
HAL Id: hal-02985541
https://hal.science/hal-02985541

Submitted on 2 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Operational Framework for Evaluating the
Performance of Learning Record Stores

Chahrazed Labba, Azim Roussanaly, Anne Boyer

To cite this version:
Chahrazed Labba, Azim Roussanaly, Anne Boyer. An Operational Framework for Evaluating the
Performance of Learning Record Stores. European Conference on Technology Enhanced Learning,
Sep 2020, Heidelberg, Germany. pp.45-59, �10.1007/978-3-030-57717-9_4�. �hal-02985541�

https://hal.science/hal-02985541
https://hal.archives-ouvertes.fr


An operational Framework for Evaluating the
Performance of Learning Record Stores

Chahrazed Labba[0000−0002−7921−273X], Azim Roussanaly[0000−0002−3311−3613],
and Anne Boyer

Lorraine University, Loria, KIWI Team
{chahrazed.labba,azim.roussanaly,anne.boyer}@loria.fr

Abstract. Nowadays, Learning Record Stores (LRS) are increasingly
used within digital learning systems to store learning experiences. Mul-
tiple LRS software have made their appearance in the market. These
systems provide the same basic functional features including receiving,
storing and retrieving learning records. Further, some of them may offer
varying features like visualization functions and interfacing with vari-
ous external systems. However, the non-functional requirements such as
scalability, response time and throughput may differ from one LRS to
another. Thus, for a specific organization, choosing the appropriate LRS
is of high importance, since adopting a non-optimized one in terms of
non-functional requirements may lead to a loss of money, time and ef-
fort. In this paper, we focus on the performance aspect and we introduce
an operational framework for analyzing the performance behaviour of
LRS under a set of test scenarios. Moreover, the use of our framework
provides the user with the possibility to choose the suitable strategy for
sending storing requests to optimize their processing while taking into
account the underlying infrastructure. A set of metrics are used to pro-
vide performance measurements at the end of each test. To validate our
framework, we studied and analyzed the performances of two open source
LRS including Learning Locker and Trax.

Keywords: Test scenarios · non-functional requirements · Learning Record
Store · xAPI specifications.

1 Introduction

Nowadays, the learning process is digitized and can happen through different
activities such as learning management systems, online training, simulations and
games. Given the heterogeneity of the learning activity keeping track of the
learning experience of the learner is becoming challenging. The specification
xAPI or Tin Can 1 came to solve the above challenge. According to the Advanced
Distributed Learning (ADL) 2, xAPI is a technical specification that aims to
facilitate the documentation and communication of learning experiences. This

1https://adlnet.gov/projects/xapi/
2https://www.adlnet.gov

https://adlnet.gov/projects/xapi/
https://www.adlnet.gov


2 C. Labba et al.

specification defines the way to describe learning experiences by using a structure
in the form of ”Actor Verb Object”. The above structure is known as a learning
record or a statement. Further, the xAPI specifies how these statements can
be exchanged electronically by transmission over HTTP or HTTPS to an LRS,
which is defined by the ADL 3 as follows: “A server 4 that is responsible for
receiving, storing, and providing access to Learning Records.”

Multiple LRS products have made their appearance in the market such as
Learning Locker 5, Watershed LRS 6 and Trax 7. The competition, in terms of
being the market leader, is high. All the LRS systems provide the same basic
features including recording and retrieving learning records. Further, some of
them offer additional varying functionalities such as visualization functions and
interfacing with various external systems. ADL has setup a rational process [2]
for choosing an LRS. The process gives more importance to the selection based
on the functional features such as analytics, reporting and external integrations
rather than the non-functional requirements such as the response time, scalabil-
ity and throughput. However, these non-functional requirements may differ from
one LRS to another. Thus, for a specific organization, choosing the appropriate
LRS is of high importance, since adopting a non-optimized one may lead to both
monetary and data losses. There exist many tools [1][4][5] that can be used to
run performance tests in order to select the appropriate LRS. However, the test
settings need to be constantly edited to run different scenarios. Furthermore,
adjusting the performance tests is a time consuming task and error prone.

