

Edinburgh Research Explorer

Timed Signatures and Zero-Knowledge Proofs: Timestamping in
the Blockchain Era
Citation for published version:
Abadi, A, Ciampi, M, Kiayias, A & Zikas, V 2020, Timed Signatures and Zero-Knowledge Proofs:
Timestamping in the Blockchain Era. in Applied Cryptography and Network Security (ACNS 2020): 18th
International Conference, ACNS 2020, Rome, Italy, October 19–22, 2020, Proceedings, Part I. Lecture
Notes in Computer Science, vol. 12146, Springer, pp. 335 - 354, 18th International Conference on Applied
Cryptography and Network Security, Rome, Italy, 19/10/20. https://doi.org/10.1007/978-3-030-57808-4_17

Digital Object Identifier (DOI):
10.1007/978-3-030-57808-4_17

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Applied Cryptography and Network Security (ACNS 2020)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Apr. 2024

https://doi.org/10.1007/978-3-030-57808-4_17
https://doi.org/10.1007/978-3-030-57808-4_17
https://www.research.ed.ac.uk/en/publications/81dd5e83-3f94-466a-83a2-04be4719944a

Timed Signatures and Zero-Knowledge Proofs
–Timestamping in the Blockchain Era–

Aydin Abadi1, Michele Ciampi1, Aggelos Kiayias2, and Vassilis Zikas3

1 The University of Edinburgh. {aydin.abadi,mciampi}@ed.ac.uk
2 The University of Edinburgh and IOHK. akiayias@inf.ed.ac.uk

3 The University of Edinburgh and IOHK. vassilis.zikas@ed.ac.uk

Abstract. Timestamping is an important cryptographic primitive with
numerous applications. The availability of a decentralized blockchain
such as that offered by the Bitcoin protocol offers new possibilities to
realise timestamping services. Even though there are blockchain-based
timestamping proposals, they are not formally defined and proved in
a universally composable (UC) setting. In this work, we put forth the
first formal treatment of timestamping cryptographic primitives in the
UC framework with respect to a global clock. We propose timed ver-
sions of primitives commonly used for authenticating information, such
as digital signatures, non-interactive zero-knowledge proofs, and signa-
tures of knowledge. We show how they can be UC-securely constructed
by a protocol that makes ideal (blackbox) access to a transaction ledger.
Our definitions introduce a fine-grained treatment of the different times-
tamping guarantees, namely security against postdating and backdating
attacks; our results treat each of these cases separately and in combi-
nation, and shed light on the assumptions that they rely on. Our con-
structions rely on a relaxation of an ideal beacon functionality, which we
construct UC-securely. Given many potential use cases of such a beacon
in cryptographic protocols, this result is of independent interest.

1 Introduction

Timestamping allows for a (digital) object—typically a document—to be associ-
ated with a creation time, such that anyone seeing the timestamp can verify that
the document was not created before or after that time. It has numerous ap-
plications from synchronizing asynchronous distributed systems to establishing
originality of scientific discoveries and patents. In fact, the idea of timestamp-
ing has been implicit in science for centuries, with anagram-based instantiations
being traced back to Galileo and Newton. The first cryptographic instantiation
of timestamping was proposed by Haber and Stornetta [25].

A cryptographic timestamping scheme involves a document creator (or client)
and a verifier, where the document creator wishes to convince the verifier that
a document was at his possession at time T . In typical settings, the aim is to
achieve universal verification, where any party can verify the timestamp but
one can also consider the simpler designated verifier-set version. Ideally, the

2 A. Abadi, M. Ciampi, A. Kiayias and V. Zikas

protocol aims to protect against both backdating and postdating of a digital
document. To define these two properties, let A be a digital document which
was generated at time T . In backdating, an adversary attempts to claim that
A was generated at time T ′ < T . In postdating, an adversary tries to claim
that A was generated at time T ′ > T . No existing solution achieves the above
perfect form of timestamping. This would be feasible only by means of perfect
synchrony and zero-delay channels. Instead, timestamping protocols, including
those presented in this work, allow to prove backdating and postdating security
for a sufficiently small time interval around T .

Haber et al. [25] achieve timestamping using a hash-chain of documents. In
the plain, centralized version of their scheme the parties have access to a semi-
trusted third party, called a timestamping server (TS). Whenever a client wishes
to sign a document, he sends his ID and (hash of) his document to TS who
produces a signed certificate, given the client’s request. The certificate includes
the current time (according to TS), the client’s request, a counter, and a hash
of the previous certification which links it to that certificate. The idea is that,
assuming the TS processes the documents in the time and order they were re-
ceived, if a document A appears in the hash chain before the hash of document
B, then B must have been generated after A. If someone wants to check the
order in which the two documents where generated, he can check the certifi-
cate, and assuming that he trusts TS’s credentials, he can derive the order. The
above solution suffers from the TS being a single point of failure. Concretely,
the timestamping protocol is only effective if the TS is constantly online and
responsive. This opens the possibility of denial-of-service attacks. Also, when
used in the context of patents, in order to avoid the need to trust the TS from
claiming the patent as its own, one needs to combine it with anonymity prim-
itives, such as blind signatures [18]. To circumvent such issues, [25] proposed a
decentralized version of their scheme, where the clients interactively cooperate
with each other to timestamp their documents. The efficiency and participation
requirements of that scheme were later improved by Benaloh et al. [5]. Later
on, [13] formally models the timestamping mechanisms, previously proposed in
[5,25], using the UC model. Moreover, it provides a construction very similar to
[5,25] with the main difference that it utilises an additional trusted party, an
auditor, who periodically verifies the TS. Also, [6] provides solutions for time
stamping a specific data type, i.e., audiovisual, by using unpredictable infor-
mation from a trusted public source. The authors also provide some interesting
applications of the timestamping for the case of postdate and backdate security,
(see [6] for more examples). More recently, [12] proposes a protocol that re-
quires multiple non-colluding servers who interactively time-stamp a document.
Although such a level of decentralization eliminates the single-failure point is-
sue, it brings additional complications. First, it can only work if the servers are
properly synchronized and their communication network is synchronous. Indeed,
[5,12] have an implicit round structure where every server/client is always in the
same round as all other servers/clients. Second, to avoid attacks by malicious
servers that attempt to backdate or postdate a document (e.g., by creating a

Timed Signatures and Zero-Knowledge Proofs 3

fork in the hash-chain) it seems necessary to assume that a majority of them are
honest and will therefore keep extending the honest chain. Third, the identities
and signature certificates of the servers and clients need to be public knowledge,
leading to the permissioned model that often requires mechanisms for registering
and deregistering (revoking) parties’ certificates. The above issues are implicit
in the treatment of [25,5], and there is no known technique to mitigate them.
These issues are similar to the core problem treated by blockchains and their
associated cryptocurrencies [32,35,27]. Thus, one could use techniques from such
primitives, e.g. relying on proofs of work or space, to develop a timestamping
blockchain. In fact, there are existing commercial solutions, e.g., Guardtime4,
that use this idea to offer a blockchain-based timestampting system. Following
this research line, very recently [29] presented a treatment of non-interactive
timestamping schemes in the UC-model. The construction provided in [29] is
based on proofs of sequential work such as VDF’s [9]. However, as the authors
stated in [29], the construction allows the adversary to pretend that a record was
timestamped later than it actually was (i.e., it allows postdating attack). Also,
even if the work of Landerreche et al. assumes the existence of a global clock,
the timestamping service provides only ordering of events5. In the concurrent
work of Zhang et al. [36] it is also considered the use of a blockchain to time
stamp digital files, by storing the file along with a hash of a series of blockchain
blocks in the blockchain. However, [36] lacks an appropriate security definition
and analysis and focuses only on the timestamping of digital documents.

