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Abstract

Direct Numerical Simulations (DNS) of reacting flows provide high-fidelity data for

combustion model reduction and validation, although their interpretation is not always

straightforward because of the massive amount of information and the data high-dimensionality.

Several data mining and machine learning techniques have been tested by the combustion

community to make the analysis easier, but the feature physical interpretation and the

need to set the algorithms’ hyperparameters often limit their potential and extendibility,

as they are entrusted to the sole user experience. In this work, a completely unsupervised

algorithm for data analysis is investigated on a data-set obtained from a temporally-

evolving DNS simulation of a reacting n-heptane jet in air. The proposed algorithm

combines the Local Principal Component Analysis (LPCA) clustering algorithm with a

variables selection algorithm via dimensionality reduction and Procrustes Analysis. Un-

like other data-analysis algorithms, it requires null or limited user expertise as all of its

steps are unsupervised and solely entrusted to mathematical objective functions, without

any hyperparameter tuning step required.
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1. Introduction

Combustion data obtained from high-fidelity numerical simulations such as Direct Nu-

merical Simulations (DNS) are routinely used for model development and validation, as

well as for the understanding of chemical and physical processes. In any case, the first step

is always the analysis of the massive amount of information that large-scale simulations

produce, as they are usually characterized by a large number of statistical observations

and several variables. Many data-driven approaches are available in literature and have

been tested on combustion data, such as linear and non-linear dimensionality reduction

techniques, i.e. Principal Component Analysis (PCA), Autoencoders (AE), Kernel Prin-

cipal Component Analysis (KPCA), Isomap and Dynamic Mode Decomposition (DMD)

[1–4, 6, 8], as well as techniques for high-dimensionality space exploration and visualiza-

tion, such as Self Organizing Maps (SOMs) and t-SNE [9–12]. Although the effectiveness

of these techniques is not questioned, as they have all proved to be effective in extracting

information from data, their common limitation is related to the physical interpretation

of the features, which is, in all the mentioned cases, not driven by objective criteria, but

entrusted to the sole user experience, constituting a limitation to the algorithm analy-

sis potential and extendibility. For some of these algorithms, such as Autoencoders and

t-SNE, good performances can be obtained only after an accurate tuning of the hyper-

parameters, for which a thorough sensitivity analysis or a significant user expertise are

required. For other algorithms, the applicability to combustion is limited because of their

intrinsic linearity (PCA and DMD), or because of their CPU-intensive nature (KPCA

and Isomap).

In this work, a local unsupervised algorithm for data analysis, which combines the

effectiveness of the Local Principal Component Analysis (LPCA) algorithm input-space

partitioning [13–15] and an automatic variables selection criterion via dimensionality re-

duction and Procrustes Analysis [1, 16], is tested on a data-set representing a 2D slice of

a 3D temporally-evolving DNS simulation of a reacting n-heptane jet [22–25]. The algo-

rithm’s performances were assessed comparing the selected main local principal variables

(LPVs) with the ones obtained by means of another well-known method used for data

analysis and feature extraction, which exploits the rotation of the local principal compo-
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nents with the Varimax criterion [32]. The main advantage of the proposed local analysis

is that both the partitioning and the LPV selection steps are accomplished according to

mathematical criteria, not requiring any hyperparameter tuning, and no dependence from

user expertise.

2. Theory

2.1. Variable selection via Principal Component Analysis and Procrustes Analysis

The PCA is a dimensionality reduction technique based on the eigenvalue-decomposition

of a covariance matrix [1]. Given a matrix X ∈ Rp, consisting of n statistical observations

of p variables, it is possible to compute the associated covariance matrix according to

Equation 1, which can be then decomposed by means of Equation 2:

S =
1

n− 1
XTX, (1)

S = ALAT . (2)

The matrix A is an orthonormal basis of eigenvectors, the Principal Components (PCs),

while L is a diagonal matrix of eigenvalues. The PCs are a linear combination of the

original variables, and the dimensionality reduction is possible considering a subset of q

eigenvectors, with q < p, associated to the q most powerful eigenvalues, such that the

information loss is minimized.