The aim of this work is to provide those involved in the process of selecting
an LRS with automatic test plans requiring minimum settings effort. To do so,
an operational framework for studying and analyzing the performance behaviour
of LRS is proposed. Our framework, called LOLA8-meter, provides the user with
two test plans: 1) The performance plan consists of two test types including the
load and stress tests. The aim is to study the LRS behaviour under expected
and not expected load conditions. The load can be expressed in terms of the
number of simultaneous requests and/or the number of statements sent within
a request9; and 2) The strategy selection plan consists of two types of tests
including the Post Chunk Time and the Post Chunk Statement tests. The aim
is to determine the suitable strategy to adopt for sending learning experiences
to be stored in the LRS while taking into consideration the infrastructure and
the size of the generated data. For both types of test plans a set of performance
indicators are defined to analyze the output results of the test scenarios e.g
response time and throughput. To validate our test scenarios, we studied and
analyzed the performances of two LRSs including Learning Locker (LL) 5 and

3https://adlnet.gov/news/2017/04/06/xapi-learning-record-store-test-suite-and-adopter/
4system capable of receiving and processing web requests
5https://www.ht2labs.com/learning-locker-community/overview/
6https://www.watershedlrs.com
7http://traxproject.fr/traxlrs.php
8Laboratoire Ouvert en Learning Analytics
9the size of a post request

https://adlnet.gov/news/2017/04/06/xapi-learning-record-store-test-suite-and-adopter/
https://www.ht2labs.com/learning-locker-community/overview/
https://www.watershedlrs.com
http://traxproject.fr/traxlrs.php


Title Suppressed Due to Excessive Length 3

Trax 7. Both of the LRS were selected because they are open source and conform
to the specification requirements 10 defined by ADL.

The rest of the paper is organized as follows: Section 2 presents the related
work. Section 3 introduces the proposed test scenarios. Section 4 presents the ex-
periments and the validation using two open source LRS including LL and Trax.
Section 5 enumerates the threats to validity. Section 6 presents the conclusions
and the future work.

2 Related Work

There are few works on how to select an LRS. Some vendors, for example, LL5,
watershed LRS6 and waxLRS11 provide on their websites case studies and demos
concerning the adoption of their systems. Further, some vendors provide white
papers that discuss how to choose the LRS partner and what questions need be
asked to evaluate the LRS products. For example Yet Analytics12 provides a set
of questions [8] that are organized into three categories ”analytics and reports”,
”customer support” and ”database security, stability and scalability”. In each
category, a set of questions are defined and need to be asked to evaluate the
LRS partner. While, H2Labs defines 28 questions13 to conduct an LRS needs
analysis. The questions cover the types of deployment (on-site or SaaS), the data
sending, storing and retrieving. In [2], the author introduces a rational process
to select an LRS. The process gives more importance to the selection based on
the functional features rather than the non-functional requirements. Further, the
paper does not provide in anyway a comparative rating or evaluation of existing
LRS software. In [7], the author highlights the special features and issues to
consider when selecting an LRS such as conformance requirement, cost, hosting
options and data analytics requirements. In [9], the authors present a set of
decisive factors to consider, when searching for an LRS, such as analytics and
reporting, security, integration and scalability. In [3], the authors proposed a
web-based learning environment dedicated for training how to command and
control unmanned autonomous vehicles. One of the main issues revealed in the
work is the scalability and performance requirements of the integrated LRS for
storing stream data. The authors found that the existing LRS may not perform
well under certain circumstances. So, they proposed a storage system based on
the use of an adhoc server over SQLLite3. Even though the proposed solution
presents an efficient storage system, however it leaves out many facilities provided
by the LRS. To summarize, both research works and case studies deal with the
selection of LRS from a pure functional point of view. However, the evaluation
of the LRS based on the non-functional requirements is not well taken into
consideration. In this work, we focus on providing an operational framework to
evaluate and rate the existing LRS software. LOLA-meter provides the users

10https://lrstest.adlnet.gov
11https://www.elucidat.com/blog/using-wax-lrs/
12LRS provider https://www.yetanalytics.com
13https://www.ht2labs.com/conducting-lrs-needs-analysis/

https://lrstest.adlnet.gov
https://www.elucidat.com/blog/using-wax-lrs/
https://www.yetanalytics.com
https://www.ht2labs.com/conducting-lrs-needs-analysis/


4 C. Labba et al.

with a set of automatic test plans requiring minimum settings effort to study
to which extent an LRS fulfills the non-functional requirements. There exist
many tools that can be used to run performance tests in order to select the
appropriate LRS. However, the test settings in these tools need to be constantly
edited to run different scenarios. Furthermore, adjusting the performance tests
is a time consuming task and error prone. In the next section we introduce an
updated version of the selection process of an LRS and we present the test plans
implemented within LOLA-meter.