Our Contributions. We put forth a formal composable treatment of times-
tamping of cryptographic primitives. Concretely, we devise a formal model of
protocol execution for timestamping cryptographic primitives with respect to
a global clock that parties have access to. We use the term timed, as in timed
(digital) signatures to distinguish timestamping with respect to such a global
clock from the guarantee offered by existing timestamping schemes [25,5,29],
which only establishes causality of events—i.e., which of the hash-chained docu-
ment was processed first—but does not necessarily link it to a global clock. We
stress that although for simplicity our treatment assumes ideal access to a global
clock—which is captured as in [4] by a global clock functionality, it trivially ex-
tends to allow for parties having bounded-drift view of the clock [26]—i.e. the
adversary is allowed at time t to make a party think that the time is t′ which
might lie within a distance d from t for a known drift parameter d. We then define
timed versions of primitives commonly used for authenticating information, such
as digital signatures, non-interactive zero-knowledge proofs [20,8], and signatures
of knowledge [17] in Canetti’s Universal Composition (UC) framework [14]. Our
treatment explicitly captures security against backdating and postdating sepa-
rately, and investigates the associated assumptions required to achieve each of

4 https://guardtime.com
5 In [29] the parties need to be synchronized via a global clock in order to keep track of

the computation steps done by the adversary to compute the outputs of the verifiable
delay function.

4 A. Abadi, M. Ciampi, A. Kiayias and V. Zikas

these security notions. Finally, we devise UC secure constructions of our timed
primitives that use any ledger-based blockchain. Rather than building a new
dedicated timestamping blockchain, our protocols take advantage of the recent
composable treatment of ledger-based cryptocurrencies by Badertscher et al. [4,3]
to implement timed versions of these primitives while making blackbox (hybrid)
access to a transaction ledger functionality. This decouples the trust assumptions
needed for secure timestamping from the ones needed for maintaining a secure
ledger and makes the security of our protocols independent of the technology
used to implement the ledger. In particular, our protocols can use any existing
public blockchain to achieve backdating and/or postdating security. In fact, our
protocols not only make blackbox use of the ledger functionality6, but they also
make blackbox use of the corresponding cryptographic primitive they rely on.
For example, our timed signatures make blackbox use of a signature function-
ality [15] and no further cryptographic assumptions. This means that all our
constructions can be instantiated with any protocols that UC securely realizes
the underlying cryptographic primitives (ledger and signatures). Furthermore,
our use of the ledger is minimal with postdating security requiring only read
access to the ledger, while backdating security requiring only write access to the
ledger. As a result it is readily compatible with Bitcoin or any other current per-
missionless distributed ledger. We stress that all our constructions are proved to
be UC-secure (as also the realization of the ledger functionality proposed in [4] is
UC-secure). To the best of our knowledge this is the first result that provides a
complete UC treatment of the notion of timed signature with respect to a global
clock under a blockchain prospective. One of the main tool used in this paper is
a weak beacon. In this work we provide a formalization of the weak beacon and
show how it can be realized using an augmented version of the ledger provided
in [4,3]. This augmented ledger captures the entropy contained in the blocks of
a ledger. The formalization of such a ledger, and its instantiation (which we also
provide) can be seen as result of independent interest.

Our Techniques. A standard idea for achieving security against postdating at-
tacks is to embed in the cryptographic primitive’s output evidence of an event
(or just a value) which becomes publicly known at creation time and could not
have been predicted in advance. A folklore use of this idea is for example to
embed a newspaper article about an unexpected event. The main challenge with
the above solution is that the unpredictable information needs to be verifiable
(along with the time it became available) by anyone who attempts to verify the
timestamp. In a cryptographic setting, this could be solved by assuming an un-
predictable randomness beacon that generates a new value in every round, with
the property that anyone can query it with a round index and receive the value
that the beacon output in that round. Here we do not assume such a perfect
beacon—as this would correspond to a strong trust assumption. So the main
question is: How can we construct such a source of sufficiently unpredictable

6 In our result we make use of a ledger functionality that slightly extends the one
proposed in [4] to capture the entropy of the blockchain.

Timed Signatures and Zero-Knowledge Proofs 5

and publicly verifiable randomness? One might be tempted to think that the
blockchain directly provides us with such a source. In fact, a number of propos-
als for a beacon based on Bitcoin exist [2,11,7]. But, none of these works has a
formal specification of the beacon they achieve or a formal proof of its security
based on standard cryptographic assumptions. In fact, as argued in [7], an unbi-
ased beacon can not be constructed using such assumptions based on the Bitcoin
protocol. In this work, we take a different path. We investigate how an ideal bea-
con as above can be weakened so that it is implementable by a protocol which
uses the ledger functionality (and a random oracle). In particular, we specify a
weak beacon functionality, denoted as Bw, which is sufficiently strong to be used
for timestamping cryptographic primitives. In a nutshell, the beacon functional-
ity is relaxed in the following way in order to obtain our weak version: First, the
weak beacon is slower, and is only guaranteed to generate a new value every MaxR

rounds, where MaxR is a parameter that depends on the ledger’s liveness param-
eter7 (we discuss it in more details in Sec. 2). Second, although the sequence of
outputs of the beacon cannot be changed once set, instead of every party being
able to learn this sequence at any time, the adversary is allowed to make dif-
ferent parties witness different prefixes of this sequence in any round; this can,
however, happen only under the following two restrictions, which are derived
from the properties of the ledger specified in [24] (cf. Sec. 2): (1) the lengths
of the prefixes seen by different parties do not differ by more than WSize again
a parameter which depends on the ledger (which reflects the similarity of the
blockchain to the dynamics of a so-called sliding window, where the window of
size WSize contains the possible views of honest miners onto state and where the
head of the window advances with the head of the state),(2) the prefixes increase
monotonically as the rounds advance (albeit not necessarily at the same rate),
and most importantly, (3) the adversary has a limited capability of predicting
the beacon’s output. In a nutshell, this predictability will allow the adversary to
be able to predict several future outputs, under the restriction that in every t
outputs at least one of them could not have been predicted more than k rounds
before it was generated by the beacon, where k is a parameter that will depend
on the ledger’s transaction liveness parameter. Interestingly, while the first two
properties are captured in the composable treatment of [4], the latter one is not.
To address this, we introduce a simple wrapper functionality that upgrades the
ledger functionality of [4] to possess this weak unpredictability property while
we show that the main result of [4], namely that the Bitcoin backbone protocol
of [24] implements the ledger, can be strengthened accordingly.

