Skip to main content

A Comparison of Multivariate Time Series Clustering Methods

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1268))

Abstract

Big Data and the IoT explosion has made clustering Multivariate Time Series (MTS) one of the most effervescent research fields. From Bio-informatics to Business and Management, MTS are becoming more and more interesting as they allow to match events the co-occur in time but that is hardly noticeable. In this paper, we compare four clustering methods retrieved from the literature analyzing their performance on five publicly available data sets. These methods make use of different TS representation and distance measurement functions. Results show that Dynamic Time Warping is still competitive; APCA+DTW and Compression-based dissimilarity obtained the best results on the different data sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liu, G., Zhu, L., Wu, X., Wang, J.: Time series clustering and physical implication for photovoltaic array systems with unknown working conditions. Sol. Energy 180, 401–411 (2019)

    Article  Google Scholar 

  2. Lee, Y., Na, J., Lee, W.B.: Robust design of ambient-air vaporizer based on time-series clustering. Comput. Chem. Eng. 118, 236–247 (2018)

    Article  Google Scholar 

  3. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering - a decade review. Inf. Syst. 53, 16–38 (2015)

    Article  Google Scholar 

  4. D’Urso, P., Giovanni, L.D., Massari, R.: Robust fuzzy clustering of multivariate time trajectories. Int. J. Approximate Reasoning 99, 12–38 (2018)

    Article  MathSciNet  Google Scholar 

  5. Fontes, C.H., Budman, H.: A hybrid clustering approach for multivariate time series - a case study applied to failure analysis in a gas turbine. ISA Trans. 71, 513–529 (2017)

    Article  Google Scholar 

  6. Hu, M., Feng, X., Ji, Z., Yan, K., Zhou, S.: A novel computational approach for discord search with local recurrence rates in multivariate time series. Inf. Sci. 477, 220–233 (2019)

    Article  Google Scholar 

  7. Yu, C., Luo, L., Chan, L.L.H., Rakthanmanon, T., Nutanong, S.: A fast LSH-based similarity search method for multivariate time series. Inf. Sci. 476, 337–356 (2019)

    Article  Google Scholar 

  8. Mikalsen, K.Ø., Bianchi, F.M., Soguero-Ruiz, C., Jenssen, R.: Time series cluster kernel for learning similarities between multivariate time series with missing data. Pattern Recogn. 76, 569–581 (2018)

    Article  Google Scholar 

  9. Vázquez, I., Villar, J.R., Sedano, J., Simic, S.: A preliminary study on multivariate time series clustering. In: 14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019) - Seville, Spain, 13–15 May 2019, Proceedings, pp. 473–480 (2019)

    Google Scholar 

  10. Vázquez, I., Villar, J.R., Sedano, J., Simic, S., de la Cal, E.A.: A proof of concept in multivariate time series clustering using recurrent neural networks and SP-lines. In: Hybrid Artificial Intelligent Systems - 14th International Conference, HAIS 2019, León, Spain, 4–6 September 2019, Proceedings, pp. 346–357 (2019)

    Google Scholar 

  11. Ferreira, A.M.S., de Oliveira Fontes, C.H., Cavalcante, C.A.M.T., Marambio, J.E.S.: Pattern recognition as a tool to support decision making in the management of the electric sector. Part II: a new method based on clustering of multivariate time series. Int. J. Electr. Power Energy Syst. 67, 613–626 (2015)

    Google Scholar 

  12. Salvo, R.D., Montalto, P., Nunnari, G., Neri, M., Puglisi, G.: Multivariate time series clustering on geophysical data recorded at Mt. Etna from 1996 to 2003. J. Volcanol. Geoth. Res. 251, 65–74 (2013). Flank instability at Mt. Etna

    Google Scholar 

  13. Li, J., Pedrycz, W., Jamal, I.: Multivariate time series anomaly detection: a framework of hidden Markov models. Appl. Soft Comput. 60, 229–240 (2017)

    Article  Google Scholar 

  14. Duan, L., Yu, F., Pedrycz, W., Wang, X., Yang, X.: Time-series clustering based on linear fuzzy information granules. Appl. Soft Comput. 73, 1053–1067 (2018)

    Article  Google Scholar 

  15. Bode, G., Schreiber, T., Baranski, M., Müller, D.: A time series clustering approach for building automation and control systems. Appl. Energy 238, 1337–1345 (2019)