3 How To Select an LRS?

ADL has setup a rational process [2] for choosing the appropriate LRS. It em-
phasizes the LRS selection based on the functional features rather than the
non-functional requirements. In this section, we introduce an updated version of
the selection process. An additional step that considers the analysis of the non-
functional requirements is added. Section 3.1, introduces the modified selection
process and Section 3.2 presents LOLA-meter for evaluating LRS software using
the non-functional requirements.

3.1 Updated Process for choosing an LRS

The recommended process for choosing the LRS is composed originally from
four big steps including 1) Project scope, 2) Develop an LRS requirement
matrix, 3) Develop a feature rating matrix and 4) Decision making. The
process focuses more on the LRS features and what the system can do to fulfill
the functional requirements and less on the performance aspect. So we extend
the current process version and we include an additional step ”Develop a non-
functional requirement matrix”. In the following, we explain the different
steps of the updated selection process introduced in Fig.1.

Project Scope: This phase is primordial for any organization that wishes
to adopt the use of LRS. Meetings with all the involved stakeholders need to be
organized to discuss the following steps: i) Study and analyze the feasibility of
acquiring an LRS system; ii) Determine the critical and high-level requirements
for the LRS. The definition of such requirement types will allow the organization
exclude many unsuitable LRS candidates; iii) Fix the budget knowing that there
are different pricing models and iv) Select the required LRS category.

Develop an LRS Requirement Matrix: This phase consists of the fol-
lowing steps: i) identify the LRS products that better match the LRS category
identified in the previous step; and ii) Develop and populate a functional require-
ment matrix. The matrix allows assessing the identified LRS systems against the
high-level requirements defined in the project scope phase.

Develop an LRS Feature Matrix: During this phase, the following steps
need to be achieved: i) Filter the list of the potential candidates by eliminating
those who do not fulfill the minimum of the functional requirements or are over
the fixed budget; ii) Develop a detailed list of the features of the remaining LRS;



Title Suppressed Due to Excessive Length 5

Fig. 1: Updated Process for choosing an LRS

iii) Use the system featuring rating matrix proposed in [2]. It consists in using
numerical ratings of the LRS features for example ”0” if the LRS does not offer
the feature and ”10” if the LRS presents a strong implementation of the feature.
The rating process can be achieved through the use of available documentation,
consultation of the feedback of some LRS users or by the contact of LRS repre-
sentatives; and iv) Contact the top scoring vendors to ask for presentations and
demos.

Develop a non-functional Requirement Matrix: The main contribution
of the current work is elaborated in this phase. Indeed, considering the non-
functional requirements is of high importance to select the right LRS. A suitable
LRS for one organization does not mean the same for others, since each has its
own requirements. In this phase, we introduce the non-functional requirements
matrix, presented in Table 1, which presents a set of metrics measurements.
Those measurements will allow the user to determine the suitable LRS that
fulfills his needs. The matrix is populated after running each scenario with a given
test plan. Indeed, we propose two different test types including the performance
test plans and the strategy test plans (More detailed in Section 3.2). The matrix
can be used as follows: i) Replace the ”X” with the name of the executed test
scenario; ii) Replace the top row (LRS1, LRS2, ..) with the name of the LRS that
have been identified in the previous steps of the selection process; iii) Replace
the row names (metric1, metric2, ..) with the names of the considered metrics
for example response time and throughput; iv) Run the test scenario for each
of the LRS software and fill the matrix with the average measurements. To
summarize, this phase consists of the following steps: i) Define the non-functional
requirements; ii) Use our automated test plans for all the LRS candidates and
iii) Update the non-functional matrix.



6 C. Labba et al.

LRS NFR rating matrix for Scenario X

Metric Name LRS 1 LRS 2 LRS 3 LRS 4

Metric 1

Metric 2

Metric 3

Metric 4

Metric 5

Table 1: Non-functional requirements matrix for Scenario X

Decision Making: The final phase consists of selecting one of the LRS
products. Based on the feature and non-functional requirements comparisons
as well as the discussions with the LRS vendors, the organization can make its
decision about which LRS to adopt for their use.

