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Abstract. Agriculture has undergone some very important changes over 
the last few decades. The emergence and evolution of precision agri- 
culture has allowed to move from the uniform site management to the 
site-specific management, with both economic and environmental advan- 
tages. However, to be implemented effectively, site-specific management 
requires within-field spatial variability to be well-known and character- 
ized. In this paper, an algorithm that delineates within-field management 

zones in a maize plantation is introduced. The algorithm, based on tri- 
clustering, mines clusters from temporal remote sensing data. Data from 
maize crops in Alentejo, Portugal, have been used to assess the suit- 
ability of applying triclustering to discover patterns over time, that may 
eventually help farmers to improve their harvests. 
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1 Introduction 
 

It is a well-established fact that shortage of natural resources endangers our 
future. Public awareness of these problems urges local authorities to intervene 
and impose tight regulations on human activity. In this environment, reconciling 
economic and environmental objectives in our society it is mandatory. 

Precision agriculture (PA) has an important role in the pursuit of such aspi- 
ration, as the techniques used in PA permit to adjust resource application to 
the needs of soil and crop as they vary in the field. In this way, specific-site 
management (that is the management of agricultural crops at a spatial scale 
smaller than the whole field) is a tool to control and reduce the amount of 
fertilizers, phytopharmaceuticals and water used on site, with both ecological 
and economic advantages. Indeed, being able to characterize how crops behave 
over time, extracting patterns and predicting changes is a requirement of utmost 
importance for understanding agro-ecosystems dynamics [1]. 

One of the major concerns associated to the shortage of natural resources is 
the enormous consumption of water associated to farming activities. Water is a 
scarce resource worldwide and this problem is particularly acute in the South 
of Europe, where the Alentejo (Portugal) and Andalusia (Spain) regions are 
located. Both regions are mainly agriculture-dependent and thus farmers and 
local authorities are apprehensive about the future. 

In this paper, an algorithm is proposed to delineate management zones by 
measuring the variability of crop conditions within the field through the anal- 
ysis of time series of geo-referenced vegetation indices, obtained from satellite 
imagery. In particular, the well-known normalized difference vegetation index 
(NDVI), indicator for vegetation health and biomass, is used to analyze how the 
crop varies over time in order to find patterns that may help to improve its pro- 
duction. There are more vegetation indices as GNDVI, SAVI, EVI or EVI2 [2,3] 
which should be used in extended works. 

A triclustering method, based on an evolutionary strategy called TriGen [4] 
has been applied to a set of satellite images indexed over time from a particular 
maize crop in Alentejo, Portugal. Although the method was originally designed 
to discover gene behaviors over time [5], it has also been applied to other research 
fields such as seismology [6]. The TriGen is a genetic algorithm, and therefore 
the fitness function is a key aspect since it leads to the discovery of triclusters 
of different shapes and aspects. The multi-slope measure (MSL) [7], the three- 
dimensional mean square residue (MSR3D) [8] and the least squared lines (LSL) 
[9] are the available fitness functions to mine triclusters in TriGen. Furthermore, 
the TRIclustering quality (TRIQ) index [10] was proposed to validate the results 
obtained from the aforementioned fitness functions. 

The rest of the paper is structured as follows. In Sect. 2, the recent and 
related works are reviewed and the process of data acquisition and preprocessing 
is described. In Sect. 3 the proposed algorithm and its adaption to this particular 
problem are described. In Sect. 4 the results are presented and discussed. Finally, 
in Sect. 5, the conclusions of this work and point directions for future work are 
presented. 



2 Related Works 
 

This section reviews the most recent and relevant works published in the field 
of spatio-temporal patterns in precision agriculture. 

The spatio-temporal pattern discovery issues for satellite time series images 
are discussed in [11]. The authors introduced how to perform an automatic 
analysis of these patterns and the problem of determining its optimal number. 
Unfortunately, these questions are still open issues in the literature and it is 
unlikely that a general consensus can be reached in the near future. 

The estimation of spatio-temporal patterns of agricultural productivity in 
fragmented landscapes using AVHRR NDVI time series was analyzed in [12]. 
Four different approaches were applied to eight years of Australian crops, includ- 
ing calculation of temporal mean and standard deviation layers, spatio-temporal 
key NDVI patterns, different climatic variables and relationships between pro- 
ductivity and production. 