We provide a formal description of the above sketched weak beacon, and
prove that it can be constructed by a protocol which makes ideal access to any
of the ideal ledger functionalities from the literature [4,3] suitably augmented
with our wrapper functionality. We believe that this result is of independent in-
terest. Given the above beacon, we will show how it can be used to time(stamp)
cryptographic primitives with respect to the global clock, the beacon (and the

7 The ledger’s liveness property from [4] corresponds to the chain growth property
from [24].

6 A. Abadi, M. Ciampi, A. Kiayias and V. Zikas

ledger) is connected to. We start with one of the most common primitives used in
the timestamping literature, namely digital signatures. Note that the straightfor-
ward adaptation of digital signatures to their timed version—which only allows
the adversary to register a signature at the right time—cannot be implemented
given the above beacon. Instead, we devise a relaxation of such functionality
which embraces the imperfections of the beacon, while preserving the security
against postdating and backdating attacks. To obtain postdate-security, we use
the above idea of embedding in the signature the most recent value of the bea-
con. As the adversary cannot predict the output of the beacon for more than
k rounds in the future, this already puts an upper-bound in his poststamping
ability. Recall that in any timestamping scheme, the timestamp is associated
with some time interval and the adversary can create valid timestamps within
the interval. Note that our mechanism for postdate-security does not require
writing anything on the ledger; instead, the signer and the verifier only need
read-access. Obtaining backdate-security is trickier. First, we observe that if the
signer has read-only access to the ledger, then the ledger cannot be used to
counter backdating attacks. The reason is that an adversarial signer has full
information on the history of the ledger, at a certain time T . So, it can always
pretend the ledger is in a past state (e.g., use an old beacon output in the signa-
ture), and then issue the signature claiming it was created earlier. Nonetheless,
if the signer can insert some data, via a transaction to the blockchain, then it is
straightforward to guarantee protection against the backdating attack. Now, the
signature is only considered validly timed after it appears on the ledger’s state
and it is posted within a predefined delay. Again, the formal guarantee needs to
inherit the deficiencies of the ledger’s output; in particular a verifier might in
some round consider a signature accepting; whereas, another verifier does not, as
the latter may have a shorter chain that does not contain the signature yet. But
eventually every party will be able to check the timestamp. We view this sepa-
ration between the timestamping abilities enabled by read/write vs read-only as
an interesting feature which is exposed by our fine-grained treatment of times-
tamping. We note that this separation is not only theoretically interesting but
has a clear implication in practice: unlike postdate-security, backdate-security
using a cryptocurrency blockchain is not free of charge, since inserting infor-
mation in the blockchain of any such cryptocurrencies has associated fees that
the signer would need to pay. Completing our treatment of timed signatures, we
prove that combining the above two ideas, namely creating a signature with the
beacon value and inserting it on the blockchain, yields a signature with both
backdate and postdate security. One can argue that postdate security is trivially
solved by considering a signature valid once it is seen on the blockchain. This
is however not the case, since a signer might generate the signature in the past
with a future date, and only post it on the blockchain after that date (while
using the signature in the meanwhile). To see why the above makes a big differ-
ence, consider the following application scenario. A bank B has issued to Alice
an electronic checkbook and wants to ensure that Alice cannot issue postdated
signatures (e.g., to use them as collateral for a loan from another bank C). This

Timed Signatures and Zero-Knowledge Proofs 7

cannot be enforced by B by only requiring Alice to insert the signature on the
blockchain, as Alice can issue the signature with a future date T , use with C
at time T ′ < T and only post it on the blockchain at time T . Bank C has no
reason not to accept the signature as it knows that it will be considered valid at
time T (even if Alice does not post it on the blockchain, the Bank C can do it
for Alice). Mitigating a problem like this may be addressed by other techniques,
e.g., by requiring the signer to post the transaction from the same public key as
the one used for the signatures, however such workarounds would be using the
ledger in a non-blackbox way. In any case this example demonstrates a delicate
point in timestamping—namely the difference between the time object is created
vs. when its timestamp becomes publicly valid—which highlights the usefulness
of our fine-grained analysis. The above issue becomes even more evident when
considering timed signatures of knowledge, where we want to guarantee that
the witness was known to the signer at the claimed time. We define a three-tier
timed version of such signatures of knowledge analogously to the above time
signatures, and show how these can be implemented by a timed version of non-
interactive zero-knowledge proofs which we also introduce. We believe that both
these primitives might have applications on autonomous and IoT systems where
both the privacy and availability are of major concern. For instance, consider a
case where a set of smart devices, in an IoT network, need to periodically prove
their availability in zero-knowledge to a verifier, e.g. a smart contract. In this
scenario, our timed NIZK proofs or signatures of knowledge (depending on a
particular application) can be used by each device to prove that it knows the
witness at a certain time, i.e. can prove it was available at a certain point in time
(a detailed treatment of timed non-interactive zero-knowledge and signature of
knowledge is deferred to the full version of the paper [1]).

Related Work. We have already reviewed the milestones in the timestamping
literature and discussed its relation with the notions proposed in this paper.
We have also discussed solutions using blockchain technologies, e.g., proofs of
work and stake. We include a more detailed survey of that literature in the
full version [1] where we also discuss basic results in zero knowledge (including
some recent attempts that use time [21,28,22]). To our knowledge none of the
existing blockchain-based solutions obtains timestamping with only ideal (black-
box) access to the ledger nor includes a formal composable proof of the claimed
security. There is also literature on schemes called time-lock encryption and com-
mitments, and time released signatures [34,10,23,31,30]. Despite the similarity
in the name, these works do not (aim to) achieve timestamping guarantees. As
stated in [9], VDFs can be used for timestamping. However, as discussed in [9],
this application of VDF requires precise bounds on the attacker’s computation
speed, otherwise would lead to a serious issue. Namely, if an attacker can speed
up VDF evaluation by a factor of X using faster hardware, then once the fraud-
ulent history is more than 1/X as old as the genuine history, the attacker can
fool participants into believing the fraudulent history is actually older than the
genuine one. We note that the output of our beacon can be used as input to a
VDF as noted in [9].

8 A. Abadi, M. Ciampi, A. Kiayias and V. Zikas

Notation. We denote the security parameter by λ, and “||” as concatenation. For

a finite set Q, x
$←− Q denotes a sampling of x from Q with uniform distribution.

In this paper, ppt stands for probabilistic polynomial time. We use poly(·) to
indicate a generic polynomial function. Let v be a sequence of elements (vector);
by v[i] we mean the i-th element of v. Also, by v|i and v|i,j we mean the sequence
of elements of v in the ranges [1,v[j]] and [v[i],v[j]], respectively. Analogously,
for a bi-dimensional vector M , we denote with M [i, j] the element identified by
the i-th row and the j-th column of M . Moreover, an adversary is denoted by
A. We assume readers are familiar with standard notions such as commitment
and UC-security (see the paper full version [1] for formal definitions).

Organization of Paper. The remainder of this paper is structured as follows. In
Sec. 2 we put forth our execution modeling reviewing relevant aspects of the
UC framework. In Sec. 3 we provide the description of wrapper for the ledger
functionality to capture the entropy contained in the blockchains. In Sec. 4 we
describe our (weak) beacon functionality describe how to realized it via the
ledger functionality. In Sec. 5 we provide a technical overview of the results
on timed signatures and deferred to the full version [1] the formal description
of our timed signature UC-functionalities, their instantiations via the ledger
functionality and the security proofs. For lack of space we defer the treatement
of timed zero-knowledge and signature of knowledge to the full version as well.