3.2 Design of Test Plans

In this section we describe the proposed test plans that need to be used during
the fourth step in the selection process presented in Figure 1. Indeed, we distin-
guish two different plans including the performance and the strategy selection.
Each plan encompasses a set of test types. For both types of test plans a set
of performance indicators are defined to analyze the output results of the test
scenarios e.g response time and throughput. The test plans are implemented and
made available through an operational framework 14 that provides 24 different
test scenarios. Our framework is based on the use of the Apache Jmeter API 15.
The selection of Jmeter was not arbitrary. Indeed, according to many evaluations
[1] [4] [5] [6], Jmeter was proven to be one of the best open source testing tools.
Compared to the Jmeter application, our framework exempts the user from the
burden of preparing manually the configurations files like the json and the csv
files. Everything will be generated automatically through graphical interfaces or
a simple configuration file (for a non-gui version of the framework).

Performance Test Plan: This scenario encompasses two types of tests
including the load and stress tests. Each test requires a set of inputs and provides
a set of outputs.

– Load test: is designated to study the LRS performance behaviour under
real-life and expected load conditions. In our case, the load can be either
expressed in terms of simultaneous requests 16 or the number of statements
that are sent within requests 17. If the LRS is used by one organization,
so the number of connected users is equal to 1. In this case the load is
expressed in terms of the number of statements that are sent within a post

14Open source: https://github.com/Chahrazed-l/Operational_Framework
15https://jmeter.apache.org
16denotes also the number of the concurrent users connected to the LRS
17specific to the requests of type post

https://github.com/Chahrazed-l/Operational_Framework


Title Suppressed Due to Excessive Length 7

request. While if the LRS is dedicated for multi-organizational use, the load
is expressed in terms of both number of concurrent users as well as the
number of statements sent within requests. The test is provided with real-
life statistics of statements generation18. The user can use those statistics to
run the load test, else he can enter and use his own information about the
number of statements that can be generated by learners.

– Stress test: This test is designated to study the robustness of the LRS be-
yond the limits of normal load conditions. The load can be expressed in
terms of the simultaneous requests or the number of statements sent within
the requests. This test consists of generating sudden heavy loads either by
increasing the number of simultaneous requests (the number of concurrent
users) and/or the number of statements (for post request).

For both test scenarios , a set of inputs needs to be provided to ensure a smooth
execution. The inputs include: 1) the request type (get, post or both), 2) Number
of test runs: the tests need to be repeated so many times in order to ensure the
stability and the accuracy of the results; 3) Time interval between runs: depicts
the time period that separates the end of a test run and the start of another; 4)
number of requests; 5) time interval between requests; 6) number of concurrent
users 19;7) statements number (for post request); 8) LRS information: required
to connect to the deployed LRS.

Strategy Selection Test Plan: This plan allows the selection of the suit-
able strategy to adopt to send post requests. It encompasses two types of tests
including the Post Chunk Time test and the Post Chunk Statement tests. The
aim is to discover which of the strategies allows reducing the LRS load and
optimizing the statements storage by taking into consideration the underlying
computational infrastructure. Each test requires a set of inputs and provides a
set of outputs. For both tests, the load is expressed in terms of the number of
statements sent within a post request.

– Post Chunk Time test: is designated to study the LRS performance under
dynamic loads sent periodically (second, minute, hour, day). Indeed, we fix
the time interval that separates the end of sending a request and the start of
sending a new one. The number of the statements keeps changing for each
new request. Different methods are used to generate the statements number
including random, Poisson and Gaussian methods. For this test, the user
selects the corresponding time interval to consider as well as the method for
generating the statements.

– Post Chunk Statement test: is designated to study the LRS performance un-
der static loads sent aperiodically. This test consists of: 1) fixing the number
of statements sent within each request and 2) Using dynamic time intervals
to send the requests. Different methods are used to generate the time in-
tervals including random, Poisson and Gaussian methods. For this test, the

18extracted from a Moodle dataset, more information are provided in the section 4:
Experiments and validation

19One LRS can be used to store the statements coming from different sources



8 C. Labba et al.

user selects the corresponding statements number to be sent per request as
well as the method for generating the time intervals.

Both the performance and strategy selection test plans provide as output a set
of metrics measurements such as the response time, response time distribution,
throughput, latency, the error rate and connect time (to name a few). We provide
an exhaustive set of metrics to visualize the performance behaviour of the LRS
under the different test scenarios. At the end of each scenario, a report with all
the measurements is generated. The report contains dashboards and charts.

