Skip to main content

A Practical Approach to the Secure Computation of the Moore–Penrose Pseudoinverse over the Rationals

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12146))

Included in the following conference series:

Abstract

Solving linear systems of equations is a universal problem. In the context of secure multiparty computation (MPC), a method to solve such systems, especially for the case in which the rank of the system is unknown and should remain private, is an important building block.

We devise an efficient and data-oblivious algorithm (meaning that the algorithm’s execution time and branching behavior are independent of all secrets) for solving a bounded integral linear system of unknown rank over the rational numbers via the Moore–Penrose pseudoinverse, using finite-field arithmetic. I.e., we compute the Moore–Penrose inverse over a finite field of sufficiently large order, so that we can recover the rational solution from the solution over the finite field. While we have designed the algorithm with an MPC context in mind, it could be valuable also in other contexts where data-obliviousness is required, like secure enclaves in CPUs.

Previous work by Cramer, Kiltz and Padró (CRYPTO 2007) proposes a constant-rounds protocol for computing the Moore–Penrose pseudoinverse over a finite field. The asymptotic complexity (counted as the number of secure multiplications) of their solution is \(O(m^4 + n^2 m)\), where m and n, \(m\le n\), are the dimensions of the linear system. To reduce the number of secure multiplications, we sacrifice the constant-rounds property and propose a protocol for computing the Moore–Penrose pseudoinverse over the rational numbers in a linear number of rounds, requiring only \(O(m^2n)\) secure multiplications.

To obtain the common denominator of the pseudoinverse, required for constructing an integer-representation of the pseudoinverse, we generalize a result by Ben-Israel for computing the squared volume of a matrix. Also, we show how to precondition a symmetric matrix to achieve generic rank profile while preserving symmetry and being able to remove the preconditioner after it has served its purpose. These results may be of independent interest .

Full version of this paper available at https://eprint.iacr.org/2019/470.

N.J. Bouman—work done while at TU Eindhoven, under support from H2020-EU SODA.

N. de Vreede—supported by H2020-EU PRIViLEDGE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A matrix A of rank r has generic rank profile if and only if all upper-left square submatrices of A up to dimension \(r \times r\) are invertible.

  2. 2.

    Rohde [35] actually shows his result for complex matrices, but for our purposes it is more convenient to state his result for real matrices.

  3. 3.

    https://eprint.iacr.org/2019/470.

References

  1. Albert, A.A.: Symmetric and alternate matrices in an arbitrary field, I. Trans. Am. Math. Soc. 43(3), 386–436 (1938)

    MathSciNet  MATH  Google Scholar 

  2. Bapat, R.B., Rao, K.P.S.B., Prasad, K.M.: Generalized inverses over integral domains. Linear Algebra Appl. 140, 181–196 (1990)

    Article  MathSciNet  Google Scholar 

  3. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant number of rounds of interaction. In: Proceedings of the 8th Symposium on Principles of Distributed Computing, pp. 201–209. ACM, NY (1989)

    Google Scholar 

  4. Ben-Israel, A.: A volume associated with \(m \times n\) matrices. Linear Algebra Appl. 167, 87–111 (1992)

    Article  MathSciNet  Google Scholar 

  5. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses - Theory and Applications. CMS Books in Mathematics, Springer (2003). https://doi.org/10.1007/b97366

    Book  MATH  Google Scholar 

  6. Blom, F., Bouman, N.J., Schoenmakers, B., de Vreede, N.: Efficient secure ridge regression from randomized Gaussian elimination. Cryptology ePrint Archive, Report 2019/773 (2019)

    Google Scholar 

  7. Bogdanov, D., Kamm, L., Laur, S., Sokk, V.: Rmind: A tool for cryptographically secure statistical analysis. IEEE Trans. Dependable Sec. Comput. 15(3), 481–495 (2018)

    Article  Google Scholar 

  8. Borodin, A., von zur Gathen, J., Hopcroft, J.: Fast parallel matrix and GCD computations. Inf. Control 52(3), 241–256 (1982)

    Article  MathSciNet  Google Scholar 

  9. Boullion, T.L., Odell, P.L.: Generalized Inverse Matrices. Wiley, New York (1971)

    MATH  Google Scholar 

  10. Bouman, N.J., de Vreede, N.: New protocols for secure linear algebra: Pivoting-free elimination and fast block-recursive matrix decomposition. Cryptology ePrint Archive, Report 2018/703 (2018)

    Google Scholar 

  11. Chen, L., Eberly, W., Kaltofen, E., Saunders, B.D., Turner, W.J., Villard, G.: Efficient matrix preconditioners for black box linear algebra. Linear Algebra Appl. 343–344, 119–146 (2002)