2 The Model

Following the recent line of works proving composable security of blockchain
ledgers [4,3] we provide our protocols and security proofs in Canetti’s universal
composition (UC) framework [14]. In this section we discuss the main compo-
nents of our real-world model (including the associated hybrids). We review all
the aspects of the execution model that are needed for our protocols and proof,
but omit some of the low-level details and refer the more interested reader to
these works wherever appropriate. We note that for obtaining a better abstrac-
tion of reality, some of our hybrids are described as global (GUC) setups [16].
The main difference of such setups from standard UC functionalities is that the
former is accessible by arbitrary protocols and, therefore, allow the protocols to
share their (the setups’) state. The low-level details of the GUC framework—and
the extra points which differentiate it from UC—are not necessary for under-
standing our protocols and proofs; we refer the interested reader to [16] for these
details. Protocol participants are represented as parties—formally Interactive
Turing Machine instances (ITIs)—in a multi-party computation. We assume a
central adversary A who corrupts miners and uses them to attack the protocol.
The adversary is adaptive, i.e., can corrupt (additional) parties at any point and
depending on his current view of the protocol execution. Our protocols are syn-
chronous (G)UC protocols [4,26]: parties have access to a (global) clock setup,
denoted by Gclock, and can communicate over a network of authenticated multi-
cast channels. We assume instant and fetch-based delivery channels [26,19]. Such

Timed Signatures and Zero-Knowledge Proofs 9

channels, whenever they receive a message from their sender, they record it and
deliver it to the receiver upon his request with a “fetch” command. In fact, all
functionalities we design in this work will have such fetch-based delivery of their
outputs. Note, the instant-delivery assumption is without loss of generality as
the channels are only used for communicating the timestamped object to the
verifier which can anyway happen at any point after its creation. However, our
treatment trivially applies also to the setting where parties communicate over
bounded-delay channels as in [4]. We adopt the dynamic availability model im-
plicit in [4] which was fleshed out in [3]. We next sketch its main components:
All functionalities, protocols, and global setups have a dynamic party set. i.e.,
they all include special instructions allowing parties to register, deregister, and
allowing the adversary to learn the current set of registered parties. Additionally,
global setups allow any other setup (or functionality) to register and deregister
with them, and they also allow other setups to learn their set of registered par-
ties. For more details on the registration process we refer the reader to the full
version [1]. We next sketch its main components: All functionalities, protocols,
and global setups have a dynamic party set. i.e., they all include special instruc-
tions allowing parties to register, deregister, and allowing the adversary to learn
the current set of registered parties. Additionally, global setups allow any other
setup (or functionality) to register and deregister with them, and they also allow
other setups to learn their set of registered parties. We conclude this section by
elaborating on the hybrid functionalities and global setups used by our protocol.
These are standard functionalities from literature; but, for self-containment we
have included their descriptions here.

The Clock Functionality Gclock. The clock functionality was initially proposed
in [26] to enable synchronous execution of UC protocols. Here we adopt its
global-setup version, denoted by Gclock, proposed by [4] and was used in the
UC proofs of the ledger’s security.8 Gclock allows parties (and functionalities)
to ensure that the protocol they are running proceeds in synchronized rounds;
it keeps track of round variable whose value can be retrieved by parties (or by
functionalities) via sending to it the pair: CLOCK-READ. This value is increased
when every honest party has sent to the clock a command CLOCK-UPDATE. The
parties use the clock as follows. Each party starts every operation by reading
the current round from Gclock via the command CLOCK-READ. Once any party
has executed all its instructions for that round it instructs the clock to advance
by sending a CLOCK-UPDATE command, and gets in an idle mode where it simply
reads the clock time in every activation until the round advances. To keep more
compact the description of our functionalities that rely on Gclock, we implicitly
assume that whenever an input is received the command CLOCK-READ is sent to
Gclock to retrieve the current round. Moreover, before giving the output, the
functionalities request to advance the clock by sending CLOCK-UPDATE to Gclock.

The Random Oracle Functionality FRO. As in cryptographic proofs the queries
to hash function are modeled by assuming access to a random oracle function-

8 As a global setup, Gclock also exists in the ideal world and the ledger connects to it
to keep track of rounds.

10 A. Abadi, M. Ciampi, A. Kiayias and V. Zikas

ality: Upon receiving a query (EVAL, sid, x) from a registered party, if x has
not been queried before, a value y is chosen uniformly at random from {0, 1}λ
(for security parameter λ) and returned to the party (and the mapping (x, ρ) is
internally stored). If x has been queried before, the corresponding ρ is returned.

The Ledger Functionality Gledger. The last functionality is a cryptographic dis-
tributed transaction ledger, and is the main tool used in our constructions. We
use the (backbone) ledgers proposed in the recent literature [4,3] in order to de-
scribe a transaction ledger and its properties. As proved in [4,3] such a ledger is
implemented by known permissionless blockchains based on either proof-of-work
(PoW), e.g., the Bitcoin, or poof-of-stake (PoS) e.g., Ouroboros Genesis. The
ledger stores an immutable sequence of blocks—each block containing several
messages typically referred to as transactions and denoted by tx—which is ac-
cessible from the parties under some restrictions discussed below. It enforces the
following basic properties:

- Ledger’s growth. The size of the state of the ledger should be growing—by
new blocks being added—as the rounds advance.

- (`, µ)-Chain quality. Let ` ∈ N be a number which is super-logarithmic in
the security parameter and µ ∈ N. In any sequence of ` blocks, at least µ > 0
of them have to be contributed by honest parties—in this context, parties
are often referred to miners.9

- Transaction liveness. Old enough (and valid) transactions are included in
the next block added to the ledger state.

We next give a brief overview of the ledger functionality Gledger. Along the
way we also introduce some useful notation and terminology. Note, with minor
differences related to the nature of the resource used to implement the ledger,
PoW vs PoS, the ledgers proposed in these works are identical. At a high-level
anyone might submit a transaction to Gledger which is validated by means of a
filtering predicate, and if it is found valid it is added to a buffer. The adversary
A is informed that the transaction was received and is given its contents. Peri-
odically, Gledger fetches some of the transactions in the buffer and creates a block
including these transactions and adds this block to its permanent state, denoted
as state, which is a data structure that includes the sequences of blocks that
the adversary can no longer change. (In [24,33] this corresponds to the common
prefix.) Any miner or the adversary is allowed to request a read of the contents
of the state and every honest miner will eventually receive state as its output.
However, as observed in [4], it is not possible to achieve with existing construc-
tions that at any given point in time all honest miners see exactly the same
blockchain length, so each miner may have a different view of the state which is
defined by the adversary. Therefore, the functionality Gledger defines, for every
honest miner pi, a subchain statei of the state of length |statei| = pti that
corresponds to what pi gets as a response when it reads the state of the ledger.

9 Typically chain quality is specified by the ratio `/µ, but it is useful for our description
to break this into two parameters.

Timed Signatures and Zero-Knowledge Proofs 11

For convenience, we denote by state|pti the subchain of state that finishes in the
pti-th block. Informally, the adversary can decide the value of the pointer pti
for each miner, with the following constraints: (1) he can only move the pointers
forward; and (2) he cannot set pointers for honest miners to be too far apart, i.e.,
more than WSize state blocks. The parameter WSize ∈ N reflects the similarity
of the blockchain to the dynamics of sliding window, where the window of size
WSize contains the possible views of honest miners onto state and where the
head of the window advances with the head of state.