4 Experiments and validation

Two open source LRS have been used to validate the test plans, including Trax7

and LL5. Both of the LRS have been deployed on machines having the same
characteristics in terms of computing power and memory. The evaluation was
carried out using a real-life Moodle dataset 20. The dataset contains the data
logged during 769 days (more than 2 years). It contains 2169 users , almost 2
millions events and we count 57 different actions such as viewed, updated and
submitted. Moodle is an important source of learning data. Nowadays many
plugins 21,22 have been developed to ensure the generation of xAPI statements
from moodle contents. In the moodle traces, one can easily detect the format
of an xAPI statement. For the rest of this section, we admit that an event in
moodle is equivalent to an xAPI statement. We investigated in more details the
behavior of the students in terms of event generation. We considered the 10
students who interacted the most with the Moodle content. For each of these
students, we investigated in more details the maximum number of events that
have been generated on different time intervals including second, minute, hour
and day. Table 2 summarizes the extracted information. For example, the max-
imum events numbers that have been generated by Student 1 on a second, a
minute , an hour and a day are respectively 11, 28, 385 and 1439. For each
student, the observed values on the different time intervals are not necessarily
perceived on the same day. In section 4.1, we used the information of Student 1
as a reference to run the different test scenarios including load and stress tests.
The rest of the information are provided through LOLA-meter to run the same
scenarios with different inputs in terms of statement generation. Due to space
limitations, only some of the test scenarios are presented.

4.1 Performance Test Plan

For this plan, two tests have been performed: the load test and the stress test.
The load test is used to analyze the behaviour of the LRS under real-life

expected loads. The test is performed using different configurations, shown in

20https://research.moodle.org/158/
21https://moodle.org/plugins/mod_tincanlaunch
22https://moodle.org/plugins/logstore_xapi

https://research.moodle.org/158/
https://moodle.org/plugins/mod_tincanlaunch
https://moodle.org/plugins/logstore_xapi


Title Suppressed Due to Excessive Length 9

Username

S
tu

d
en

t
1

S
tu

d
en

t
2

S
tu

d
en

t
3

S
tu

d
en

t
4

S
tu

d
en

t
5

S
tu

d
en

t
6

S
tu

d
en

t
7

S
tu

d
en

t
8

S
tu

d
en

t
9

S
tu

d
en

t
1
0

Second 11 14 17 23 33 64 86 224 227 459

Minute 28 42 60 62 75 198 230 3634 5196 6220

Hour 385 604 608 718 737 893 1113 9938 10959 45959

Day 1439 1457 1861 2079 2952 3884 6139 11119 11799 53506

Table 2: Statistics for event generation on different time intervals

Users
Number

Students
Number

Statements
per Student

Total
statement/req

Iteration
Duration
(S)

Iterations
number

Break
Time
(S)

Config.
Label

1

200

11

2200

900 5 120

Config.1
400 4400 Config.2
600 6600 Config.3
800 8800 Config.4
1000 11000 Config.5
1100 12100 Config.6
1200 13200 Config.7

Table 3: Configurations for the Load Test

Table 3. Each configuration is characterized by the number of users, the num-
ber of students per user, the number of statements generated per student, the
test duration, the iterations number and the break time between two successive
iterations. Each of the LRS is deployed as it is furnished by the providers with-
out modifying any used technologies including the database and the application
server. LL and Trax use respectively nginx/mongo and apache2/mysql. In Table
4, we present the results provided at the end of each test scenario. Both of the
LRS have been evaluated in the same manner and using the same configurations.
In the evaluation we can take into consideration, the number of requests that has
been processed during the test duration, the error rate which indicates the rate
of requests that the LRS failed to store due to a given issue, the response time
and the throughput. Based on the results of the performed tests, one can notice
that LL has, sometimes, the best min and max values for response time. How-
ever, Trax outperforms LL in all the tests scenarios. The performance difference
is noticeable in the number of processed requests, the error rate, the response
time (average, 90%, 95% and 99%) and the throughput. For example, as shown
in Table 4, for both configurations (Config.6 and Config.7) LL failed to store all
the received requests. For Config.6 and Config.7 LL failed to process respectively
5.58 % and 37.78 % of the requests. The LL application server throughout an
internal error to the server (code 500). Whereas, for these same configurations,
Trax succeeded in storing all the received requests. To investigate in more details
the results presented in Table 4, additional tests have to be performed. Indeed,
we need to use the same technologies including the application server and the
database for both of the LRS.



10 C. Labba et al.

Executions Response Time (ms)Config.
Label

LRS
#req KO %Error Avg Min Max 90% 95% 99%

debit

LL 294 0 0.0% 15431.88 5227 42734 24426.00 33678.25 42213.35 0.06
Config.1

Trax 421 0 0.00% 10751.18 9429 23198 12355.80 14309.50 19049.06 0.08

LL 152 0 0.0% 30187.72 14113 51952 36565.80 40472.40 48886.48 0.03
Config.2

Trax 234 0 0.0% 19469.05 18616 23681 20047.00 20534.00 22352.90 0.05

LL 98 0 0.0% 47315.87 20227 81839 71867.50 74172.85 81839.00 0.02
Config.3

Trax 150 0 0.0% 30782.15 28790 76040 32640.60 36278.65 62869.25 0.03

LL 98 0 0.0% 47432.11 14217 88432 60185.60 62722.10 88432.00 0.02
Config.4

Trax 103 0 0.0% 44925.97 39406 109670 54009.00 59329.20 107892.12 0.02

LL 59 0 0.0% 80935.97 14778 171988 100402.00 101631.00 171988.00 0.01
Config.5

Trax 91 0 0.0% 53152.45 48587 297079 52377.40 54405.80 297079.00 0.02

LL 51 3 5.58% 93050.45 15914 128741 118633.80 123194.60 128741.00 0.01
Config.6

Trax 83 0 0.0% 56662.07 53186 128302 57786.80 61309.20 128302.00 0.02

LL 45 17 37.78% 107262.82 2091 149505 142720.80 145747.90 149505.00 0.01
Config.7

Trax 75 0 0.0% 61524.87 57843 144986 62219.80 69537.00 144986.00 0.01

Table 4: Execution Results for both Trax and LL using different configurations

The stress test is used to study the performance of the LRS under unex-
pected load conditions. The test is performed using the configuration shown in
Table 5. The configuration is characterized by the number of concurrent users (3
users), the number of requests per iteration (20 requests), the break time between
two successive requests sent by each user, the number of statements sent within
each request, the number of iterations (5 iterations) and the time separating
two successive iterations (2 minutes). Each request contains a different number
of statements. As shown in Table 5, the first request contains 551 statements,
while the last one contains 804. The statements are written in separated Json
files that will be sent within the requests bodies. Among the 20 requests, one
user sends from 6 to 7 requests. The users send their requests concurrently to the
LRS. For example user 1, user 2 and user 3 send respectively 551, 595 and 613
statements within their first requests and so on for the rest. The results of the
stress test are shown in Table 6. For both LRS, we provide the total execution
time where we subtracted the break time between the iterations, the number of
statements successfully stored, the error rate, the average response time as well
as the Min and Max response times. Even though Trax has a greater error rate
(17 %), the number of the final statements successfully stored is superior to the
one stored within LL. Further, the overall execution time with Trax is smaller
28 minutes compared to 68 minutes for LL. This is due to the response time,
which is better for Trax. One can notice that from the average and maximum
response time values in Table 6.

4.2 Strategy Selection Test Plan

The strategy test allows to select the way of sending the xAPI data to the LRS.
As we explained in Section 3.2, we differentiate two types of this test including
the Post Chunk Statement test and the Post Chunk Time test.



Title Suppressed Due to Excessive Length 11

Number of
users

Number of
requests/
iteration

Break Time
request
(Second)

#statement for all requests #iterations
break time
iteration (Second)

3 20 10
551,595,613,700,11281,11967,804
12944,1588,1602,13537,1881,14149
613,2088,13537,1881,14149,11967,804

5 120

Table 5: Configuration for the stress test

LRS

total
exec
Time
(Minute)

#statements
Error
rate

Avg
response
Time
(ms)

Min
(ms)

Max
(ms)

LL 68 542 924 15% 104077.99 1524 267548

Trax 28 552 129 17% 41348.32 2312 105941

Table 6: Performance results for a Stress Test

The Post Chunk Statement test is performed using the configurations
presented in Table 7. Each configuration is characterized by the size of the state-
ment chunk, the time intervals, the iteration duration and the iteration number.
The main idea is to analyze the LRS performance when sending fixed statements
number within the request body while using different time intervals. The time
separating the sent of one request from another can be generated using three
different methods including Poisson, Gaussian and Random. For each method,
the user can fix the range for generating the values. As shown in Table 7, we used
two different chunks (500 and 1000). The time interval for 500 is generated using
a random generation method. While the time interval for the 1000 is deducted
from the first one23. The aim is to show the impact of the chunk size on the LRS
performance while using the same data generation scenario.