    Article  MathSciNet  Google Scholar 

  12. Cramer, R., Damgård, I.: Secure distributed linear algebra in a constant number of rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_7

    Chapter  MATH  Google Scholar 

  13. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_19

    Chapter  Google Scholar 

  14. Cramer, R.J.F., Damgård, I.B., Nielsen, J.B.: Secure Multiparty Computation and Secret Sharing: An Information Theoretic Approach. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  15. Cramer, R., Kiltz, E., Padró, C.: A note on secure computation of the moore-penrose pseudoinverse and its application to secure linear algebra. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 613–630. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_34

    Chapter  Google Scholar 

  16. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15

    Chapter  Google Scholar 

  17. Eberly, W., Kaltofen, E.: On randomized Lanczos algorithms. In: Proceedings of the ISSAC 1997, pp. 176–183. ACM (1997)

    Google Scholar 

  18. Gascón, A., Schoppmann, P., Balle, B., Raykova, M., Doerner, J., Zahur, S., Evans, D.: Privacy-preserving distributed linear regression on high-dimensional data. PoPETs 2017(4), 345–364 (2017)

    Google Scholar 

  19. Greville, T.: Note on the generalized inverse of a matrix product. SIAM Rev. 8(4), 518–521 (1966)

    Article  MathSciNet  Google Scholar 

  20. Hartwig, R.E.: The reverse order law revisited. Linear Algebra Appl. 76, 241–246 (1986)

    Article  MathSciNet  Google Scholar 

  21. Kaltofen, E., Lobo, A.: On rank properties of Toeplitz matrices over finite fields. In: Proceedings of the ISSAC 1996, pp. 241–249. ACM (1996)

    Google Scholar 

  22. Kaltofen, E., David Saunders, B.: On wiedemann’s method of solving sparse linear systems. In: Mattson, H.F., Mora, T., Rao, T.R.N. (eds.) AAECC 1991. LNCS, vol. 539, pp. 29–38. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54522-0_93

    Chapter  Google Scholar 

  23. Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.: Secure linear algebra using linearly recurrent sequences. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 291–310. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_16

    Chapter  Google Scholar 

  24. Malaschonok, G.: Fast generalized bruhat decomposition. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 194–202. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15274-0_16

    Chapter  Google Scholar 

  25. Marsaglia, G., Styan, G.P.H.: Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2(3), 269–292 (1974)

    Article  MathSciNet  Google Scholar 

  26. Marsaglia, G., Styan, G.P.H.: Rank conditions for generalized inverses of partitioned matrices. Sankhyā: Indian J. Stat. Ser. A 36, 437–442 (1974)

    MathSciNet  MATH  Google Scholar 

  27. Mohassel, P., Weinreb, E.: Efficient secure linear algebra in the presence of covert or computationally unbounded adversaries. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 481–496. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_27

    Chapter  MATH  Google Scholar 

  28. Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. Combinatorica 7(1), 101–104 (1987)

    Article  MathSciNet  Google Scholar 

  29. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundreds of millions of records. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy, pp. 334–348. IEEE (2013)

    Google Scholar 

  30. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_23

    Chapter  Google Scholar 

  31. Nissim, K., Weinreb, E.: Communication efficient secure linear algebra. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 522–541. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_27

    Chapter  Google Scholar 

  32. Pearl, M.H.: Generalized inverses of matrices with entries taken from an arbitrary field. Linear Algebra Appl. 1(4), 571–587 (1968)

    Article  MathSciNet  Google Scholar 

  33. Rao, C.R.: Linear Statistical Inference and Its Applications. Wiley, New York (1973)

    Book  Google Scholar 

  34. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York (1971)

    MATH  Google Scholar 

  35. Rohde, C.A.: Generalized inverses of partitioned matrices. J. Soc. Ind. Appl. Math. 13(4), 1033–1035 (1965)

    Article  MathSciNet  Google Scholar 

  36. Springer, J.: Die exakte Berechnung der Moore-Penrose-Inversen einer Matrix durch Residuenarithmetik. Zeitschrift für Angewandte Mathematik und Mechanik 63(3), 203–210 (1983)

    Article  MathSciNet  Google Scholar 

  37. Wang, P.S.: A \(p\)-adic algorithm for univariate partial fractions. In: Proceedings of the SYMSAC 1981, pp. 212–217. ACM (1981)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Berry Schoenmakers for interesting discussions and valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niek J. Bouman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouman, N.J., de Vreede, N. (2020). A Practical Approach to the Secure Computation of the Moore–Penrose Pseudoinverse over the Rationals. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds) Applied Cryptography and Network Security. ACNS 2020. Lecture Notes in Computer Science(), vol 12146. Springer, Cham. https://doi.org/10.1007/978-3-030-57808-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57808-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57807-7

  • Online ISBN: 978-3-030-57808-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics