
Efficient AGCD-based homomorphic encryption for matrix and
vector arithmetic

Hilder Vitor Lima Pereira

University of Luxembourg

Abstract. We propose a leveled homomorphic encryption scheme based on the Approximate
Greatest Common Divisor (AGCD) problem that operates natively on vectors and matrices. To
overcome the limitation of large ciphertext expansion that is typical in AGCD-based schemes, we
randomize the ciphertexts with a hidden matrix, which allows us to choose smaller parameters.
To be able to efficiently evaluate circuits with large multiplicative depth, we use a decomposition
technique à la GSW. The running times and ciphertext sizes are practical: for instance, for 100
bits of security, we can perform a sequence of 128 homomorphic products between 128-dimensional
vectors and 128× 128 matrices in less than one second. We show how to use our scheme to homo-
morphically evaluate nondeterministic finite automata and also a Näıve Bayes Classifier. We also
present a generalization of the GCD attacks against the some variants of the AGCD problem.

Keywords: Homomorphic Encryption · AGCD · Näıve Bayes Classifier · Nondeterministic finite
automata.

1 Introduction

With Fully Homomorphic Encryption (FHE) schemes it is possible to evaluate any computable
function homomorphically, i.e., given f and a ciphertext c encrypting x, we can compute an
encryption of f(x) using only the public parameters, and possibly the public key, available for
the FHE scheme. However, despite several practical and theoretical improvements since the first
construction due to Craig Gentry [Gen09], the size of the keys, the ciphertext expansion, and
also the evaluation times are, in general, prohibitive for FHE. Thus it is plausible to consider
weaker classes of homomorphic schemes, since they tend to be more efficient than fully homo-
morphic ones, and for several applications, they are already sufficient. The leveled homomorphic
encryption (HE) scheme presented in [GGH+19] is able to compute any program that can be
represented by a nondeterministic finite automaton (NFA), thus being able to homomorphically
accept regular languages, which is a very restricted yet very powerful set of languages. However,
the scheme for automata from [GGH+19] is based on yet a new hardness assumption. Ideally, we
would like to have schemes whose security is based on more standard problems, like the Learn-
ing with errors (LWE) or the Approximate Greatest Common Divisor (AGCD). Moreover, the
efficiency of [GGH+19] comes mainly from a noise-control technique in which, roughly speaking,
one performs a decomposition of the ciphertexts before operating with them homomorphically,
so that they are represented with smaller values and their contribution to the noise growth is
reduced. That technique was first used in [GSW13] and has become standard since then. There
are several proposals of such GSW-like schemes that are based on more standard problems, like
LWE or R-LWE. In particular, the GSW-like scheme proposed in [BBL17] is constructed over
the integers, which is appealing because of the simplicity, and it is based on the AGCD problem,
that is even believed to be quantum hard. On the negative side, the scheme of [BBL17] encrypts
a single bit into a high-dimensional vector, therefore, it has a very high ciphertext expansion,
which hurts its efficiency.

In this work we propose a scheme that can perform vectorial operations like [GGH+19], but
that is based on the AGCD problem and uses no circular security assumption, like [BBL17].
To solve the problem of ciphertext expansion, we randomize the AGCD instances with a secret

matrix, which allows us to reduce the size of parameters, as it was observed in [CP19]. Thus,
we obtain an efficient scheme that has good encryption, decryption and evaluation times. We
implemented it in C++ and ran experiments for two security levels. As applications, we ho-
momorphically evaluated nondeterministic finite automata and also a Näıve Bayes Classifier.
Moreover, we show new theoretical evidence supporting the analysis of [CP19] and we present
a generalization of the GCD attacks against the AGCD problem.

1.1 Approximate-GCD problem and variants

In 2001, Howgrave-Graham [HG01] studied the Approximate Greatest Common Divisor (AGCD)
problem, which asks us to recover an η-bit integer p, given many γ-bit integers xi := pqi + ri,
where ri is a small ρ-bit term (ρ < η < γ). Notice that if all ri were zero, then p would be
the GCD of all xi, thus, the values ri acts as noises and we only have access to approximate
multiples of p.

