arXiv:2209.14200v1 [cs.CR] 28 Sep 2022

Building an Ethereum-Based Decentralized
Vehicle Rental System

Néstor Garcia-Moreno!, Pino Caballero-Gil![0000-0002—0859-5876] - C4ndido
Caballero-Gil![0000-0002-6910-6538] ' 311q Jezabel Molina-Gil®

! Department of Computer Engineering and Systems
2 University of La Laguna.
3 Tenerife. Spain.
4 [ngarciam, pcaballe, ccabgil, jmmolina}@ull.edu.es
https://cryptull.webs.ull.es/

Abstract. Blockchain technology, beyond cryptocurrencies, is called to
be the new information exchange ecosystem due to its unique properties,
such as immutability and transparency. The main objective of this work is
to introduce the design of a decentralized rental system, which leverages
smart contracts and the Ethereum public blockchain. The work started
from an exhaustive investigation on the Ethereum platform, emphasizing
the aspect of cryptography and all the technology behind this platform.
In order to test the proposed scheme in a realistic use, the implemen-
tation of a web application for the rental of vehicles has been carried
out. The application covers the entire vehicle rental process offered in
traditional web applications, adding more autonomy and ease of use to
users. Following Ethereum application development guidelines, all busi-
ness logic is located in the smart contracts implemented in the Ethereum
network, where these contracts control the entire vehicle rental system
of customers. While this is a work in progress, the results obtained in
the first proof of concept have been very promising.

Keywords: Blockchain - Smart contracts - Vehicle rental.

1 Introduction

1.1 Background

Until recently, all electronic transactions between two parties have required cen-
tralized platforms, such as banks or credit card entities, in order to be able to
mediate the interests of the transmitter and acquirer, and enable valid secure
payments. These platforms store the description of the items purchased and their
price, and customers must interact with those platforms to purchase any item. A
feature of these platforms is that they all require a Trusted Third Party (TTP)
to operate, resulting in many disadvantages for consumers. For example, con-
sumers should usually register on each platform separately, share their private
data with the owners of the platform, pay transaction fees, and depend on the
security of the TTP.


http://arxiv.org/abs/2209.14200v1
https://cryptull.webs.ull.es/

2 N. Garcia-Moreno et al.

A solution to overcome all these problems is given with the concept of Smart
Contract (SC), which was first introduced by [I] as a digital protocol that fa-
cilitates an agreement process between different parties without intermediaries,
enforcing certain predefined rules that incorporate contractual clauses directly
in hardware and software.

The most important novelty that smart contracts include is the fact that
each contract is executed on the nodes of a network and can be developed by
anyone because a SC is a program that seals an agreement between two or more
entities without the need for a TTP. In particular, every SC consists of a series
of input variables, some output variables and a contract condition so that it is
executed when the condition is met and the output variables are delivered to
the entity indicated in the contract condition.

Before the appearance of the blockchain technology, there was no platform
that could make SC a reality. Bitcoin is an example of a specific SC, and
Ethereum is one of the platforms that allow to create SC in general. Ethereum is
a set of network, platform and protocol that shares many of basic concepts with
Bitcoin, such as transactions, consensus and Proof of Work (PoW) algorithm.
Ethereum started off on the basis of PoW protocol to mine using the compu-
tational brute force of the node. Now it is under the process of being moved
to Proof-of-Stake (PoS) as the new basis of the distributed consensus algorithm
to mine ethers by requesting tests of possession of such coins. With the PoS
mechanism, the probability of finding a block of transactions, and receiving the
corresponding prize, is directly proportional to the amount of coins that have
been accumulated.

These characteristics of Ethereum allow the development of Decentralized
Applications (DApps) without a server, thanks to smart contracts. The use of
smart contracts provides a layer of security and transparency to classic central-
ized applications. In the proposal here described, sensitive information is stored
in the blockchain, preventing it from being modified or manipulated.

On the one hand, hash functions are used in this type of schema because
they provide a random value of fixed length from an arbitrary input, and this
process is not computationally reversible, so given a hash value it is practically
impossible to obtain the original data, provided that the chosen hash function is
robust. Hash functions are used to verify data integrity, in order to check whether
they have been modified or not, since the corresponding associated hash value
changes if the input changes. Therefore, they are used in blockchain because it
is a way to verify whether the information stored in each block has changed or
not. Bitcoin uses the SHA256 hash function, which always returns a string of
64 hexadecimal characters, that is, 256 bits of information. On the other hand,
public key cryptography is used in the transactions of decentralized networks. In
this type of cryptography, each user has both a public key accessible to anyone,
and a private key used to sign transactions, and that must be kept secret. In
asymmetric cryptography the private key is used to decrypt and the public key
to encrypt messages.