    Article  Google Scholar 

  16. Anstey, J., Peters, D., Dawson, C.: An improved feature extraction technique for high volume time series data. In: Proceedings of the Fourth IASTED International Conference on Signal Processing, Pattern Recognition, and Applications, pp. 74–81, January 2007

    Google Scholar 

  17. Keogh, E., Lonardi, S., Chiu, B.Y.c.: Finding surprising patterns in a time series database in linear time and space. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 550–556 (2002)

    Google Scholar 

  18. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimensionality reduction for indexing large time series databases. ACM Trans. Database Syst. (TODS) 27, 188–228 (2002)

    Article  Google Scholar 

  19. Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proceedings of the 15th International Conference on Data Engineering, p. 126 (1999)

    Google Scholar 

  20. Bellman, R.: Adaptive Control Processes. Princeton University Press, Princeton (1961)

    Book  Google Scholar 

  21. Singleton, R.: An algorithm for computing the mixed radix fast Fourier transform. IEEE Trans. Audio Electroacoust. 17(2), 93–103 (1969)

    Article  Google Scholar 

  22. Keogh, E., Lonardi, S., Ratanamahatana, C., Wei, L., Lee, S.H., Handley, J.: Compression-based data mining of sequential data. Data Min. Knowl. Disc. 14, 99–129 (2007)

    Article  MathSciNet  Google Scholar 

  23. Öztürk, A., Lallich, S., Darmont, J.: A visual quality index for fuzzy C-means. In: Artificial Intelligence Applications and Innovations, June 2018

    Google Scholar 

  24. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2017)

    Article  MathSciNet  Google Scholar 

  25. Wang, J., Balasubramanian, A., de la Vega, L.M., Green, J.R., Samal, A., Prabhakaran, B.: Word recognition from continuous articulatory movement time-series data using symbolic representations. In: ACL/ISCA Interspeech Workshop on Speech and Language Processing for Assistive Technologies, pp. 119–127 (2013)

    Google Scholar 

  26. Shokoohi-Yekta, M., HuHongxia, B., Wang, J., Keogh, E.: Generalizing DTW to the multi-dimensional case requires an adaptive approach. Data Min. Knowl. Disc. 31(1), 1–31 (2017)

    Article  MathSciNet  Google Scholar 

  27. Ko, M., West, G., Venkatesh, S., Kumar, M.: Online context recognition in multisensor systems using dynamic time warping. In: Proceedings of the IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 283–288 (2005)

    Google Scholar 

  28. Villar, J.R., Vergara, P., Menéndez, M., de la Cal, E., González, V.M., Sedano, J.: Generalized models for the classification of abnormal movements in daily life and its applicability to epilepsy convulsion recognition. Int. J. Neural Syst. 26(06), 1650037 (2016)

    Article  Google Scholar 

  29. Blankertz, B., Curio, G., Muller, K.R.: No Title. In: Advances in Neural Information Processing Systems 14 (NIPS 2001) (2011)

    Google Scholar 

  30. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet components of a new research resource for complex physiologic signals. Circulation 101(23), E215–E220 (2000)

    Article  Google Scholar 

  31. Liu, C., Springer, D., Li, Q., Moody, B., Juan, R.A., Chorro, F.J., Castells, F., Roig, J.M., Silva, I., Johnson, A.E.W., Syed, Z., Schmidt, S.E., Papadaniil, C.D., Hadjileontiadis, L., Naseri, H., Moukadem, A., Dieterlen, A., Brandt, C., Tang, H., Samieinasab, M., Samieinasab, M.R., SameniRoger, R., Mark, G., Clifford, G.D.: An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 37(12), 2181–2213 (2016)

    Article  Google Scholar 

  32. Zakaria, J., Mueen, A., Keogh, E.: Clustering time series using unsupervised-shapelets. In: Proceedings of the 2012 IEEE 12th International Conference on Data Mining, pp. 785–794 (2012)

    Google Scholar 

Download references

Acknowledgment

This research has been funded by the Spanish Ministry of Science and Innovation under project MINECO-TIN2017-84804-R and by the Grant FCGRUPIN-IDI/2018/000226 project from the Asturias Regional Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ramón Villar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vázquez, I., Villar, J.R., Sedano, J., Simić, S. (2021). A Comparison of Multivariate Time Series Clustering Methods. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). SOCO 2020. Advances in Intelligent Systems and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_55

Download citation

Publish with us

Policies and ethics