In 2010, Dijk et al. [DGHV10] proposed a HE scheme over the integers based on the AGCD
problem. After that, this problem has been used in several constructions [CCK+13,CLT14,CS15].
The AGCD problem is believed to be hard even in the presence of quantum computers. In fact,
when the parameters ρ, η, and γ are chosen properly, the best known attacks against it run in
exponential time [GGM16]. Moreover, if we sample p, qi and ri from specific distributions, then
the AGCD problem is at least as hard as the LWE problem [CS15].

In [CP19], motivated by the Kilian Randomization technique used on multilinear maps, the
authors analyzed how the attacks against the AGCD problem change if instead of having access
to n AGCD instances xi = pqi+ri, we have an n-dimensional vector x = (pq1+r1, . . . , pqn+rn)K
mod x0 where K is a secret matrix sampled uniformly from Zn×nx0 . Of course, solving this problem
cannot be easier than the original AGCD problem, since given some AGCD instances, we can
sample K, randomize them, and use the solver of the randomized version. But in [CP19], it is
stated that solving this problem is actually harder. Indeed, the known attacks against AGCD
were adapted to this randomized version and the cost of the attacks that try to exploit the noise
increased from 2Ω(ρ) to 2Ω(nρ) and the cost of lattice attacks increased from 2Ω(γ/η2) to 2Ω(nγ/η2),
which means that we can reduce the size of the parameters, dividing them by n. In section 4.2
we present some theoretical results that confirm the analysis of [CP19].

1.2 Our scheme

In this work, we propose a leveled homomorphic encryption scheme capable of evaluating vector-
matrix and matrix-matrix operations homomorphically. Basically, we include an AGCD instance
x0 := pq0 + r0 in the public parameters, and the secret key consists of a prime p and a random
matrix K invertible over Zx0 . Then, a vector m is encrypted as c := (pq + r + m)K−1 mod x0
and a matrix M is encrypted as C := (pQ + R + GKM)K−1 mod x0, where G is a constant
matrix that does not depend on the secret values and r,q,R, and Q are random vectors and
matrices. Indeed, we are adding instances pqi + ri of AGCD to the messages and randomizing
them with K, therefore, we can base the security of our scheme on the AGCD problem. To
perform homomorphic products, we apply a publicly computable decomposition G−1 to one of
the operands and multiply them modulo x0. For any vector, G−1 yields vectors with small entries
and it holds that G−1(v)G = v mod x0.

Hence, our proposed scheme is a GSW-like scheme and the noise growth is only linear on
the multiplicative degree, i.e., if the initial noise has magnitude 2ρ, then performing a sequence
of L homomorphic products yields ciphertexts whose noise’s size is O(L · 2ρ). The GSW-like
scheme of [BBL17] is also based on AGCD, but it works over Z2 only. In our case, the plaintext
space is bigger, containing vectors and matrices with entries bounded by a parameter B. This

2

already improves the ciphertext expansion and increases the efficiency. Moreover, as observed
in [CP19], the cost of the best attacks against AGCD increases when it is randomized with a
matrix K, which means that we can select smaller parameters, reducing even further the size of
the ciphertexts. As a result, we have a scheme whose running times are comparable to those of
[GGH+19], but that is based on a more standard problem.

1.3 Optimizations, implementation and applications

We implemented our scheme in C++ using the Number Theory Library1 (NTL). We also tested
two applications: homomorphic evaluation of NFA and a simple machine learning classification
method. The scheme is efficient, with good running times and memory requirements. All the
details are presented in Section 6. As a simple optimization, we propose to keep x0 private
and to perform the homomorphic operations without the reduction modulo x0, which causes
the ciphertexts to increase during homomorphic evaluation, but allows us to select smaller
parameters and to obtain better timings for big values of n (plaintext dimension). Moreover, we
show that for NFA evaluation, the bit-length of the ciphertexts increases only slightly during
the homomorphic evaluation.

2 Preliminaries

Vectors are denoted by bold lowercase letters and matrices by bold uppercase letters. We use
the max-norm ‖A‖ := max{|ai,j | : ai,j is an entry of A}. Notice that ‖A + B‖ ≤ ‖A‖ + ‖B‖
and ‖A ·B‖ ≤ m ‖A‖ · ‖B‖, where m is the number of columns of A. For vectors, we use the
infinity norm ‖v‖ := ‖v‖∞. We use the notation with double brackets for integer intervals, e.g.,
an integer interval open on b is Ja, bJ = Z ∩ [a, b[. The notation [x]m means the only integer y
in [−m/2,m/2[such that x = y mod m. The nearest integer is denoted by bxe. When applied
to vectors or matrices, those operators are applied entry-wise.