In many applications, rather than reducing the dimensionality considering a new set

of coordinates which are linear combination of the original ones, the main interest is to

achieve a dimensionality reduction selecting a subset of m variables from the original set

of p variables. One of the possible ways to accomplish this task is to couple the PCA

dimensionality reduction with a Procrustes Analysis [1, 16]. To do that, PCA is firstly

applied to the full data matrix X ∈ Rp, and a score matrix Z ∈ Rq is obtained projecting

the matrix X on the q-dimensional manifold spanned by the retained PCs:

Z = XA. (3)

After that, a subset consisting of m variables, with q < m < p, can be selected from

the original matrix, thus obtaining the reduced matrix X̃ ∈ Rm. At this point, PCA is
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applied to X̃, and a scores matrix Z̃ ∈ Rq is obtained also in this case. If the choice of

the m variables is done correctly, the discrepancies between the two scores matrices Z

and Z̃ are minimal, while there are significant differences otherwise [16]. A Procrustes

Analysis is thus carried out in order to quantitatively measure the similarity between the

two matrices, calculating the sum of the squared differences between the points of Z and

Z̃. It consists in the computation of the M2 coefficient:

M2 = Tr(ZZ′ + Z̃Z̃′ − 2Σ), (4)

where Σ is the matrix of the singular values obtained from the decomposition of the

square matrix Z̃′Z:

Z̃′Z = UΣV′. (5)

By means of the minimization of M2 as objective function, it is possible to build an

iterative algorithm to select, in a totally unsupervised fashion, the best subset of m

variables from the original set of p variables, as described in [16]:

1. The dimensionality of m is initially set equal to p.

2. Each variable is deleted from the matrix X, obtaining p X̃ matrices. The corre-

sponding scores matrices Z̃ are computed by means of PCA. For each of them, a

Procrustes Analysis is performed as in Equation 4 with respect to the scores of the

original matrix X, and the corresponding M2 coefficient is computed.

3. The variable which, once excluded, leads to the smallest M2 coefficient is deleted

from the X̃ matrix.

4. Steps 2 and 3 are repeated until m variables are left, thus obtaining the reduced X̃

∈ Rm matrix.

2.2. Unsupervised data analysis via local principal variables

The coupling between PCA and the Procrustes Analysis, proposed by Krzanowski to

select the main variables to preserve the multivariate data structure [16], can be easily

extended to a local version by means of the LPCA clustering. The latter is an unsuper-

vised algorithm to partition statistical observations in a high-dimensional space in clusters

(Ci, with i ∈ [1, ..., k]) via vector quantization (VQ), and after that the dimensionality

reduction task is locally accomplished. This method has already been successfully applied
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in combustion for clustering purposes [21] as well as for model reduction [14, 15]. The

objective function for the unsupervised space partitioning is the PCA reconstruction error

(εr), which is defined as:

εr = ||x− x̃||, (6)

where the vectors x and x̃ in Equation 6 represent the original and the reconstructed

(from the reduced manifold) vectors, respectively. If data are partitioned in k clusters,

and in each of them PCA is performed, it is possible to find k reduced basis of eigenvectors

(LPCs) A(j) ∈ Rq, with j ∈ [1, ..., k]. Thus, for each observation x of the data-set X ∈ Rp

it is possible to iteratively compute k reconstruction errors and assign it to a cluster k̄,

such that:

k̄ | εr,k̄ = min
j=1,...k

εr,j, (7)

until the error variation for the reconstruction of the full data matrix X is below a fixed

threshold. Considering k local sets of PCs (A(j) ∈ Rq, with j ∈ [1, ..., k]), the errors

arising from the dimensionality reduction are lowered with respect to the global PCA.

The local method is piecewise-linear and not globally linear, thus being effective also for

non-linear applications. Moreover, the possibility to select locally relevant variables can

be more attractive from both data analysis and model development perspective. Locally

optimized combustion reduced models have already proved to have several advantages

with respect to global reduced models [21], as subsets of variables which are locally more

coherent with the physics can be extracted from each group.

The algorithm has the following steps:

1. Partitioning of the input space in clusters: the thermochemical space is partitioned

in k clusters via minimization of the reconstruction error.