3 Weak Block Unpredictability (WBU)

A delicate point about the ledger from [4,3] is the way it enforces the chain qual-
ity property from [24]. Recall that this property requires that in every sequence
of ` blocks put into the state, at least µ of them have to be associated with
honest leaders. The ledger enforces this by the simulator declaring in a special
field—corresponding to a coinbase transaction—the identity of the party who
should be considered as having inserted each block; the extend-policy predicate
will then ensure that the simulator has to declare blocks as created by honest
parties with a sufficiently high frequency as above. Our analysis—as well as the
security analyses of the ledger [4,3] and the backbone abstraction of the proto-
col [24,33]—uses the assumption that the coinbase transaction of such honest

blocks includes at least λ̂ bits randomly chosen by an honest party10. One might
be tempted to deduce that it is possible to extract (at least) λ̂ bits of random-
ness from each sequence of ` blocks. However, this is not the case. Informally,
the reason is that parties are in parallel working to extend the chain, and there
is a chance that they might collide, giving the adversary the choice between the
colliding blocks. And, although, one can use the existence of uniquely success-
ful rounds—i.e., rounds in which only one honest party succeeds in solving the
PoW puzzle—guaranteed to exist by the analysis of [24], this is not sufficient:
The problem is that the most recent part of the blockchain is not stable (it is
not part of the common prefix) so the adversary can, in principle overwrite it,
potentially using alternative postfixes (which can include blocks even by honest
parties that have inconsistent view of the blockchain’s head). This gives the ad-
versary a bit more slackness in guessing the output of the beacon. Informally, the
entropy of the honest block can be reduced by a factor that depends on the num-
ber of honest blocks proposed within a small window from the round in which
the beacon emits its value. However, as we will argue below, this grinding might
at most eliminate a few bits of entropy from the beacon. Attempting to capture
the above, we hit a shortcoming of the ledger from [4]. The reason is that in the
current definition of the ledger, there is no way for an honest party to insert some
random value into a block’s content, as the ledger allows its simulator to have full
control of the contents of the blocks inserted into the state. Note that the extend

10 Formally, in [4,3] the ledger chooses the contents of the coinbase transactions of
honest blocks, including the nonces and possible new keys/wallet-addresses, hence
the simulator cannot predict them.

12 A. Abadi, M. Ciampi, A. Kiayias and V. Zikas

policy algorithm (responsible for enforcing the chain quality and liveness) in the
ledger functionality does not account for the above property. A way to rectify
that would be to adjust the extend policy, but this would then mean changing
the ledger in a non-transparent manner. Instead, here we choose to take the
following approach, also proposed in [4] for explicitly capturing assumptions—in
the case of [4] it was used for capturing honest majority of computing power:
We introduce an explicit wrapper that exactly captures the property that yields
the above entropic argument. We refer to this wrapper as WBU-wrapper, and to
the corresponding property that it enforces as weak beacon unpredictability, and
denote it asWWBU. The WBU-wrapper wraps the ledger functionality, i.e., takes
control of all its interfaces, and acts as a relayer except for the following behavior:
It might accept a special input from the simulator in any round (even multiple
times per round). Once it does, it returns a random nonce N and records the
pair (N, ρ), where ρ is the current round. Furthermore, for each block inserted
into the state, it records the block along with the round in which this insertion
occurred (note that the wrapper can easily detect insertions by reading the state
through all miner’s interfaces). If it observes that the simulator does not ask for
a nonce for more than (`− µ) · MaxR rounds, or does not insert a block with its
coinbase including a previously output nonce N within a δ-long time window
from the creation of N , where δ = MaxR · (` − µ), then the wrapper halts. The
formal definition of the weak block unpredictability wrapper is as follows.

Definition 1 (Weak Block Unpredictability Wrapper: WWBU). A WWBU

is a functionality-wrapper (that wraps Gledger) and operates as follows:

- Upon receiving (new nonce) from the simulator it returns random fresh N ∈
{0, 1}λ to the simulator, and records (N, ρ), where ρ is the current round.

- For any block proposed by the simulator that makes it into the ledger’s state,
which is flagged (via the coinbase transaction, by the simulator) as origi-
nating from an honest party (WWBU can detect this as discussed above). If
this block does not contain some N previously recorded, then halt; otherwise,
if (N, ρ′) has been recorded and the current round index is ρ > ρ′ + δ =
ρ′ + MaxR · (` − µ) then halt. In any other case relay messages between the
wrapped functionality and the entities it is connected to (i.e., the simulator,
the environment, and the global setups it registered with.)

The above definition provides a lot of freedom to the adversary for the dishon-
estly generated blocks. Indeed, the adversary could potentially decide entirely
the content of a malicious block. We note that this might not be the case for
some existent blockchains. However, since we would like our definitions to be as
generic as possible we consider such a powerful adversary. We also prove that
the (UC abstraction of the) Bitcoin backbone protocol from [4] emulates the
wrapped ledger WWBU[Gledger], where, Gledger is the ledger from [4]. The lemma
follows directly by observing that the simulator of [4] internally generates the
coinbase for honest blocks by emulating the honest protocol. Our detailed proof
can be found in the full version [1].

Timed Signatures and Zero-Knowledge Proofs 13

4 The (Weak) Beacon Functionality and Construction

Here, we describe how to utilize the blockchain to derive a source of sufficiently
unpredictable randomness, which we refer to as a weak (randomness) beacon.
Note that any implementation of an ideal randomness beacon would be expected
to satisfy (at least) the following properties:

Agreement on the Output: The output of the beacon can be verified by any
party who has access to the beacon.

Liveness: The beacon generates new values as time advances. The output of
the beacon can be verified (albeit at some point in the future) by any party who
has access to the beacon.

Perfect Unpredictability: No one should be able to bias or even predict (any
better than guessing) the outcome of the beacon before it has been generated.

However, due to the adversarial influence on the contents of the ledger, we
cannot obtain such a perfect beacon from the ledgers implemented by common
cryptocurrencies (cf. also [7] for an impossibility). Nonetheless, as it turns out,
even under a worst-case analysis as in [24,4], the contents of the ledger are
periodically updated with fresh unpredictable randomness. In the following, we
provide a formal definition of a beacon satisfying a weaker notion of liveness and
unpredictability, which as we will prove, can be constructed having blackbox
access to the functionality WWBU(Gledger). We refer to this beacon as a weak
beacon. As we show, this beacon will be sufficient for our timestamping schemes.

Our Beacon Functionality. In this section we provide a definition of our weak
beacon by means of UC-functionality. Then we show how to realize this function-
ality assuming the existence of a (wrapped) ledger. Our weak beacon generates
an unpredictable value η every ∆ outputs. Concretely, we define our weak bea-
con as a UC-functionality Bw in the Gclock-hybrid model. Note, an ideal beacon
functionality is straightforward to define in this model as follows. It maintains a
vectorH of random values available to anyone upon request, and in each round it
appends to this string a new uniformly random value. Before we formally define
our weak beacon Bw, we review the ways in which our weak beacon relaxes the
ideal-beacon properties, and the additional capabilities it offers to the adversary.
Bw is parameterized by a set of parameters w = ((µ, `), MaxR, WSize, MaxSize)
whose role will become clear as we go over the adversary’s capabilities:

Eventual Agreement on the Output: Similar to the ideal beacon, the functionality
maintains an output sequence vector H. However, instead of the parties having
a consistent view of H, the adversary might choose a prefix of H that each
party sees, with the restriction that length difference of the prefixes seen by
any two parties in any round is upper bounded by a parameter WSize. More
precisely, each party pi can see only the first pti elements of H, where pti is
adversarially chosen in each round, with the restriction |H| − pti ≤ WSize for
all pi registered to Bw. In our weak beacon functionality this restriction will be
enforced by means of a checking procedure, denoted as check t table, which will
be executed whenever the adversary attempts to rewrite indexes; if the check fails

14 A. Abadi, M. Ciampi, A. Kiayias and V. Zikas

then another procedure, force t table, is invoked which overwrites the adversary’s
choices with values of pti that adhere to the above policy.