The Approximate-GCD problem, and therefore, our scheme, uses a secret prime, which will
always be denoted by p. Moreover, the public modulus is x0 := p·q0+r0. Hence, all the ciphertexts
are defined over Zx0 . To control the noise-growth, elements of Zx0 are decomposed in a base b.
Thus, we will denote by ` the number of words that we need to perform such decomposition,
i.e., ` := dlogb(2

γ)e, and we will always use g to represent the column vector (1, b, b2, ..., b`−1)T .
Usually, b is equal to 2 and we have a binary decomposition, but we can increase b to reduce the
dimensions of the encrypted matrices at the expense of increasing the accumulated noise. For
any a ∈ J0, x0J, let g−1(a) denote the vector whose entries are the signed base-b decomposition
of a and such that g−1(a)g = a. As our gadget matrix, we use G = In ⊗ g ∈ Zn`×n, where ⊗
denotes the tensor product (G is a block-matrix with g in the diagonal). For any a ∈ Zn, we
denote by G−1(a) the vector G−1(a) = (g−1(a1), ..., g

−1(an)) ∈ Z`n. Notice that G−1(a)G =
(g−1(a1)g, ..., g

−1(an)g) = a. For A ∈ Zn`×nx0 , G−1(A) is an n`×n` matrix obtained by applying
G−1 to each row of A.

For instance, for n = 2, ` = 3, and b = 4, we have g = (b0, b1, b2) = (1, 4, 16) and

G =

(
g 0
0 g

)
=



1 0
4 0
16 0
0 1
0 4
0 16

 ∈ Zn`×n.

1 https://www.shoup.net/ntl/

3

Then, for a = (18,−16), we have G−1(a) = (g−1(18), g−1(−16)) = (2, 0, 1, 0, 0,−1), thus, clearly,
G−1(a)G = (g−1(18) · g, g−1(−16) · g) = a.

We denote the uniform distribution on a finite set A by U(A). We define the statistical
distance between two discrete distributions D1 and D2 over the domain X as ∆(D1, D2) =
1
2

∑
x∈X |D1(x) − D2(x)|. Moreover, D1 is statistically close to D2 if ∆(D1, D2) is negligible.

We state here a simplified version of the Leftover hash lemma (LHL) and some related results
[BBL17].

Definition 1 (2-universal family of hash functions). A set H := {h : X → Y } of functions
from a finite set X to a finite set Y is a 2-universal family of hash functions if ∀x, x′ ∈ X,x 6=
x′ ⇒ Prh←H[h(x) = h(x′)] = 1

|Y | .

Lemma 1 (Matrix product as a 2-universal hash). Let n,m,N, p ∈ N with p being prime.
Define X := {0, ..., N − 1}n and Y := Zmp . For any matrix B, let hB(x) = xB (mod p). Then,
the set H := {hB : B ∈ Zn×mp } is a 2-universal family of hash functions from X to Y .

Lemma 2 (LHL). Let H be a 2-universal family of hash functions from X to Y . Suppose that
h ← U(H) and x ← U(X) independently. Then, the statistical distance between (h, h(x)) and

the uniform U(H× Y) is at most 1
2

√
|Y |
|X| .

2.1 Related work

GSW-like leveled HE over integers In [BBL17], the authors first present a scheme that
encrypts a single bit m into c := pq + r +mg ∈ Zγ , where pq + r is a vector whose each entry
pqi + ri is an instance of the AGCD problem and g is equal to (20, 21, . . . , 2γ−1). In order to
decrypt, we compute a vector with the binary decomposition of p/2, denoted g−1(p/2), and
notice that gg−1(p/2) = p/2, hence, z :=

[
cg−1(p/2)

]
p

= rg−1(p/2) + mp/2 over Z, because

the noise term r is small and satisfies |rg−1(p/2)| < p/4. Then, notice that the most significant
bit of z is defined by mp/2, that is, |z| ≥ p/4 ⇔ m = 1. Thus, the decryption is performed as
follows:

Dec(c) =

{
0 if

∣∣∣[cg−1(p/2)
]
p

∣∣∣ < p/4

1 otherwise

Given ciphertexts ci := pqi+ri+mig, a homomorphic product is done as cmult := c1G
−1(c2)

mod x0 where x0 := pq0 + r0 is a fixed instance of AGCD and G−1(c2) is a γ × γ matrix
whose each column j has the binary decomposition of the j-th entry of c2. After observing that
gG−1(c2) = c2, it is easy to see that the homomorphic product works, since over Z there exists
a vector u such that the following holds:

cmult = pq1G
−1(c2) + r1G

−1(c2) +m1gG−1(c2) + x0u

= pq1G
−1(c2) + r1G

−1(c2) +m1(pq2 + r2 +m2g) + (pq0 + r0)u

= p (q1G
−1(c2) +m1q2 + q0u)︸ ︷︷ ︸

qmult

+ (r1G
−1(c2) +m1r2 + r0u)︸ ︷︷ ︸

rmult

+m1m2g.

Since each of the γ entries of c is a large integer with approximately γ bits, they use γ2 bits
to encrypt a single bit, which is a huge ciphertext expansion, specially taking into account that
γ is typically very big (the bit-length of p is η ≥ λ and γ is several times larger than η). Aiming
to mend this issue, the authors also propose a batched version that uses primes p1, ..., pN instead
of a single prime and the Chinese Remainder Theorem (CRT) to “pack” N bits into a single
ciphertext. However, even this variant is not efficient as it takes several seconds to perform a
single homomorphic multiplication.

4

FHE for Nondeterministic Finite Automata In [GGH+19], a leveled GSW-like encryp-
tion scheme that is able to homomorphically evaluate NFAs is proposed. The authors say that
their scheme is similar to Hiromasa, Abe, and Okamoto’s scheme [HAO15], but the secret key
is chosen to be an invertible matrix S (while in [HAO15], S is not even square). Actually,
the secret key contains S ∈ Zn×nq and also a random low-norm matrix E ∈ Zn×nmq , where
m := dlogb qe. In spite of the similarity with [HAO15], the scheme of [GGH+19] does not have
a security proof based on the LWE problem. Instead, the authors assume that it is hard to
distinguish between

[
S−1

(
GT −E

)]
q

and the uniform U(Zn×nmq). They call this new prob-

lem the Matrix-inhomogeneous NTRU problem (MiNTRU), and argue that it is related with
the well-known NTRU problem, although no formal connection is shown. Thus, using a stan-
dard randomized decomposition φ such that GT · φ(A) = A for any A and assuming that
U(Zn×nmq) ≈

[
S−1

(
GT −E

)]
q
, they prove that

U(Zn×nmq)φ(MGT) ≈
[
S−1

(
GT −E

)
φ(MGT)

]
q

=
[
S−1

(
MGT −Eφ(MGT)

)]
q

The expression in the right-hand side is then defined as the encryption of M. Finally, setting
the parameters so that φ has enough entropy, they can use the Leftover Hash Lemma to prove
that U(Zn×nmq) · φ(MGT) is computationally indistinguishable from U(Zn×nmq), which implies
that the encryptions of M are also so.

Furthermore, the authors argue that their scheme can be cryptanalyzed by NTRU attacks
and say that for 80 and 100 bits of security, one needs to use n = 750 and n = 1024, respectively.
Note, however, that a user aiming to evaluate homomorphically an NFA with few states, say, 50,
would need n to be just 50. This implies that a user cannot take advantage of the low number of
states to make the homomorphic evaluation faster, as would be natural. Nevertheless, we note
that, when compared to other HE schemes, [GGH+19] is very efficient even for such big values
of n.

2.2 Approximate GCD and related distributions

In this section we define the Approximate Greatest Common Divisor (AGCD) problem formally.
Following the strategy of [BBL17] to prove the security, we define not only the underlying
distributions of AGCD, but also an additional bounded distribution.

Definition 2. Let ρ, η, γ, and p be integers such that γ > η > ρ > 0 and p is an η-bit prime.
The distribution Dγ,ρ(p), whose support is J0, 2γ − 1K is defined as Dγ,ρ(p) := {Sample q ←
J0, 2γ/p J and r ← K− 2ρ, 2ρJ : Output x := pq + r}. For simplicity, we will denote it by D.

Definition 3 (AGCD). The (ρ, η, γ)-approximate-GCD problem is the problem of finding p,
given polynomially many samples from D.