In Fung et al. [13], the authors proposed a novel spatio-temporal data fusion 
model for satellite images using Hopfield Neural Networks. Synthetic and real 
datasets from both Hong Kong and Australia, respectively, were used to assess 
the method performance, showing remarkable results and outperforming some 
of other existing methods. 

The use of convolutional neural networks (CNN) is being currently applied 
in a wide range of spatio-temporal patterns discovery applications [14]. Hence, 
Tan et al. [15] enhanced an existing CNN model for image fusion by proposing 
a new network architecture and a novel loss function. Results showed superior 
performance in terms of accuracy and robustness. Ji et al. [16] proposed a 3D 
CNN dealing with multi-temporal satellite images. In this case, the method was 
designed for crop classification. After discussing the results achieved, outperform- 
ing existing well-established methods, the authors claimed that it is especially 
suitable for characterizing crop growth dynamics. 

An ensemble model for making spatial predictions of tropical forest fire sus- 
ceptibility using multi-source geospatial data can be found in [17]. The authors 
evaluated the Lao Cai region, Vietnam, through several indices including NDVI. 

Bui et al. [18] proposed an approach based on deep learning for predicting 
flash flood susceptibility. Real data from a high frequency tropical storm area 

were used to assess its performance. 
Clustering-based approaches with application to precision agriculture can 

also be found in the literature. Thus, clustering tools for integration of satellite 
imagery and proximal soil sensing data are described in [19]. In particular, a novel 
method was introduced with the aim of determining areas with homogeneous 
parts in agricultural fields. 

The application of triclustering to georeferenced satellite images time series 
can be also found in [20]. However, the authors addressed a different problem: the 
patterns analysis of intra-annual variability in temperature, using daily average 
temperature retrieved from Dutch stations spread over the country. 



3 Methodology 
 

This section introduces the TriGen algorithm, the methodology used to extract 
behavior patterns from satellite images along with the time points when they 
were taken. This methodology is applied to a 3D dataset (composed of rows, 
columns, and depths) that represents the X-axis coordinates (rows) and the Y- 
axis coordinates (columns) of each satellite image taken at a particular instant 
(depth). TriGen is a genetic algorithm that minimizes a fitness function to mine 

subsets of X-axis coordinates, Y-axis coordinates, and time points, called tri- 
clusters, from 3D input datasets. The NDVI values in the yielded subsets of 
[X, Y ] coordinates along with the subset of time points, share similar behavior 
patterns. 

In general terms, TriGen is explained from two main concepts, presented in 
the following sections: the triclustering model applied to the case study (Sect. 3.1) 
and the inputs, output and algorithm workflow of TriGen (Sect. 3.2). 

 
3.1 Triclustering 

The case study presented has been modeled as a triclustering problem, in which 
3-dimensional patterns are extracted from an original dataset. Prior to explaining 
this development, it is necessary to distinguish between two types of dataset: 

– D2D (2-dimensional dataset): a matrix with a set of instances (rows) and a 
set of features (columns). 

– D3D (3-dimensional dataset): a 3D matrix with a set of instances (rows) and 
features (columns), taken at a particular time points (depths). 

Clustering algorithms are applied to D2D datasets performing a complete 

partition it; for each yielded clusters, the values of the grouped instances share 
a behavior pattern through all features. In contrast, the triclustering algorithms 
work with D3D datasets and group not only subsets of instances, but also subsets 
of features and time points. In this case, for each yielded tricluster, the values of 
grouped instances for the particular grouped features share a behavior pattern 
through a group of time points. 

Thus, for this case study, the application of the TriGen algorithm to a D3D 
dataset of satellite images where the instances are the Y coordinates of the 
space, the features are the X coordinates of the area and, the time points are the 
moment at the images where taken, will yield a set of triclusters representing, 
each of them, a behavior pattern of NDVI, for a particular subspace (subset of 
Y and X coordinates) through a specific set of times (subset of time points). 

 
3.2 The TriGen Algorithm 

In order to mine the triclusters from the D3D dataset of satellite images, the 
TriGen algorithm is applied. TriGen is based on the genetic algorithm paradigm; 



therefore, it evolves a population of individuals employing genetic operators 
during a specific number of generations to optimize an evaluation function. 

The inputs of TriGen are two: the D3D dataset of satellite images and the 

initial configuration of the genetic process. The parameters that can be set are 
the number of triclusters to mine (N ), the number of generations of the genetic 
process (G), the size of the initial population (I), the fraction of population that 
promoted to the next generation (Sel) and, the probability of mutation (Mut). 
A complete analysis of the influence of these parameters in the performance of 
the algorithm can be consulted in [4,7,8]. 

Each individual in the genetic process is represented as a tricluster and com- 
posed of a subset of instances of D3D, a subset of features of D3D and, a subset 
of time points of D3D; the individuals (triclusters) with the best fitness function 
value are the output of the algorithm. 

The genetic operators allow for searching among the individuals to obtain 
better solutions for each generation. For the TriGen algorithm, the description 

of them is the following: 

– Initial population. The individuals are generated with three methods. The 
first method consists in a random selection of the elements of the individuals. 
The second one, considering the rows and columns of D3D as a geographical 
area, performs a random selection of a rectangular sub-area and time points. 
The last one selects the elements of the individuals taking into account the 
rows, columns, and time points of D3D visited in already extracted solutions 

in order to explore the most number of elements of D3D. 
– Evaluation. This operator applies the fitness function to the population in 

order to asses the quality of each individual. The fitness function used in the 
present case study is MSL. 

– Selection. A tournament selection algorithm is applied to promote the individ- 
uals with the best evaluation to the next generation. The rest of individuals 
in the next population are generated by crossing and mutations. 

– Crossover. Two individuals are combined to generate another two ones. The 
crossover used is the one point crossing. Each of the three elements of the 
two involved individuals (parents), are split in two and the four parts are 
combined two new individuals (offspring). 

– Mutation. This operator modifies an individual to obtain variability in the 
next generation. Three actions have been used: insertion of a new coordinate 
[X, Y ] or time point, deletion of an existing coordinate [X, Y ] or time point 
and change of an existing coordinate [X, Y ] or time point. 

 

4 Results 

This section reports and discusses the results achieved after the application of the 
proposed methodology to a particular dataset. Thus, Sect. 4.1 describes the high 
resolution remote sensing imagery used in this study and Sect. 4.2 introduces 
the validation function used to evaluate the quality of the triclusters obtained. 
Finally, Sect. 4.3 reports the spatio-temporal patterns obtained and discusses its 
physical meaning. 



4.1 Dataset Description 

Located in the Baixo Alentejo region of Portugal, the site under study is a 63.82 
ha maize plantation, with center at coordinates (38◦0811211N, 7◦5314211W ), as 
shown in Fig. 1. The site was monitored between sowing (April of 2018) and 
harvesting (September of the same year) and it is characterized by a set of 
nineteen images retrieved at time intervals of five, ten and fifteen days, from the 
Sentinel 2 Mission. The research site was irrigated using a central pivot irrigation 
system. 

 
 

 

Fig. 1. Location of the research site. 
 

 
Vegetation indices are, by definition, algebraic combinations of the mea- 

sured canopy reflectance of different wavelength bands [21]. The use of Vege- 
tation Indices in this context is based on the fact that healthy and unhealthy 
plants reflect light differently. Due to this difference, crop canopy multispectral 
reflectance, which is detectable remotely through aerial or satellite imagery, can 
be used to monitor the state of the crop [22]. For these reasons, one of the 
most widely used indices is applied to the images: the Normalized Differential 
Vegetation Index (NDVI). The NDVI can be calculated as follows: 

NIR − Red 
NDV I =   

NIR + Red 
, (1) 

where Red and NIR stand for the spectral reflectance measurements acquired 
in the red (visible) and near-infrared regions, respectively, and NDV I ∈ [−1, 1]. 
As pointed out in [23], the NDVI index has proven to be quite useful in 

monitoring variables such as crop nutrient deficiency, final yield in small grains, 
and long-term water stress. All these variables are very important to the case 
study presented here. Figure 2 illustrates how the NDVI of the target area varies 
over time, including images at six different chronologically ordered time stamps. 



 

(c) September 22nd, 2018 (d) October 17th, 2018 

 
Fig. 2. Sample NDVI values for the research site, chronologically ordered. 