Building an Ethereum-Based Decentralized Vehicle Rental System 3

The structure of this paper is as follows. In Section 2, some works related to
the proposal are mentioned. In Section 3, the decentralized applications ecosys-
tem is described. In Section 4, the proposed user application is detailed, includ-
ing technology, contracts and implementation. Section 5 includes a brief security
analysis. Finally, the paper is closed with the conclusions and future works in
Section 6.

2 Related Works

In this section several research publications related to different DApps for vehicle
rental are mentioned. The methodology for conducting the review is based on
a synthesis of several comprehensive literature reviews on sources like Google
Scholar and electronic databases. On the one hand, search queries in Google
Scholar were created using the following keywords: ”blockchain”, ” decentralized
applications” and ”vehicle rental”. On the other hand, electronic databases were
used to find out features of Peer-to-Peer car rental companies.

Although the blockchain technology is a relatively new concept in the field
of Information Technology, some reviews on several related concepts have al-
ready been published. The first book on the market that teaches Ethereum and
Solidity was [2]. The publication [3] gives a brief introduction to blockchain tech-
nology, bitcoin, and Ethereum. The work [4] categorizes blockchain-based Iden-
tity Management Systems into a taxonomy based on differences in blockchain
architectures, governance models, and other features.

With regard to specific blockchain-based applications for objectives similar to
this work, several authors have described some proposals. A DApp for the sharing
of everyday objects based on a SC on the Ethereum blockchain is demonstrated
in the paper [5]. The work [6] proposes using blockchain to build an Internet
of Things system. The paper [7] introduces the design and implementation of
an Android-based Peer-to-Peer purchase and rental application, which leverages
Smart Contracts and Ethereum public blockchain. The work [8] presents a car
rental alliance solution based on internet of vehicles technology and blockchain
technology.

An investigation of existing DApps reveals that only a few exploit SC to
develop applications for the purpose of flexible, valid and secure transaction
executions in the case of rental use. HireGo [16] is a decentralized platform
for sharing cars that has been operating since 2019. Its schedule highlights the
launch of its own token to use its service and the implementation of the Internet
of Things and smart cars to automate operations with its token. It is the first
DApp in the Ethereum Test Network (Test Net) to share vehicles in the United
Kingdom. Darenta [I7] is a Peer-to-Peer car rental market that connects people
who need to rent a private car with vehicle owners. Helbiz [1§] is a decentralized
mobile application to rent bicycles and electric scooters.

The conclusion of this literature review is that practical applications of
blockchain using Ethereum to develop DApps is a field that is beginning to
be explored and on which there is still much to study and improve.



4 N. Garcia-Moreno et al.

In particular, the area of application of e-commerce for purchase and rental
is one that has the greatest potential, although before several problems, such as
efficiency and privacy protection, have to be solved. Some common problems in
online car renting marketplaces such as Avis, Enterprise or Hertz are the need
for an online platform operator to act as TTP, the lack of privacy of users when
using those platforms, and the need for individual repetitive registration on each
platform. In this paper we propose that these problems can be solved using a
Ethereum DApp for rental cars that replaces the intermediary. That is just the
main goal of this work.

3 DApp Ecosystem

The first logical step to build a DApp is to set up an environment that allows
the development of smart contracts. This section details some of the technologies
and software used to develop in Ethereum the contracts proposed in this work.

In a typical application development environment, one has to write code
and then compile and execute the code on their own computer. However, the
development, of DApps is different because it brings decentralization to code
execution, allowing any machine on the network to execute your code for you. If
you want to develop a DApp without paying costs for the implementation and
execution of functions within the contracts you are testing, you have to solve
the challenge presented at this point.

The best solution for this problem is to use a blockchain simulator, which is a
lightweight program that contains implementations of the Ethereum blockchain
to be ran locally with minor modifications, such as control over mining speeds.
As such, it is possible to mine blocks instantly and run decentralized applications
very quickly.

Below is a review of several of the most popular technologies that allow the
realization of this development cycle using a blockchain simulator:

— Truffle: [9] Framework that encompasses the entire Ethereum ecosystem,
including decentralized application development, application testing and de-
ployment on the Ethereum blockchain. It allows the development, compila-
tion, test and deployment of smart contracts in the blockchain. It also allows
the maintenance of private networks or public test networks (Rinkeby, Ko-
van, Ropsten). In addition, this framework contains an integrated command
line interface for application development and configurable scripts to auto-
matically launch contracts to the blockchain.

— Web3: [I0] Collection of libraries which allow interaction with a local or
remote Ethereum node using a HT'TP or IPC connection.

— Solidity: [I1] It is an object-oriented, high-level language for implementing
smart contracts. Solidity was influenced by C++-, Python and JavaScript and
is statically typed, supports inheritance, libraries and complex user-defined
types among other features.

— Ganache/TestRPC: [12] Environment for the deployment of private or
local blockchains for testing and preproduction. It is the old TestRPC, now in



Building an Ethereum-Based Decentralized Vehicle Rental System 5

disuse. It comes integrated with Truffle. This environment allows to inspect
the entire record of the transactions of the blocks and the whole chain of
private blockchain.

— Embark: [13] Framework to develop and implement decentralized applica-
tions without a server. Embark is currently integrated with Ethereum Vir-
tual Machine (EVM), InterPlanetary File System (IPFS) and decentralized
communication platforms.

— Serpent: [14] Smart contract-oriented programming language inspired by
Python. It is currently in disuse.

— Metamask: [15] Browser extension that acts as a bridge between the blockchain
and the browser. It allows to visit and interact with DApps without running
a full Ethereum node.

4 User Application

AutoRent is the solution presented in this paper. It is a decentralized web plat-
form for car rental using smart contracts in the Ethereum blockchain. It has
been developed using the JavaScript Truffle framework, which is one of the most
popular in the development of DApps. This framework includes the entire de-
velopment cycle of an application: preproduction, production, and deployment.

For the development of smart contracts, Solidity, a high-level language ori-
ented to contracts, has been used. Its syntax is similar to that of JavaScript and
is specifically focused on the EVM.

4.1 Smart Contracts

Truffle includes a compiler for smart contracts developed in Solidity, with the
tools necessary for deployment on the Ethereum network (migrations). It has a
Command Line Interface (CLI) to facilitate this task. This interface allows to
compile, deploy (migrate), tests, etc.

Driving License Contract One of the main problems of developing a decen-
tralized vehicle rental application is to verify the authenticity of the driver’s
license. The driving license in Spain coincides alphanumerically with the Na-
tional Identity Document (DNI), but for the driving license there is no official
platform of the Spanish Government to confirm its authenticity, so the lessee
could provide a false permit or not have it when renting a car.

The ideal way to remedy this security breach would be for the Government to
have an official platform (which may be a blockchain) where to consult whether
a person has a driving license.

As an alternative, a private blockchain has been created in this work, in which
the platform administrator in charge of the car rental company can introduce the
driving licenses that have been previously validated, giving the corresponding
clients access to rent vehicles. This contract is simply composed of a method to
introduce previously validated driving licenses, and another method that lists
the driving licenses that have been introduced.



6 N. Garcia-Moreno et al.

RentACar Contract In order to lease a vehicle belonging to a rental fleet, a
smart contract is necessary to verify two different aspects: on the one hand, that
the desired vehicle exists in the private blockchain of the company, and on the
other hand, that it is not already rented. If everything is correct, this contract
establishes a mapping between vehicle and customer data, declaring it as a lessee.
Each day that passes, the contract automatically removes the daily price of the
rented vehicle from the customer’s deposit. If the deposit is insufficient or non-
existent, an extra expense will be charged. At any time, the client can add funds
to the contract in order to extend the rent or to avoid surcharges. In order to
return the car, a user must not have pending charges. Otherwise, the transaction
will be rejected and he/she will be prompted to add the funds he/she owes.

Once the vehicle is returned, the status of the vehicle changes to available,
and the customer-vehicle relationship is eliminated so that another person can
rent it. The vehicle rental benefits are sent to the digital wallet of the contract
owner who launched it to the Ethereum network. If funds were left over, these
would be sent to the client’s Ethereum account.

4.2 Implementation

Smart Contract Implementation To deploy the contracts in the blockchain
you need to specify the network. To do this, we need to create a configuration
file, ’truffle.js’ which is taken into account when compiling and launching the
contract.

The following figure shows the connection between the client (browser) and
the smart contract hosted on the blockchain. The Truffle connector is used, which
allows this connection

axios.get('drivingLicense.json').then(response => {
myContract2.contracts.Contract = TruffleContract(response.data)
myContract2.contracts.Contract.setProvider(myContract.web3Provider)

Fig. 1. Metamask

Finally, since Metamask is a browser extension and is the one that interacts
with the Ethereum nodes, that is why we interact with the contract from the
browser side. To do this, the .json files generated from the contract compilation
phase must be loaded in the client side

This section details in deep some relevant functions of the smart contract in
charge of the entire rental process of a vehicle. On the one hand, the "Rent a
Car” function receives all the parameters of the customer and the vehicle to be
rented. This function verifies that the car is not rented and that the license it
has received by parameter exists in the other contract



Building an Ethereum-Based Decentralized Vehicle Rental System 7

The main function of the smart contract, renting vehicles, is shown in the
following figure. This function, written in Solidity, receives the client’s data by
parameters and links them to the required car

function alquilarCoche(string _usuario,string _direccion, string _nPermiso, uint _telefono, string _
drivingLicense permiso = drivingLicense(@x345caiedldanfSdcodBBRST592ee473050903e10) ;
require(permiso.getLicense(_nPermiso));
require(!coches(_id].alquilado);
coches [_id] = Cochel({
precioCoche: _precioCoche,
precioDiario: _precioDiario,
alquilado: true
M
clientes[msg.sender] = Cliente({
usuario: _usuario,
direccion: _direccion,
nPermiso: _nPermiso,
telefono: _telefono,
fianza: @,
recargos: @

Fig. 2. Rent a car function

As for the return function, it verifies that the customer has no pending
charges. If the client has no pending charges, the deposit that has been left over
to the client is returned. When the car is returned, the owner of the application
is given its rental benefits and the car becomes as unrented

function devolverCoche(string _id) {
require(clientes [msg.sender].recargos == 8);
msg.sender.send(clientes[msg.sender].fianza — ownerBenefits);
owner.send(clientes [msg.sender].fianza);
coches[_id].alquilado = false;
clientes[msg.sender].fianza = @;
owner,send(this.balance);
ownerBenefits = @;

Fig. 3. Return car function



8 N. Garcia-Moreno et al.

The function written in Solidity checks that the client has no pending charges
(require (clients.charges == 0) Send the benefits of the transaction to the owner
of the contract (owner.send)

5 Security Analysis Draft

Users are not registered in any database so their information is not vulnerable
to security attacks. The information is managed by the smart contract. Transac-
tions are not centralized in a Virtual POS, since they are handled by Metamask
(Ethereum wallet) so the application does not manage bank information. In
addition, blockchain wallets use asymmetric cryptography for transactions in-
creasing the complexity of currency theft attacks. Blockchain integrity makes it
virtually impossible to maliciously alter any data from a decentralized applica-
tion that is hosted on it. (Hash check) Decentralization of the blockchain causes
any denial-of-service attack (DDoS) to be computationally very difficult, since
throwing a node would not change anything and all nodes but one would have
to be thrown to stop being a distributed network, so applications that use this
network are less exposed to these attacks.

6 Conclusions and Future Works

This work describes the design of a decentralized rental system based on smart
contracts and the Ethereum public blockchain. It also includes the presenta-
tion of an implementation called AutoRent, which was developed following the
standards of a DApp to check the performance of the proposed system. This
implementation is open source and no enterprise controls the tokens. Besides,
all data of rental car service and customers are stored in a public and decen-
tralized blockchain. Finally, the application uses Ethers as cryptographic tokens,
the PoW protocol for the transactions.

The guidelines of this work imply different characteristics from traditional
applications web. The user does not need to register, does not store password
and there is no control over the user’s sessions. The Smart Contract is in charge
to use customer’s digital wallet and store the data in the same one. The Smart
Contract gives to the application autonomy because it is in charge of the rent-
ing and returning of the vehicles, storing and returning the money, distributing
and charging automatically to each customer every day, avoiding other ways of
payment. Internet of Things, Artificial Intelligence and blockchain will definitely
settle in the applications development in the next years. Will be smart applica-
tions with autonomy and capacity to manage and take decisions autonomously.

Among possible future works, we highlight the following. A public blockchain
can be used to store all data of the citizens (Driving license, ID, location, etc.).
Any decentralized application will be able to use the data of this blockchain for
its smart contracts and most of these registries and traditional databases will
disappear because the user’s authentication and verification will be made in the
public contracts.



Building an Ethereum-Based Decentralized Vehicle Rental System 9

In the very near future, with the wide deployment and development of the
Internet of Things and Artificial Intelligence, all rental car networks will have
geolocation sensors to know the exact location of each vehicle in every moment.
Besides, vehicles will have digital keys that will be transferred by the contract
in the transaction moment. Thus, customers will not need going to a physical
point to take the keys. This will allow that customers can left the car where
ever they want and the next customer can go to those point because the car
is geolocated. Furthermore, the fluctuation in the value of the cryptocurrency
can recommend the consideration of issuing an own token with a stable value.
Another aspect that deserves a study is a study of the General Data Protection
Regulation (GDPR) and the impact it will have on the blockchain, both in public
and privates in order to make changes in the proposal if necessary to comply it.

Acknowledgment

Research supported by the Spanish Ministry of Science, Innovation y Universi-
ties and the Centre for the Development of Industrial Technology CDTI under
Projects RTI12018-097263-B-100 and C2017/3-9.

References

1. Szabo, N.: Formalizing and Securing Relationships on Public Networks. First Mon-
day, 2(9). https://doi.org/10.5210/fm.v2i9.548 (1997)

2. Dannen, C.: Introducing Ethereum and Solidity (Vol. 1). Berkeley: Apress. (2017)

3. Vujicic, D., Jagodic, D., Randic, S.: Blockchain technology, bitcoin, and Ethereum:
A brief overview. In 2018 17th international symposium infoteh-jahorina, 1-6. (2018)

4. Lesavre, L., Varin, P., Mell, P., Davidson, M., Shook, J.: A taxonomic approach to
understanding emerging blockchain identity management systems. arXiv preprint
arXiv:1908.00929. (2019)

5. Bogner, A., Chanson, M., Meeuw, A.: A decentralised sharing app running a smart
contract on the ethereum blockchain. In Proceedings of the 6th International Con-
ference on the Internet of Things, 177-178. (2016)

6. Huh, S., Cho, S., Kim, S.: Managing IoT devices using blockchain platform. In
2017 19th international conference on advanced communication technology, 464—
467. (2017)

7. Niya, S. R., Schiipfer, F., Bocek, T., Stiller, B.: A Peer-to-Peer Purchase and Rental
Smart Contract-based Application. it—-Information Technology, 59, 9. (2017)

8. Ren, P., Xu, J., Wang, Y., Ma, X.: Research and Implementation of Car Rental
Alliance Based on Blockchain and Internet of Vehicles. Journal of Applied Sciences,
(6), 10. (2019)

9. Truffle Homepage, https://www.trufflesuite.com/| Last accessed 28 Jan 2020

10. Web3, https://github.com/ethereum/web3. js/. Last accessed 28 Jan 2020

11. Solidity, https://solidity-es.readthedocs.io/es/latest//| Last accessed 28
Jan 2020

12. Ganache, https://www.trufflesuite.com/ganache. Last accessed 28 Jan 2020

13. Embark, https://framework.embarklabs.io/. Last accessed 28 Jan 2020

14. Serpent, https://github.com/ethereum/serpent. Last accessed 28 Jan 2020


http://arxiv.org/abs/1908.00929
https://www.trufflesuite.com/
https://github.com/ethereum/web3.js/
https://solidity-es.readthedocs.io/es/latest//
https://www.trufflesuite.com/ganache
https://framework.embarklabs.io/
https://github.com/ethereum/serpent

10

15.
16.
17.
18.

N. Garcia-Moreno et al.

Metamask, https://metamask.io/| Last accessed 28 Jan 2020

HireGo Homepage, https://www.hirego.io/| Last accessed 28 Jan 2020
Darenta Homepage, https://www.darenta.ru/en/| Last accessed 28 Jan 2020
Helbiz Homepage, https://helbiz.com/. Last accessed 28 Jan 2020


https://metamask.io/
https://www.hirego.io/
https://www.darenta.ru/en/
https://helbiz.com/

	Building an Ethereum-Based Decentralized Vehicle Rental System

