.4 78.3 1705625 1434911 – –
Concurrent + DLB LeWI 100.9 73.3 2318388 1427072 768078 3392692
Concurrent + DLB Hyb. 101.5 74.3 2318244 1471916 890924 3169858
Concurrent + DLB Pred. 89.6 55.8 1849275 870269 69504 842634

show the average results of several executions with multiple configurations. We
executed both applications concurrently, each in a single NUMA node (half the
number of processors of the whole node) for the Concurrent configuration. To
take into account any possible noise between shared resources – e.g., cache pol-
lution or bandwidth thresholds – we also executed each application in a single
NUMA node on its own, which is shown as the Single configuration. Then, we
executed using DLB to share cores between applications in three configurations:
Concurrent + DLB LeWI is the default policy. Concurrent + DLB Hybrid is
a modified version of the DLB integration that only shares CPUs after several
failed attempts of polling tasks from the scheduler – hence the similar name to
OpenMP’s hybrid policy. For our experiments we chose 100 as the number of
attempts before a CPU is shared. Finally, Concurrent + DLB Prediction shows
the results of the DLB execution mode enhanced with our predictions.

In the LeWI policy, STREAM can benefit from the lack of workload of Gauss-
Seidel, thus reducing its execution time. Nevertheless, as this policy is extremely
reactive, the combination of the number of calls to DLB is around 4 million in
executions of 100 and 75 seconds, respectively. These calls add non-negligible
overhead. On top of that, since Gauss-Seidel lends CPUs for short amounts of
time in which neither applications can benefit, its execution time increases. To
try to tackle this flaw in fine-grained scenarios, we let threads spin for a while
before lending their CPU in the Hybrid version. Nevertheless, as shown, the
number of calls and execution time are similar to LeWi’s. By spinning before
lending, the runtime is stressed with more contention, thus leading to similar
execution times, EDP, and number of DLB calls. Finally, when enhancing the
LeWI policy with predictions (DLB Prediction), the results are promising. As
shown, the number of DLB calls is greatly reduced – 4 times fewer calls. Simulta-
neously, better decisions are taken both when lending and acquiring CPUs. This
leads to a 1.4x speedup for STREAM, similar execution times for Gauss-Seidel,
and a considerable reduction in EDP in STREAM as well. Furthermore, when
comparing EDP metrics between policies that use DLB and the Single policy, it
is noticeable that results are worse for the DLB counterparts. Since the Single
policy idles CPUs when they are not used, EDP is better than in DLB policies
where CPUs are never idled. Hence, if energy metrics are the primary target,
the Prediction policy in the non-DLB scenario would be preferable.

To visualize how prediction-based policies improve resource sharing, we add
the execution traces of the previous scenario for both the DLB + Hybrid policy
(left) and the DLB + Prediction policy (right) in Figure 5. To shorten execution
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traces, the execution of these benchmarks was slightly different in granularity of
tasks when compared to the results shown in Table 3, hence the slight difference
in execution time. The red series corresponds to the execution of Gauss-Seidel,
while the light-orange series corresponds to STREAM. In the prediction policy,
as shown, the granularity of sharing in resources is coarser. CPUs are not lent
unless they will not be used for a certain amount of time, and they will not be
acquired unless they truly are required. Reversely, in the hybrid policy, there are
still flawed decisions when lending or acquiring CPUs. As shown, there is much
sharing that could be removed to avoid both the delays in Gauss-Seidel and the
overhead of lending and immediately after re-acquiring CPUs.

6 Related Work

Resource Management: Techniques aiming to improve performance through
resource management have been thoroughly studied. Barekas et al. [2] and Cal-
listo [10] advocate for inter-process sharing of resources in their proposals. The
former presents a resource manager and a runtime system which, respectively,
distribute hardware resources to OpenMP applications and adapt their degree
of parallelism. Although it is capable of providing better performance than com-
mercial implementations of OpenMP, their approach offers no policies to improve
performance between parallel regions. Callisto is a resource management layer
for parallel runtime systems that coordinates the execution of parallel applica-
tions. It consists of (i) a dynamic scheduler that defines which jobs can execute
in parallel; and (ii) a low-level API to manage synchronization points. However,
it assumes that parallel sections of jobs are CPU-bound and that runtime sys-
tems need to be adapted to use Callisto. Eichenberger et al. [8] propose a model
to control thread affinity for OpenMP applications. However, their work does
not present any advances regarding the optimization of resource management
policies.