The Table 8 presents the response time of both LRS using the statement
chunk sizes 500 and 1000. One can notice that LL shows better results compared
to Trax in terms of response time when sending requests with small number of
statements separated by a considerable time interval (one minute minimum).

Further, one can notice that by using a chunk of 1000, both LRS (LL and
Trax) show better performance in terms of response time. As shown in Table 8,
for LL and Trax the response times are respectively less then 2500 ms and 5200
ms. However, this values have been exceeded more than once for both LRS while
using the chunk of 500 statements. We can justify this results by the fact that
in the first scenario the number of the sent requests is twice the number of the
ones sent within the second scenario. Further, the time interval separating the
sending of two successive requests with 500 statements each, is smaller compared
to the one used during the second test.

23The first time interval to wait to send a request with 1000 statements corresponds
to the sum of the two first ones to wait to send requests with 500 statements each.



12 C. Labba et al.

Statement
Chunk Size

Time
Intervals
(Second)

Iteration
Duration
(Second)

Iterations
Number

500
59.94, 180.16, 59.79, 180.13, 59.67, 179.71, 60.3,
180.15, 60.04 900 5

1000 240.103, 239.922, 239.388, 240.448

Table 7: Chunk Statement Strategy configuration

Chunk
statement size

LRS
Response Time (ms)

Average Min Max 90% 95% 99%

500
LL 1184.67 878 2864 1651.50 2419.00 2864.00
Trax 2896.84 2220 10234 4152.80 5519.80 10234.00

1000
LL 1943.90 1722 2435 2124.00 2420.00 2435.00
Trax 4505.60 4235 5127 4811.40 5111.30 5127.00

Table 8: Results of the chunk statement test

The Post Chunk Time test is performed using the configurations pre-
sented in Table 9. Each configuration is characterized by the time chunk, the
number of statements to be sent in each request, the iteration duration and
the iteration number. The main idea is to analyze the LRS performance when
sending variable statements number within each request body periodically. The
number of statements in one request can be generated using three different meth-
ods including Poisson, Gaussian and Random. For each method, the user can fix
the range for generating the values. As shown in Table 9, we used two different
time chunks (1 and 5 minute). The number of statements for 1 minute is gen-
erated using a random generation method. While the number of statements for
the 5 minutes is deducted from the first one. The aim is to show the influence
of the selection of the time chunk size for the same generated amount of data.
The Table 10 presents the results of running both scenarios with LL and Trax
in terms of response time. We can notice that LL is more dedicated for batch
strategy where the size of the body request is not too much significant and the
time separating two successive requests is considerable. However, this was not
the case during the load and stress tests, where the request size is important in
terms of statement number and the break time between two successive requests
was less than 10 seconds.

For both tests including the Post Chunk Time and the Post Chunk statement,
the final number of statements to be stored in the LRS is the same. However,
we can notice that the use of the Post Chunk statement strategy is more ap-
propriate for sending data to the LRS. In overall, the response times recorded
for both statement chunks (500 and 1000) are better than those recorded using
fixed time chunks. Indeed, we think that the use of fixed time chunks may not be
appropriate. During peak use, there may be generation of a significant number
of statements that will be encapsulated and sent within a request, which the
LRS will be unable to process in a reasonable time. If the chunk time is small,



Title Suppressed Due to Excessive Length 13

Time
Chunk Size
(Minute)

Statement Number
Iteration
Duration
(Second)

Iterations
Number

1
120, 500,50, 100, 300, 50, 10, 700, 1000, 900, 30
100, 100, 100, 0 900 5

5 1070, 2660, 330

Table 9: Chunk Statement Strategy configuration

Chunk
Time

LRS %Error
Response Time
Avg Min Max 90% 95% 99%

1
LL 0.00% 1179.04 404 5784 2225.20 2452.20 5784.00
Trax 0.00% 1551.92 76 6276 4412.60 4728.20 6276.00

5
LL 0.00% 3501.80 1176 8663 6925.40 8663.00 8663.00
Trax 0.00% 8196.00 1681 19530 16224.00 19530.00 19530.00

Table 10: Execution Results for chunk Time scenario

the LRS will be submerged by requests with huge number of statements. This
situation may be even worse in case the LRS is used by more than one organi-
zation. The use of fixed statement chunks may be more appropriate to keep a
stable performance especially in terms of response time provided that we select
the suitable chunk size.