The (ρ, η, γ)-decisional-approximate-GCD problem is the problem of distinguishing between
D and U(J0, 2γJ).

We stress that no attack directly on the decisional version of AGCD is known, thus, it can only
be solved by solving the search version first, that is, by finding p and then reducing the samples
ci modulo p, which results in the small noise terms ri’s when ci’s are AGCD samples, but gives
us random η-bit integers when ci’s are uniform. Furthermore, there are known reductions from
the search version to the decisional one [CCK+13].

We also define truncated distributions, which are obtained by rejecting samples that are
greater than a given value. They are important to formally prove the security of the scheme,
because based on the decisional AGCD problem, we can prove properties about distributions
over J0, 2γ − 1K, but in fact, since the encryption scheme performs reductions modulo x0, we
want to make statements using the interval J0, x0 − 1K.

5

Definition 4. Let Ψ be any distribution whose support is contained in Z and let r be an integer.
We define then Ψ<r as the distribution Ψ conditioned on Ψ < r. If Pr[Ψ < r] = 0, then Ψ<r is
undefined.

Notice that we can sample from D<x0 simply by sampling from D and rejecting the sampled
value if it is bigger than or equal to x0, which occurs with probability less than one half if we
choose x0 > 2γ−1.

Lemma 3. Let x0 > 2γ−1. Under the decisional AGCD assumption, the distributions D<x0 and
U(Zx0) are computational indistinguishable.

Proof. The proof is adapted from lemma 2.3 of [BBL17]. We included it in the appendix B for
completeness. ut

3 Our scheme

In this section, we first describe the scheme, then we show how to perform homomorphic oper-
ations, and we analyze the noise growth.

3.1 Making BBL17 practical

As it is said in Section 2.1, the ciphertext expansion is one of the main sources of inefficiency
of [BBL17]. However, notice that a natural way to improve that is to generalize the scheme to
encrypt non-binary vectors or matrices instead of binary scalars. For instance, one could define
the plaintext space over ZB for some B ≥ 2, then encrypt a matrix M ∈ Zn×nB as

C := pQ + R + GM ∈ Zn`×n

where ` = dlogb(2
γ)e for some b ≥ 2, and G is a matrix with powers of b instead of the

vector g with powers of two. With that, we would encrypt n2 logB bits into n2`γ bits, which
represents a ciphertext expansion of n2`γ/(n2 logB) ≈ γ2/(log b logB) instead of the original
γ2. The homomorphic product could still be performed if G−1 decomposed the entries of the
given matrix now in base b and were multiplied by the left.

Moreover, if we randomized the ciphertexts multiplying them by a hidden matrix K ∈ Zn×nx0 ,
then we could reduce the size of the parameters, in particular, we would have a smaller γ,
approximately equal to the original γ divided by n, and the ciphertext expansion would be
foreshortened even further. Hence, our scheme applies those changes in order to be more practical
and other ones to maintain the homomorphic properties. We present it in detail in the next
section.

3.2 The procedures

In what follows, λ is the security parameter and k is the maximum multiplicative depth of
the functions to be evaluated homomorphically. The plaintext space is the set of n-dimensional
integer vectors and matrices with norm bounded by B, that is, M := J−B,BKn ∪ J−B,BKn×n.
The value B must satisfy 1 ≤ B ≤ 2η−4, where η is the bit-length of the secret prime p. Moreover,
the public modulus is x0 := p · q0 + r0, with |r0| < 2ρ0 .

- HE.KeyGen(1λ, n, k,B): Choose the parameters η, ρ, ρ0, and γ. Sample an η-bit prime p. Sample
x0 from Dγ,ρ0(p) until x0 > 2γ−1. Then, sample K uniformly from Zn×nx0 until K−1 exists
over Zx0 . Define α :=

⌊
2η−1/(2B + 1)

⌋
. The secret key is then sk := (p,K) and the public

parameters are {n, k,B, γ, η, ρ, ρ0, α, x0}.

6

- HE.EncMat(sk,M): Given a M ∈ M, construct a matrix X := pQ + R ∈ Zn`×n by sampling
each entry xi,j independently from D<x0 , then compute C := (X + GKM)K−1 mod x0.
Output C.

- HE.DecMat(sk,C): Compute C′ := G−1(αK−1)CK mod x0, then reduce it modulo the secret
prime p, that is, C? := [C′]p, and output bC?/αe .

