Skip to main content

Low Infrared Emission Hybrid Frequency Selective Surface with Low-Frequency Transmission and High-Frequency Low Reflection in Microwave Region

  • Conference paper
  • First Online:
  • 874 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1263))

Abstract

In this essay, we put forward a mixed structure with the properties of low emission at infrared region and scattering-transmission integrated at microwave region. This hybrid structure is mainly consisted of three portions: a frequency selective surface (FSS), a checkerboard metasurface and a metal patches layer. The FSS displays low-pass and high-stop characteristic, which bounces microwaves at higher frequencies and enables microwaves to be transmitted at lower frequencies. The checkerboard metasurface, with reflective substrate, can minimize reflection at higher frequencies by the method of scattering elimination. Owing to the high-stop properties of the FSS and the it serves as the reflective substrate, the combination of FSS and metasurface can realize broadband reflection reduction at high frequencies. At the same time, the transmission window of FSS in low frequencies can be maintained. At infrared region, the metal patches layer on the top produces the high reflectivity, which makes the whole structure to achieve low infrared emission. Meanwhile, the metal patches layer as the superstrate is transparent for the microwaves, which provides conditions for the radar-infrared compatible design. Simulation results indicate that the value of the reflection reduction is above −10 dB in the frequency range of 6.8–11.6 GHz as well as the transmission band appears around 4 GHz. At the same time, the whole hybrid structure’s emissivity is less than 0.3 in the infrared region. Finally, the experimental measurement is carried out and a good demonstration is supplied. We hope that our proposed structure can seek out a potential applications of multispectral stealth radomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Knott, E.F.: Radar Cross Section. SciTech Publishing, Raleigh (2004)

    Google Scholar 

  2. Costa, F., Monorchio, A.: A frequency selective radome with wideband absorbing properties. IEEE Trans. Antennas Propag. 60(6), 2740–2747 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shang, Y., Shen, Z., Xiao, S.: Frequency-selective rasorber based on square-loop and cross-dipole arrays. IEEE Trans. Antennas Propag. 62(11), 5581–5589 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, B.X., Wang, L.L., Wang, G.Z., et al.: Tunable bandwidth of the terahertz metamaterial absorber. Opt. Commun. 325 (5), 78–83 (2014)

    Google Scholar 

  5. Li, B., Shen, Z.: Three-dimensional dual-polarized frequency selective structure with wide out-of-band rejection. IEEE Trans. Antennas Propag. 62(1), 130–137 (2013)

    Article  Google Scholar 

  6. Shen, Y., Zhang, J., Pang, Y., Li, Y., Zheng, Q., Wang, J., Ma, H., Qu, S.: Broadband reflectionless metamaterials with customizable absorption–transmission-integrated performance. Appl. Phys. A 123(8), 1–8 (2017). https://doi.org/10.1007/s00339-017-1141-9

    Article  Google Scholar 

  7. Paquay, M., Iriarte, J.C., Ederra, I., et al.: Thin AMC structure for radar cross-section reduction. IEEE Trans. Antennas Propag. 55(12), 3630–3638 (2007)

    Article  Google Scholar 

  8. Cos, M.E.D., Alvarezopez, Y., Andres, F.L.H.: A novel approach for RCS reduction using a combination of artificial magnetic conductors. Progr. Electromagn. Res. 107(4), 147–159 (2010)

    Google Scholar 

  9. Iriarte, J.C., Paquay, M., Ederra, I., et al.: RCS reduction in a chessboard-like structure using AMC cells. Proc. EUCAP. 11, 1–4 (2007)

    Google Scholar 

  10. Zhang, Y., Mittra, R., Wang, B.Z., et al.: AMCs for ultra-thin and broadband RAM design. Electron. Lett. 45(10), 484–485 (2009)

    Article  Google Scholar 

  11. Galarregui, J.C.I., Pereda, A.T., Falcon, J.L.M.D., et al.: Broadband radar cross-section reduction using AMC technology. IEEE Trans. Antennas Propag. 61(12), 6136–6143 (2013)

    Google Scholar 

  12. Edalati, A., Sarabandi, K.: Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces. IEEE Trans. Antennas Propag. 62(2), 747–754 (2014)

    Article  Google Scholar 

  13. Simms, S., Fusco, V.: Chessboard reflector for RCS reduction. Electron. Lett. 44(4), 316–317 (2008)

    Article  Google Scholar 

  14. Liu, L., Gong, R., Cheng, Y., et al.: Emittance of a radar absorber coated with an infrared layer in the 3–5 micron window. Opt. Express 13(25), 10382–10391 (2005)

    Article  Google Scholar 

  15. Wang, Z., Cheng, Y., Nie, Y., et al.: Design and realization of one-dimensional double heterostructure photonic crystals for infrared-radar stealth-compatible materials applications. J. Appl. Phys. 116(5), 054905 (2014)

    Article  Google Scholar 

  16. Huang, Y., Pu, M., Zhao, Z., et al.: Broadband metamaterials as an “invisible” radiative cooling coat. Opt. Commun. 407, 204–207 (2018)

    Google Scholar 

  17. Zhang, J., Mei, Z.L., Zhang, W.R., et al.: An ultrathin directional carpet cloak based on generalized Snell’s law. Appl. Phys. Lett. 103(15), 151115 (2013)

    Article  Google Scholar 

  18. Rahmati, E., Ahmadi-Boroujeni, M.: Improving the efficiency and directivity of THz photoconductive antennas by using a defective photonic crystal substrate. Opt. Commun. 412, 74–79 (2018)

    Google Scholar 

  19. Nguyen, T.K., Kim, W.T., Kang, B.J., et al.: Photoconductive dipole antennas for efficient terahertz receiver. Opt. Commun. 383, 50–56 (2017)

    Google Scholar 

  20. Esfandyarpour, M., Garnett, E.C., Cui, Y., et al.: Metamaterial mirrors in optoelectronic devices. Nat. Nanotech. 9(7), 542–547 (2014)

    Article  Google Scholar 

  21. Ni, X., Ishii, S., Kildishev, A.V., et al.: Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Sci. Appl. 2(4), e72 (2013)

    Google Scholar 

  22. Pang, Y., Li, Y., Yan, M., et al.: Hybrid metasurfaces for microwave reflection and infrared emission reduction. Opt. Express 26(9), 11950–11958 (2018)

    Google Scholar 

  23. Tian, H., Liu, H., Cheng, H.: A thin radar-infrared stealth-compatible structure: design, fabrication, and characterization. Chin. Phys. B 23(2), 333–338 (2014)

    Article  Google Scholar 

  24. Zhong, S., Jiang, W., Xu, P., et al.: A radar-infrared bi-stealth structure based on metasurfaces. Appl. Phys. Lett. 110(6), 063502 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the National Natural Science Foundation of China (Grant Nos. 61501497, 61471388, 61501502, 61331005) and the China Postdoctoral Science Foundation (Grant No. 2015M572561) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Yang, Y., Li, X. (2021). Low Infrared Emission Hybrid Frequency Selective Surface with Low-Frequency Transmission and High-Frequency Low Reflection in Microwave Region. In: Barolli, L., Li, K., Miwa, H. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2020. Advances in Intelligent Systems and Computing, vol 1263. Springer, Cham. https://doi.org/10.1007/978-3-030-57796-4_34

Download citation

Publish with us

Policies and ethics