Slow Liveness: Bw does not necessarily generate a new value in every round.
Instead, the adversary can delay the generation of a new value but only by at
most MaxR rounds.

Weak Unpredictability: An adversary has the following influence on the bea-
con output: 1) The adversary can bias some of the beacon’s outputs. More
precisely, assume that Bw is about to choose its ith value to be appended to
its output vector H. The adversary is given a set Si of random values (where
|Si| ≤ MaxSize = poly(λ)) and a choice: he can either allow the beacon to ran-
domly choose the i-th output (in this case this output is considered honest),
or he can decide on a value ηi ∈ Si to append to the output vector. But, the
restriction is that within every window of ` outputs, at least µ of them will be
honest; 2) The adversary can predict, in the worst case, the next `−µ outputs of
the beacon. Specifically, let n be the size of H; the adversary can ask Bw to see
`−µ sets Sn+1, . . . ,Sn+`−µ from which the next `−µ outputs will be chosen. In
terms of rounds, this means at any point the adversary might predict the output
of a beacon for up to the next δ = (`− µ+ WSize) · MaxR rounds.

In the following, we elaborate on the exact power that each of the above prop-
erties yields to the adversary. For capturing eventual agreement on the output
and slow liveness, we introduce the notion of a time table T . It is a table with
one column for each party that has ever been seen or registered with the beacon,
indexed by the ID of the corresponding party (recall that we allow parties to reg-
ister and deregister), and one row for each (clock) round. The table is extended
in both dimensions as new parties register and as the time advances. For a party
pi and (clock-)round τ , the entry T [τ, pi] is an integer tsl that we call time-slot
index. This value tsl defines the size of the prefix of the beacon’s output H that
pi can see at round τ . That is, pi at round τ can request any of the first tsl

outputs of Bw, denoted by H[1], . . . ,H[tsl]. The adversary is allowed to instruct
Bw as to how T should be populated under the following restrictions: (1) for any
party the values of its column, i.e., its time-slot indices, are monotonically non-
decreasing and they are increasing by at least once in every MaxR rounds (this
will enforce slow liveness), and (2) in any given round/row, no two time-slot in-
dices (of two different parties) can be more than WSize far apart (this together
will enforce the eventual agreement property). These properties are formally en-
forced by two procedures, called force t table and check t table that check if the
adversary complies with the above policy as follows: The procedure check t table
takes as input the current time table T , a new table T ′ proposed by the adver-
sary, the set of parties P registered to Bw, the current round R, maxtsl = |H|; it
outputs 0 if T ′ is invalid, and 1 otherwise. The procedure force t table is invoked
to enforce the policy mandated by check t table in case the adversary is caught
trying to violate it. In a nutshell, it generates a valid and randomly generated
time table T ′ to be adopted instead of the adversary’s proposal. More concretely,
force t table is invoked in the following two cases: 1) If H has not been extended
in the last MaxR rounds. In this case Bw generates a random output, appends it

Timed Signatures and Zero-Knowledge Proofs 15

to H and extends T using force t table. 2) If the adversary has not updated T in
the last round, then a new T ′ (that extends the previous one) is generated via
force t table. The trickiest of the above properties to capture (and enforce in the
functionality) is weak unpredictability. The idea is the following. Assume that
the beacon has already generated outputs η1, . . . , ηi−1, where ηi−1 was gener-
ated in round τ . Recall that, per the slow liveness property, the beacon does not
generate outputs in every round. In every round after τ , the adversary is given a
sequence of `−µ output candidate sets Si, . . . ,Si+`−µ sampled by Bw and can do
one of the following: (1) decide to set the i-th beacon’s output to a value from
Si of his choice. In this case, ηi is set to this value and flagged as dishonest (this
is formally done by setting a flag hflagi ← 0 and storing the pair (ηi, hflagi));
the adversary is also given a next set Si+`−µ+1 of size MaxSize sampled by the
beacon by choosing MaxSize-many random values from {0, 1}λ Looking ahead
in our beacon protocol, λ corresponds to the bits of entropy guaranteed to be
included in an honestly generated ledger block. Si+`−µ+1 is the output candidate
set for the (i + ` − µ + 1)-th beacon output. (2) instruct the beacon to ignore
Si and instead choose a uniformly random value for ηi. In this case, the beacon
marks the i-th output as honest, i.e., sets hflagi := 1, informs the adversary
about ηi, disposes of all existing output candidates sets, samples `−µ fresh can-
didates sets Si+1, . . . ,Si+`−µ+1 and hands them to the adversary. (3) instruct
the beacon to not include any new output in the current round. The choice (1)
above captures the fact that the adversary can predict the next ` − µ outputs
of the beacon. However, to ensure that the above weakened unpredictability is
meaningful, does not mess with liveness, and also achieves a guarantee similar to
the chain quality property—i.e. that a truly random (honest) output of length
λ is generated in sufficiently small intervals—the beacon enforces a policy on
the adversary which ensures that the adversary’s choices abide to the following
restrictions: (A) any sequence of ` outputs of the beacon contains (at least) µ
honest outputs, generated (randomly) by Bw, and (B) the adversary can leave
the beacon without an output for at most MaxR sequential rounds. Condition A
is checked by the procedure check validity whenever the adversary attempts to
propose a new output from the corresponding candidate set, by taking choice
(1) above; if the check fails the proposal of the adversary is ignored. Condition B
is checked by procedure force liveness(maxtsl, T ,H); if it fails, i.e., the adversary
tries to delay the beacon’s update by more than MaxR rounds, then procedure
force liveness(maxtsl, T ,H) is invoked which forces the above policy in a default
manner. The formal description of the helper procedures and of our weak beacon
functionality are referred to the full version [1].

Our weak beacon protocol. At a high level, our beacon protocol works as
follows. A party that wants to compute the beacon’s output reads state from
WWBU(Gledger) and outputs the hash of the latest ` − µ + 1 blocks of state.
At first glance, as any chunk of ` − µ + 1 blocks of state contains (at least) an
honestly generated block, the output of the beacon is an unpredictable random
value. However, this is not the case. The first observation is that, using the

16 A. Abadi, M. Ciampi, A. Kiayias and V. Zikas

technique described above, an adversary can predict the next ` − µ outputs
of the beacon in advance. In particular, the adversary first allows a sequence
of µ honestly generated blocks to be added to the chain and then it inserts
its own ` − µ pre-computed adversarial blocks after those µ blocks. But, the
prediction power of the adversary is not limited to `− µ blocks. We recall that
the view that an honest party has of the ledger state could differ of at most
WSize blocks. Therefore, in the worst case, the adversary sees WSize blocks in
advance with respect to an honest party, thus giving an additional prediction
power to him. In conclusion we can claim that, given a ledger WWBU(Gledger)
with chain quality parameters (µ, `) and window size WSize, it is possible to
construct a weak beacon Bw in which an adversary can predict, with respect to
an honest party, the next ∆ = `− µ+ WSize outputs. To see why the output of
the beacon is unpredictable, we recall that WWBU(Gledger) guarantees that the
blocks generated by the honest party contains some entropy. In practise, this
entropy comes from a random value inserted by an honest miner into the block
it mines. Similarly to [3,4,24,33] this random value is based on the assumption
that the coinbase transaction of honest blocks includes some random bits chosen
the honest parties. We refer the reader to the full version [1] for the formal
description of our protocol.

5 Timed Signatures (TSign)

In this section, we extend the standard notion of the digital signature (described
in [15]) by different levels of timing guarantees. In our model, a timestamped
signature σ for a message m is equipped with a time mark τ that contains in-
formation about when σ was computed by the signer. We refer to this special
notion of signature for a time mark τ that is associated with the global clock
Gclock as Timed Signature (TSign). We define three categories of security for
TSign: backdate, postdate security, and their combination which we refer to just
as timed security. Intuitively, backdate security guarantees that the signature σ
time-marked with τ has been computed some time before τ ; postdate security
guarantees that the signature σ was computed some time after τ ; and timed se-
curity provides to the party that verifies the signature σ a time interval around
τ in which σ was computed. We formally define these three new security no-
tions by means of a single UC-functionality Fw,t

σ . Fw,t
σ is parameterized by a

flag t ∈ {+,−,±} where t = “ − ” indicates that the functionality guarantees
backdate security, t = “ + ” indicates postdate security, and t = “± ” indicates
timed security. Analogously to the weak beacon, Fw,t

σ and all parties that have
access to this functionality, are registered to Gclock which provides the notion of
time inherently required by our model. For generality, we parametrize Fw,t

σ with
w = (∆, MaxR, WSize, waitingTime), where the meaning of these parameters is
discussed below. In a nutshell, the functionality Fw,t

σ provides to its registered
parties a new time-slot tsl ∈ N every MaxR rounds (in the worst case). The
exact moment in which each such time slot is issued is decided by the adversary
A via the input (NEW SLOT, sid). Once a time slot tsl is issued, it can be used to

Timed Signatures and Zero-Knowledge Proofs 17

time(stamp) a signature σ. The meaning of tsl depends on the notion of secu-
rity that we are considering. For backdate security (i.e., t = “− ”), a signature
σ marked with tsl denotes that σ was computed during a time slot tsl′ ≤ tsl.
For postdate security (t = “ + ”) tsl denotes that σ was computed during a
time slot tsl′ ≥ tsl. For timed security, the signature σ is equipped with two
time-marks tslback and tslpost that denote that σ was computed in a time-slot
tsl′ such that tslpost ≤ tsl′ ≤ tslback. A new time-slot issued by Fw,t

σ can
be immediately seen and used by A. However, A can delay honest parties from
seeing new time-slots—i.e., truncate the view that each honest party has of the
available time-slots. That is, for each party pi, A can decide to hide the most
recent WSize-many available time-slots. This means that, for example, in any
round R the party p1 could see (and use) the most recent time-slot tsl, whereas
p2’s view might have tsl − WSize as the most recent time-slot. To keep track
of the association between rounds and time-slots, Fw,t

σ manages a time table T
in the same way as Bw. That is, an entry T [τ, pi] is an integer tslpi , where pi
represents a party registered to Fw,t

σ and τ represents round number. The value
tslpi defines the view that the party pi has of the available time-slots in round τ .
In particular, at round τ party pi can access and use the time slots 1, . . . , tslpi .
The time table T is controlled by A but it is limited to change the content
of T according to the parameter WSize as we discussed above. More formally,
Fw,t
σ checks that the changes made by A to T are valid using the procedures

check t table and force t table Note that the way to obtain postdate security is
by relying on the unpredictability of the beacon. However, this creates the fol-
lowing subtlety. As the adversary is able to predict future values of our (weak)
beacon he can attempt to postdate signatures as far in the future as his predic-
tion reaches. To capture this behaviour, our functionality is parameterized by
a value ∆ ∈ N, which we call the prediction parameter. This parameter is only
relevant when t ∈ {“ + ”, “ ± ”}. With this parameter we allow the adversary
to use, before of any honest party, ∆ new time-slots. This means that, for the
case of postdate and timed security, an adversary can compute a signature σ
marked with a time slot maxtsl +∆, where maxtsl denotes the most recent time-
slot. However this creates a new issue, this time with the security proof: when
the simulator receives from its adversary a signature timed with a presumably
predicted beacon value, it cannot be sure whether the adversary will indeed in-
struct the beacon to output this value when its time comes. To resolve that, the
functionality allows its simulator/adversary to withdraw signatures which refer
to a future time slot tsl > maxtsl via the command (DELETE, sid, ·). We also
introduce a parameter waitingTime, which is relevant when t ∈ {−,±} and al-
lows the following adversarial interference: Whenever an honest party wants to
time-mark a signature, A can decide to delay the marking operation until that
waitingTime time-slots have been issued by Fw,t

σ . This means that an honest
party that requests to time-mark σ in round R has to wait, in the worst case,
waitingTime · MaxR rounds in order to see σ time-marked. To guarantee that a
new time-slot is available every MaxR (at least) rounds, any time that an input
is received the functionality checks that a new time-slot has been issued using

18 A. Abadi, M. Ciampi, A. Kiayias and V. Zikas

the procedure check liveness following exactly the same approach of Bw (see.
Sec. 4 for more details on how the liveness is enforced). The formalization of our
functions follows the signature functionality FSIGN proposed in [15]. Roughly,
FSIGN stores all the signatures that are issued, and when a verification request
for a message m occurs then FSIGN checks whether or not she is storing a sig-
nature for m. In the description of Fw,t

σ we make explicit the data structure,
that we call signature-table, that stores the signature (with the corresponding
time-stamping) by denoting it with Tabσ. To obtain postdate security we rely
on the weak beacon and on signatures. The signer in our case queries the bea-
con thus obtaining the pair (η, tsl) where η represents the tsl-th output of Bw
(which is also the most recent) and sign the message together with with η. In
order to obtain backdate-security, the signer creates a signature using a standard
signature scheme (formally we invoke the ideal signature functionality that we
denote with FSIGN) and inserts its signature, via a transaction to the blockchain
(Gledger). Now, the signature is only considered validly timed after it appears on
the ledger’s state and is posted within a predefined delay. Moreover, as we prove
in the full version, combining the above two ideas yields a signature with both
backdate and postdate security. For the formal constructions and definitions we
refer the reader to the full version [1].

Acknowledgments This research was partially supported by H2020 project
PRIVILEDGE #780477 and OxChain project, EP/N028198/1, funded by EP-
SRC.

References

1. Abadi, A., Ciampi, M., Kiayias, A., Zikas, V.: Timed signatures and zero-knowledge
proofs -timestamping in the blockchain era-. Cryptology ePrint Archive, Report
2019/644 (2019), https://eprint.iacr.org/2019/644

2. Andrychowicz, M., Dziembowski, S.: PoW-based distributed cryptography with no
trusted setup. In: Gennaro, R., Robshaw, M.J.B. (eds.) Advances in Cryptology –
CRYPTO 2015, Part II. Lecture Notes in Computer Science, vol. 9216, pp. 379–
399. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015).
https://doi.org/10.1007/978-3-662-48000-7 19

3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros gene-
sis: Composable proof-of-stake blockchains with dynamic availability. In: Lie, D.,
Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018: 25th Conference on
Computer and Communications Security. pp. 913–930. ACM Press, Toronto, ON,
Canada (Oct 15–19, 2018). https://doi.org/10.1145/3243734.3243848

4. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
A composable treatment. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology
– CRYPTO 2017, Part I. Lecture Notes in Computer Science, vol. 10401, pp. 324–
356. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24, 2017).
https://doi.org/10.1007/978-3-319-63688-7 11