 
 

4.2 Behaviour Patterns Quality, the TRIQ Measure 

The TRIQ index has been used in order to measure the quality of the yielded 
triclusters in this case study, that is, the quality of the behavior pattern that 
a tricluster depicts. TRIQ measures the quality of a tricluster based on three 
elements: the similarity of the behavior patterns of the grouped [X, Y ] points 
along with the grouped time points and the Pearson’s and Spearman’s correlation 
indexes between all the [X, Y ] time series of the tricluster. TRIQ values rank in 
the [0, 1] interval; TRIQ is a measure to maximize. A full description, definition, 
development, and performance of TRIQ can be consulted in [10]. 

 
4.3 Discovery of Spatio-Temporal Patterns in Maize Crops 

TriGen analyzes the evolution of NDVI indices in each specific area and discovers 
triclusters of similar behavior patterns. Thus, the dataset with the NDVI indices 
of the satellite images over time is the first input of the algorithm. 

TriGen has some configuration parameters, above-mentioned in Sect. 3.2. The 
algorithm has been run several times with different settings for each parameter. 
The configuration parameters that fit the best to these images are: G = 10, I 
= 200, Sel = 0.8 and Mut = 0.1. The number of triclusters to find is 4 and the 
fitness function used is MSL. Therefore, these values are the second input of 
the algorithm. 

Each of the 4 discovered triclusters has a TRIQ measure. The first one has 
a TRIQ of 0.803, the second has 0.753, the third has 0.827 and the fourth has 
0.742. These high values lead to confirm the good quality of all the triclusters. 
However, this measure itself does not guarantee the meaningfulness of the tri- 
clusters discovered. In order to interpret the evolution of the triclusters in an 

(a) June 19th, 2018 (b) August 3rd, 2018 
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accurate way, field’s farmers provided additional information about the planta- 
tions site-specific conditions, such as irrigation or fungicide, for the same period. 
This information confirmed that triclusters were meaningful also in geophysical 
terms. 

The triclusters discovered are represented in Figs. 3a, 3b, 3c and 3d. Each 
graph represents the evolution of the NDVI of the selected [X, Y ] components 
over time. The black dashed line added in each graph represents the mean value 
of all components. Triclusters components share a similar behavior. The first tri- 
cluster corresponds to areas with high NDVI values that remain almost constant 
over time. The components of the second tricluster are fields that start with a 
high NDVI and experiment a sudden decrease for the rest of the dates studied. 
The beginning of the third tricluster is similar to the previous one but with a 
recovery of the initial values after mid September. The last tricluster is formed 
by areas with constant low NDVI over time. 

The changes of the NDVI values identified by triclusters 1, 2 and 3 during 
the first samples seem to be related with the use of fertilizers and the increase 

of the amount of water for the irrigation process. The third tricluster and some 
components of the first one show a change in their behaviour at mid September. 

It could be related to the application of fungicide by the farmers during August. 
The proposed algorithm contributes in finding areas of similar crop conditions 

over the NDVI vegetation index using satellite images in different times. In 
addition, as TriGen includes the time dimension, the evolution over time of 
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Fig. 3. Triclusters found by TriGen in 2018. 
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each tricluster’s features can be analyzed. Nevertheless, the interpretation of 
the results needs the validation of a specialist as the TRIQ measure does not 
consider neither geographical nor environmental features. 

 
5 Conclusions 

 
The suitability of applying triclutstering methods to discover spatio-temporal 
patterns in precision agriculture has been explored in this work. In particular, a 
set of satellite images from maize crops in Alentejo, Portugal, has been analyzed 
in terms of its NVDI temporal evolution. Several patterns have been found, iden- 
tifying zones with tendency to obtain greater production and others in which 
human interventions are required to improve the soil properties. Several issues 
remain unsolved and are suggested to be addressed in future works. First, these 
patterns may help to identify the most suitable moments to apply fertilizers or 
pesticides. Second, the forecasting of maize production could be done based on 
such patterns. Third, additional crop production features such as amounts and 
characteristics of the fertilizers, phytopharmaceuticals and water used through- 
out the season (moister probes placed 30 cm underground were used to access 
the soil need for water before irrigation, when needed), would help to discover 
more robust patterns. Fourth, more images records during more years and a 
specific measure to assess the quality and meaning of precision agriculture tri- 
clusters would improve the application of the proposed algorithm to agricultural 
production. Fifth, more vegetation indices should be used. 
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