2. LPCs and local scores computation: in each cluster Ci (i ∈ [1, ..., k]) found in the

partitioning step, a local set of LPCs A(i) ∈ Rq is computed, and the corresponding

local scores matrices Zi are computed by projection of the clusters’ points on the

local reduced manifold.

3. Local variables selection: The variables needed to preserve the local multivariate

structure are retained by means of the Krzanowski algorithm [16].
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3. Case description

The data chosen to test the proposed algorithm were obtained from a 2D slice of

a 3D temporally evolving DNS simulation of a n-heptane jet [22–25]. The fuel jet is

nitrogen-diluted (85% in volume) at 400K, arranged in a coflow configuration with the

oxidizer stream (air) at 800K. The turbulent jet is initialized with a Reynolds’ number

equal to 15,000, and a layer at stoichiometric composition is inserted in the region of

smooth transition between the fuel and the oxidizer. Both the gas phase hydrodynamics

and combustion were modeled using a reactive unsteady Navier-Stokes equation formula-

tion within the low Mach number limit [26]. For the resolution of the gas velocity field,

as well as for the reactive scalar fields, a finite-differences scheme was chosen [27], while

the advection-reaction equations for soot moments were solved by means of a Lagrangian

particle method [28, 29]. Open boundary conditions were prescribed in the normal direc-

tion to the flame sheet in order to have a mass outflow for the combustion products, while

periodic boundary conditions were imposed in the other two directions. The adopted ki-

netic mechanism for the n-heptane oxidation was reduced to 47 species and 290 reactions

[31] from the detailed one developed by Blanquart et al. [30] .

The 2D slice of the simulation considered for the analysis consisted of 1,048,576 grid

points, each of them characterized by a thermochemical vector φ of temperature and 47

chemical species mass fractions. The data were organized as a matrix whose dimensions

were n× p, accounting for 1,048,576 observations of the 48 thermochemical variables.

4. Results

The local principal variables algorithm was applied to the data described in Section

3, with k = 16. In each cluster, the variables which were able to preserve the local

multivariate structure (LPVs) were chosen according to a Procrustes Analysis applied

to the local scores matrices. In Figure 1, the results obtained from the n-heptane jet

clustering via LPCA are shown.

In each cluster, a range from 4 to 9 chemical species was retained, according to the

local manifold dimensionality, within the original 47 species implemented in the chemical

mechanism. By means of this variable selection process, it was possible to easily interpret,

from a physical point of view, the results obtained from the clustering process, as many
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Figure 1: LPCA unsupervised partitioning of the selected 2D slice of the 3D DNS simulation with 16

clusters.

subset of variables resulted to be chemically coherent. For example, a subset containing

4 variables (oxygen radical, hydroxyl radical, hydrogen radical, hydroperoxy radical) was

identified in cluster number 2. All of these variables are involved in the oxygen branching

reactions and are H-atom abstractors, a key step in the PAH formation. In several clusters,

the selected LPVs were the ones involved in the soot formation as they consisted of mainly

PAHs, such as in cluster number 5, 6 and 9. In Table 1, the LPVs selected by the algorithm

in each cluster, according to the Procrustes Analysis, are reported.

A first, qualitative, assessment of the data analysis algorithm performances can be

done comparing the maps of the local principal variables with the cluster shapes. In Figure

2, the phenyl radical (A1−) concentration map is compared with the shape of cluster

number 9 (colored in yellow), where this species results to be a LPV. The maximum

phenyl radical concentration values and gradients are placed in correspondence of the

considered cluster, meaning that a correct variable was identified by the algorithm. Since

a qualitative comparison by means of the contours shapes alone cannot be considered to

be robust enough to evaluate the algorithm’s performances in terms of data analysis, a

quantitative assessment was carried out.

An assessment of the data analysis algorithm was done carrying out a comparison

between the extracted LPVs and the variables which were considered important by an-

other data analysis algorithm. The LPVs were compared with the variables having the

highest weights on the LPCs, when rotated with the Varimax criterion. When PCA or
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(a) (b)

Figure 2: (a). Cluster number 9 (in yellow) identified by means of the LPCA unsupervised partitioning

algorithm applied to the DNS data, with k = 16; (b). phenyl radical (A1−) map of concentration for the

selected 2D slice of the 3D DNS simulation.