5. Benaloh, J., de Mare, M.: Efficient broadcast time-stamping. Tech. rep. (1991)
6. Bennett, C.H.: Improvements to time bracketed authentication. CoRR

cs.CR/0308026 (2003)

https://eprint.iacr.org/2019/644
https://doi.org/10.1007/978-3-662-48000-7_19
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1007/978-3-319-63688-7_11

Timed Signatures and Zero-Knowledge Proofs 19

7. Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. CoRR (2016)
8. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its ap-

plications (extended abstract). In: 20th Annual ACM Symposium on Theory
of Computing. pp. 103–112. ACM Press, Chicago, IL, USA (May 2–4, 1988).
https://doi.org/10.1145/62212.62222

9. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
CRYPTO 2018 (2018)

10. Boneh, D., Naor, M.: Timed commitments. In: Advances in Cryptology - CRYPTO
2000 (2000)

11. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
Cryptology ePrint Archive, Report 2015/1015 (2015), http://eprint.iacr.org/
2015/1015

12. Buldas, A., Laanoja, R., Truu, A.: Efficient quantum-immune keyless signa-
tures with identity. Cryptology ePrint Archive, Report 2014/321 (2014), http:

//eprint.iacr.org/2014/321

13. Buldas, A., Laud, P., Saarepera, M., Willemson, J.: Universally composable time-
stamping schemes with audit. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.)
ISC 2005: 8th International Conference on Information Security. Lecture Notes in
Computer Science, vol. 3650, pp. 359–373. Springer, Heidelberg, Germany, Singa-
pore (Sep 20–23, 2005)

14. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science. pp.
136–145. IEEE Computer Society Press, Las Vegas, NV, USA (Oct 14–17, 2001).
https://doi.org/10.1109/SFCS.2001.959888

15. Canetti, R.: Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239 (2003), http://eprint.iacr.org/

2003/239

16. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007: 4th Theory of Cryptog-
raphy Conference. Lecture Notes in Computer Science, vol. 4392, pp. 61–85.
Springer, Heidelberg, Germany, Amsterdam, The Netherlands (Feb 21–24, 2007).
https://doi.org/10.1007/978-3-540-70936-7 4

17. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
Advances in Cryptology – CRYPTO 2006. Lecture Notes in Computer Science,
vol. 4117, pp. 78–96. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 20–24, 2006). https://doi.org/10.1007/11818175 5

18. Chaum, D.: Blind signature systems. U.S. Patent #4,759,063 (Jul 1988)
19. Coretti, S., Garay, J.A., Hirt, M., Zikas, V.: Constant-round asynchronous multi-

party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.)
Advances in Cryptology – ASIACRYPT 2016, Part II. Lecture Notes in Computer
Science, vol. 10032, pp. 998–1021. Springer, Heidelberg, Germany, Hanoi, Vietnam
(Dec 4–8, 2016). https://doi.org/10.1007/978-3-662-53890-6 33

20. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof sys-
tems. In: Pomerance, C. (ed.) Advances in Cryptology – CRYPTO’87. Lecture
Notes in Computer Science, vol. 293, pp. 52–72. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 16–20, 1988). https://doi.org/10.1007/3-540-48184-
2 5

21. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th Annual ACM
Symposium on Theory of Computing. pp. 409–418. ACM Press, Dallas, TX, USA
(May 23–26, 1998). https://doi.org/10.1145/276698.276853

https://doi.org/10.1145/62212.62222
http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2014/321
http://eprint.iacr.org/2014/321
https://doi.org/10.1109/SFCS.2001.959888
http://eprint.iacr.org/2003/239
http://eprint.iacr.org/2003/239
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-662-53890-6_33
https://doi.org/10.1007/3-540-48184-2_5
https://doi.org/10.1007/3-540-48184-2_5
https://doi.org/10.1145/276698.276853

20 A. Abadi, M. Ciampi, A. Kiayias and V. Zikas

22. Eng, T., Okamoto, T.: Single-term divisible electronic coins. In: Santis, A.D. (ed.)
Advances in Cryptology – EUROCRYPT’94. Lecture Notes in Computer Science,
vol. 950, pp. 306–319. Springer, Heidelberg, Germany, Perugia, Italy (May 9–12,
1995). https://doi.org/10.1007/BFb0053446

23. Garay, J.A., Jakobsson, M.: Timed release of standard digital signatures. In: Blaze,
M. (ed.) FC 2002: 6th International Conference on Financial Cryptography. Lecture
Notes in Computer Science, vol. 2357, pp. 168–182. Springer, Heidelberg, Germany,
Southampton, Bermuda (Mar 11–14, 2003)

24. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analy-
sis and applications. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology
– EUROCRYPT 2015, Part II. Lecture Notes in Computer Science, vol. 9057,
pp. 281–310. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30, 2015).
https://doi.org/10.1007/978-3-662-46803-6 10

25. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. Journal of
Cryptology 3(2), 99–111 (Jan 1991). https://doi.org/10.1007/BF00196791

26. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: Sahai, A. (ed.) TCC 2013: 10th Theory of Cryptography Confer-
ence. Lecture Notes in Computer Science, vol. 7785, pp. 477–498. Springer, Hei-
delberg, Germany, Tokyo, Japan (Mar 3–6, 2013). https://doi.org/10.1007/978-3-
642-36594-2 27

27. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) Advances in
Cryptology – CRYPTO 2017, Part I. Lecture Notes in Computer Science, vol.
10401, pp. 357–388. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 20–24, 2017). https://doi.org/10.1007/978-3-319-63688-7 12

28. Lam, T., Tan, C.C., Chang, Y.J., Liu, J.C.: Timed zero-knowledge proof (tzkp)
protocol. In: IEEE Real-Time and Embedded Technology and Application Sym-
posium (2007)

29. Landerreche, E., Stevens, M., Schaffner, C.: Non-interactive cryptographic times-
tamping based on verifiable delay functions. Cryptology ePrint Archive, Report
2019/197 (2019), https://eprint.iacr.org/2019/197

30. Liu, J., Garcia, F., Ryan, M.: Time-release protocol from bitcoin and witness en-
cryption for sat. IACR Cryptology ePrint Archive (2015)

31. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption.
Designs, Codes and Cryptography (2018)

32. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
33. Pass, R., Seeman, L., shelat, a.: Analysis of the blockchain protocol in asyn-

chronous networks. In: Coron, J., Nielsen, J.B. (eds.) Advances in Cryptology –
EUROCRYPT 2017, Part II. Lecture Notes in Computer Science, vol. 10211, pp.
643–673. Springer, Heidelberg, Germany, Paris, France (Apr 30 – May 4, 2017).
https://doi.org/10.1007/978-3-319-56614-6 22

34. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996)

35. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151, 1–32 (2014)

36. Zhang, Y., Xu, C., Li, H., Yang, H., Shen, X.S.: Chronos: Secure and accurate
time-stamping scheme for digital files via blockchain. In: 2019 IEEE International
Conference on Communications, ICC 2019, Shanghai, China, May 20-24, 2019.
pp. 1–6. IEEE (2019). https://doi.org/10.1109/ICC.2019.8762071, https://doi.
org/10.1109/ICC.2019.8762071

https://doi.org/10.1007/BFb0053446
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1007/978-3-319-63688-7_12
https://eprint.iacr.org/2019/197
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1109/ICC.2019.8762071
https://doi.org/10.1109/ICC.2019.8762071
https://doi.org/10.1109/ICC.2019.8762071

	Timed Signatures and Zero-Knowledge Proofs –Timestamping in the Blockchain Era–