Other proposals [4,24] have focused on our primary target, optimizing re-
source policies to improve performance or maintain it while improving energy
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Fig. 5: Execution traces of hybrid (left) and prediction (right) DLB policies
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efficiency. In this line, Boguslavsky et al. [4] investigate different strategies to
determine for how long processes should spin before blocking. Even though their
results are promising, such static values cannot cope with irregular applica-
tions that may need different blocking rates throughout their executions. To
deal with oversubscription in OpenMP applications, Yan et al. [24] define five
policies: spin busy, spin pause, spin yield, suspend, and terminate. However, in
OpenMP, such policies cannot change within parallel regions. Thus, this ap-
proach flaws similarly. On the other hand, our approach is capable of dealing
with such situations, as our policies can adapt at any point in the execution.

Thread Malleability within Parallel Regions: A number of studies, such
as Thread Reinforcer (TR) [19], Feedback-Driven Threading (FDT) [23], and
ACTOR [6], investigate on optimizing either performance or energy by tuning
the number of threads in parallel regions. TR [19] is a framework in which appli-
cations are executed multiple times with varying numbers of threads. FDT [23]
adapts the number of threads by considering contention in locks and memory
bandwidth. ACTOR [6] is a system that aims to improve the energy efficiency
of parallel applications. In it, artificial neural networks are used to predict the
number of threads to execute each parallel region. These previous approaches
require either warm-up executions or techniques that may introduce substantial
amounts of overhead when done at runtime. Several other studies target solu-
tions at run-time. LIMO [5] is a system that monitors applications and adapts
the execution accordingly. Parcae [20] is a framework that creates multiple par-
allel transforms of sequential programs and, at run-time, determines the degree
of TLP exploitation. Similarly, ParallelismDial [22] is a model that automat-
ically regulates the number of threads per region. Nonetheless, some of these
approaches tune applications specifically for input sets and architectures. Oth-
ers require OS support to intercept blocked threads to change their policies.

Energy Efficiency: Improving energy efficiency through resource manage-
ment policies has been investigated as well, in studies such as OpenMPE [1],
Benedict et al. [3], and LAANT [14]. In the former, an OpenMP extension de-
signed to improve energy management is proposed. In [3], the authors propose
an energy prediction mechanism for OpenMP applications using a Random For-
est Modeling approach. LAANT [14] is a library that aims at optimizing the
EDP metric. The study conducted in Porterfield et al. [18] similarly proposes
a system to automatically adjust the number of threads based on on-line mea-
surements of system resource usage. These works are based on adjusting the
number of threads of OpenMP applications in parallel-regions or the whole ap-
plication. Thus, similarly to our previous explanation, they lack adaptiveness
when it comes to irregular applications. Li et al. [13] propose a library to reduce
energy consumption for hybrid MPI/OpenMP applications. Even though their
aim is out of our scope, they use prediction models to enhance energy efficiency
with negligible or no loss of performance. Finally, Shafik et al. [21] propose an
adaptive energy minimization model for OpenMP programs using annotations.
These annotations require execution time estimations, which leads us to believe
warm-up executions are needed to provide the library with such metrics.
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7 Concluding Remarks & Future Work

In this paper, we presented resource management policies based on predictions
that simultaneously optimize performance and energy efficiency. More specifi-
cally, we showcase (i) a prediction-based CPU managing policy that maintains
performance while improving energy efficiency, and (ii) a prediction-based re-
source sharing mechanism which enhances both performance and energy effi-
ciency when compared to its predecessor. We exemplify our proposal in OmpSs-
2, although our approach can be applied to other parallel programming models
based on tasks or fork-join.