LPCA are performed for data analysis tasks, the weights on the PCs must be visually

inspected and interpreted, but it can easily happen that large weights are distributed on

the eigenvectors over several variables, thus making impossible to associate the PC to a

particular variable, nor a physical or chemical process. By means of rotation, instead,

the PCs tend to align with only one or few variables, making their physical interpretation

easier, as observed in [32]. A coefficient of participation ψ can be defined to represent the

fraction of the LPVs having also the largest weight on the rotated LPCs, thus defined as

the ratio between the number of LPVs found with largest weight on a rotated LPC in the

considered cluster, and the total number of LPVs in that cluster:

ψ =
NLPV s∈LPCs

NLPV s,tot

(8)

This coefficient can take values between zero and one, being equal to zero if the variables

extracted by the two algorithms are completely different, and equal to one otherwise.

Analyzing the ψ coefficients reported in Table 1 it is clear that, except for clusters number

8 and 10, all the PVs were found on the rotated LPCs. In particular, in clusters number 2,

4 and 12, all the selected LPVs were found to be important also by means of the rotation

of the LPCs. Obtaining similar results by means of the two data analysis techniques is

particularly relevant, as the analysis with the proposed local principal variables algorithm

was achieved in an unsupervised fashion, without any visual inspection of the weights to
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be required. This is a considerable strength of the proposed algorithm, as it is possible to

analyze massive data also using many clusters, a task which would result to be unfeasible

if the visual inspection of the first q PCs in each cluster would be required.

5. Conclusions

In this work, an algorithm for local unsupervised data analysis was proposed and

tested on a massive dataset obtained from a DNS simulation of a n-heptane reacting jet.

The method consists of two steps. The first one is the data-set partitioning in different

clusters, accomplished via the LPCA algorithm. After that, in each cluster the main

variables are selected by means of an iterative algorithm for variables selection employing

a Procrustes Analysis.

A quantitative assessment of the algorithm’ performances was carried out comparing

the variables selected by means of the proposed algorithm with the ones selected by the

rotation of the local principal components, and a satisfactory agreement was observed in

all the clusters between the variables selected by the two algorithms. This result is par-

ticularly relevant, as it paves the way to the possibility to use a completely unsupervised

tool to analyze the data, without any visual inspection nor interpretation of the weights.

The proposed algorithm for the local data analysis can constitute a functional tool

aiding for the development and the validation of local reduced order models from DNS

data. In fact, the formulation of local reduced order models has already shown to have

several advantages over the global one, for example in the context of adaptive-chemistry

simulations and the development of digital twins.
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Table 1: Number of the cluster with the corresponding selected LPVs and coefficient of participation (ψ).

k LPVs ψ

1 CH2O, CH4, C3H6, C4H8, C5H6, A1CHO 0.67

2 O, H, OH, HO2 1

3 CH2, HCO, C2H3, C2H, HCCO, A−1 , A1CH2 0.85

4 CH2, O, CH, HCO 1

5 CH3, A2, A1CH2, A1C2H∗, A−2 , A1C2H 0.67

6 CH2, C2H, A−1 , A1C2H∗ 0.75

7 A-C3H4, A1, C5H6, A2, A1C2H2, A−2 , A1C2H 0.71

8 CH2O, C2H5, C4H8, C5H11, A1CHO, C7H15 0.50

9 A−1 , A−2 , A2, A1CH2, A1C2H 0.8

10 C2H6, C4H8, C5H10, A1CHO 0.5

11 HO2, HCO, CH2O, CH3, n-C3H7, C7H15 0.67

12 CH, HCO, C2H, HCCO 1

13 CH4, A-C3H5, C4H8, C5H6, C5H11, 0.62

A1C2H2, A1CHO, C7H15

14 CH2O, CH3, C2H3, A-C3H5, n-C3H7, 0.85

A1C2H2, A1CH2

15 CH2O, A-C3H5, n-C3H7, C5H11, A1C2H2, C7H15 0.67

16 CH2O, C2H3, A-C3H5, n-C3H7, 0.75

A-C3H4, C5H6, A1C2H2, A1C2H
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