5 Threats to validity

The current work presents some limitations that we tried to mitigate when pos-
sible:(i) We used one single machine to deploy the LRS that we used to perform
our tests. We intend to run more tests while using load-balancing and distributed
deployment. Cloud computing may be an appropriate environment to do so. (ii)
Our developed test tool can be used on a single machine, which presents a limi-
tation when it comes to the use of many concurrent users with heavy loads. We
plan to extend the current version to a distributed one where many machines
can be used to run large-scale scenarios. (iii) The test tool has been validated
using only two open source LRS. We plan to contact LRS vendors to carry out
a large performance evaluation to publish benchmarking studies.

6 Conclusion

Multiple LRS have made their appearance in the market.The ADL provided a
rational process for selecting the appropriate LRS. However, this process em-
phasizes the selection based on the functional features rather the non-functional
requirements. Thus, in this paper we proposed an updated version of the LRS
selection process by adding another step called ”Develop a non-functional ma-
trix”. This step is enriched by the development and implementation of a set



14 C. Labba et al.

of test plans to evaluate the performance of the LRS as well as determine the
suitable strategy to adopt for sending learning data. A set of metrics have been
used to provide the performance measurements at the end of each test. Our
automated test plans have been validated using two open source LRS including
LL and Trax. Evaluating the performance of LRS depends on the organization
requirements as well as the context of use. An appropriate LRS for one organi-
zation does not mean the same for another. In the current work, the performed
evaluation of LL and Trax does not provide in any way a recommendation of
one LRS over the other. Indeed, we provide just a snapshot in the time of the
results that a user may have by using LOLA-meter.

As a future work, we intend to enhance LOLA-meter to support distributed
testing in order to perform large-scale tests. Moreover, we plan to use the cloud
environment to perform additional performance evaluation by including multiple
LRS products with different deployment settings.

Acknowledgement

This work has been done in the framework of the LOLA8 project, with the
support of the French Ministry of Higher Education, Research and Innovation.

References

1. Abbas, R., Sultan, Z., Bhatti, S.N.: Comparative analysis of automated load test-
ing tools: Apache jmeter, microsoft visual studio (tfs), loadrunner, siege. In: 2017
International Conference on Communication Technologies (ComTech). pp. 39–44
(2017)

2. Berking, P.: Technical report: Choosing a learning record store. Tech. Rep. ver-
sion1.13, Advanced Distributed Learning (ADL) Initiative (December 2016)

3. Dodero, J.M., González-Conejero, E.J., Gutiérrez-Herrera, G., Peinado,
S., Tocino, J.T., Ruiz-Rube, I.: Trade-off between interoperability and
data collection performance when designing an architecture for learn-
ing analytics. Future Generation Computer Systems 68, 31 – 37 (2017).
https://doi.org/https://doi.org/10.1016/j.future.2016.06.040, http://www.

sciencedirect.com/science/article/pii/S0167739X16302813

4. Khan, R.B.: Comparative Study of Performance Testing Tools: Apache JMeter and
HP LoadRunner. Master’s thesis, , Department of Software Engineering (2016)

5. Maila-Maila, F., Intriago-Pazmiño, M., Ibarra-Fiallo, J.: Evaluation of open source
software for testing performance of web applications. In: Rocha, Á., Adeli, H., Reis,
L.P., Costanzo, S. (eds.) New Knowledge in Information Systems and Technologies.
pp. 75–82. Springer International Publishing, Cham (2019)

6. Paz, S., Bernardino, J.: Comparative analysis of web platform assessment tools. In:
WEBIST. pp. 116–125 (2017)

7. Presnall, B.: Choosing a learning record store (the 2019 edition). DEVLEARN (Oc-
tober 2019)

8. Tscheulin, A.: How to Choose Your LRS Partner. Yet Analytics Blog (2017)
9. Vermeulen, M., Wolfe, W.: In search of a learning record store. DEVLEARN (Oc-

tober 2019)

https://doi.org/https://doi.org/10.1016/j.future.2016.06.040
http://www.sciencedirect.com/science/article/pii/S0167739X16302813
http://www.sciencedirect.com/science/article/pii/S0167739X16302813

	An operational Framework for Evaluating the Performance of Learning Record Stores