While our prediction-based policies are capable of making better decisions
than well-known policies from state of the art, we left a few aspects out of the
scope which we will target in future work. Firstly, our policies could benefit
from taking prediction error into account. Thus, when detecting anomalies, our
infrastructure would be able to swap between CPU managing policies at run-
time. We also believe that the rate at which predictions are inferred may be
improved with a combined approach that triggers our mechanism when a certain
number of events happen – e.g., the creation or finalization of a number of tasks.
Finally, we also plan to enable an on-line task characterization so that both our
policies and predictions take more than one metric into account.

8 Acknowledgments

This project is supported by the European Union’s Horizon 2020 research and
innovation programme under the grant agreement No 754304 (DEEP-EST), the
Ministry of Economy of Spain through the Severo Ochoa Center of Excellence
Program (SEV-2015-0493), by the Spanish Ministry of Science and Innovation
(contract TIN2015-65316-P) and by the Generalitat de Catalunya (2017-SGR-
1481). This work was also supported by Project HPC-EUROPA3 (INFRAIA-
2016-1-730897), with the support of the EC Research Innovation Action under
the H2020 Programme.

References

1. Alessi, F., Thoman, P., Georgakoudis, G., Fahringer, T., Nikolopoulos, D.S.:
Application-Level Energy Awareness for OpenMP, pp. 219–232. Springer (2015)

2. Barekas, V.K., Hadjidoukas, P.E., Polychronopoulos, E.D., Papatheodorou, T.S.: A
multiprogramming aware openmp implementation. Scientific Programming 11(2),
133–141 (2003)

3. Benedict, S., Rejitha, R.S., Gschwandtner, P., Prodan, R., Fahringer, T.: Energy
prediction of openmp applications using random forest modeling approach. In:
IEEE IPDPSW. pp. 1251–1260 (May 2015)

4. Boguslavsky, L., Harzallah, K., Kreinen, A., Sevcik, K., Vainshtein, A.: Optimal
strategies for spinning and blocking. JPDC 21(2), 246–254 (1994)

5. Chadha, G., Mahlke, S., Narayanasamy, S.: When less is more (limo):controlled par-
allelism for improved efficiency. In: CASES. pp. 141–150. ACM, NY, USA (2012)



16 A. Navarro et al.

6. Curtis-Maury, M., Blagojevic, F., Antonopoulos, C.D., Nikolopoulos, D.S.:
Prediction-based power-performance adaptation of multithreaded scientific codes.
IEEE Trans. Parallel Distrib. Syst. 19(10), 1396–1410 (2008)

7. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: Rapl: Memory
power estimation and capping. In: ISLPED. p. 189194. ACM, NY, USA (2010)

8. Eichenberger, A.E., Terboven, C., Wong, M., an Mey, D.: The design of openmp
thread affinity. In: IWOMP. pp. 15–28. Springer (2012)

9. Garcia, M., Corbalan, J., Labarta, J.: Lewi: A runtime balancing algorithm for
nested parallelism. In: ICPP ’09. pp. 526–533 (Sept 2009)

10. Harris, T., Maas, M., Marathe, V.J.: Callisto: co-scheduling parallel runtime sys-
tems. In: European Conference on Computer Systems. pp. 1–14 (2014)

11. Intel: Intel OpenMP Runtime Library Website, https://www.openmprtl.org/

download, accessed: 2020-02-21
12. Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Basic linear algebra sub-

programs for fortran usage. ACM Trans. Math. Softw. 5(3), 308323 (Sep 1979)
13. Li, D., de Supinski, B.R., Schulz, M., Cameron, K., Nikolopoulos, D.S.: Hybrid

mpi/openmp power-aware computing. In: IEEE IPDPS. pp. 1–12 (April 2010)
14. Lorenzon, A.F., Souza, J.D., Beck, A.C.S.: Laant: A library to automatically op-

timize edp for openmp applications. In: DATE. pp. 1229–1232 (March 2017)
15. Navarro, A., Mateo, S., Perez, J.M., Beltran, V., Ayguadé, E.: Adaptive and
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