- HE.EncVec(sk,m): Given a plaintext m ∈ M, construct an n-dimensional vector x := pq + r
by sampling each entry xi independently from D<x0 , then output the following n-dimensional
vector: c := (x + αm)K−1 mod x0.

- HE.DecVec(sk, c): Given a ciphertext c ∈ Zn, compute c′ := cK mod x0, then do c? := [c′]p,
and output

⌊
c?

α

⌉
.

3.3 Correctness of decryption

In this section, we provide sufficient conditions for the decryption procedures to work. For this,
we will use that G−1(αK−1)G = αK−1 over Zx0 . In this analysis, we have to be careful with
the contribution of x0 to the noise. Basically, during the decryption, when we do the modular
reduction by x0, we add a multiple of x0, obtaining

c′ = cK mod x0 = pq + r + αm− ux0 = p(q− uq0) + (r− ur0) + αm.

Therefore, instead of having the noise given simply by r, we have the extra term ur0, which
is the contribution of x0, and thus, the noise in a ciphertext is approximately ‖r‖ + 2ρ0 ‖u‖.
But the norm of u is easy to estimate. First, we know that ‖pq + r + αm‖ ≈ p ‖q‖. Second, we
have u = b(pq + r + αm)/x0c. Thus, ‖u‖ ≈ p ‖q‖ /x0, and the contribution of x0 to the noise is
then r0 ‖u‖ ≈ 2ρ0p ‖q‖ /x0. Consequently, x0 contributes little to the noise of fresh ciphertexts,
since pq has small norm in this case. But as we perform homomorphic operations, the norm of
q grows and the additional term ur0 starts to be relevant. The same reasoning applies to matrix
ciphertexts. We present these arguments formally in the following definitions and lemmas. 2

Definition 5 (Noise of vector ciphertext). Let c be a ciphertext encrypting a message m.
We define the noise of c as N (c) := ((cK mod x0)− αm) mod p.

Definition 6 (Noise of matrix ciphertext). Let C be an encryption of M. We define the
noise of C as N (C) := (G−1(αK−1)CK mod x0)− αM mod p.

Lemma 4 (A bound on the noise of vector ciphertext). For c = (pq + r + αm)K−1

mod x0, assuming that ‖N (c)‖ < p, there exists u ∈ Zn such that N (c) := r − r0u and ‖u‖ ≤
d‖pq‖/x0e. As a consequence, ‖N (c)‖ < ‖r‖ + 2ρ0 d‖pq‖/x0e . In particular, if c is a fresh
ciphertext, then ‖N (c)‖ < 2ρ + 2ρ0.

Proof. Let c′ := (cK mod x0), then c′ = pq + r + αm mod x0, which means that c′ = pq +
r + αm− x0u for u = b(pq + r + αm)/x0c.

Therefore, N (c) = c′ − αm mod p = pq + r − x0u mod p = r − r0u mod p. And since
‖N (c)‖ < p, we have the equality N (c) = r− r0u over Z.

Now, to bound the norm of u, notice that for each entry ui, we have ui =
⌊
pqi
x0

+ ri+αmi
x0

⌋
and | ri+αmix0

| < 1, thus, if pqi
x0

is integer, than ui = pqi
x0

, otherwise, −1 < ui ≤ pqi
x0

+ 1. So, in both

cases, |ui| ≤
⌈
pqi
x0

⌉
. Therefore, ‖u‖ ≤ d‖pq‖/x0e .

2 Notice that everything would be simplified if x0 were noiseless, since the noise of the ciphertexts would be
simply r or R.

7

Finally, because |r0| < 2ρ0 , it holds that ‖N (c)‖ < ‖r‖+ 2ρ0
⌈
‖pq‖
x0

⌉
.

For a fresh ciphertext, we have ‖r‖ < 2ρ and ‖pq‖ < x0, hence, the particular case holds. ut

Lemma 5 (A bound on the noise of matrix ciphertext). For C = (pQ+R+GKM)K−1

mod x0, assuming that ‖N (C)‖ < p, there exists U ∈ Zn`×n such that

N (C) := G−1(αK)R− r0U

and ‖U‖ ≤ n`b
⌈
‖pQ‖
x0

⌉
. As a consequence, ‖N (C)‖ < n`b

(
‖R‖+ 2ρ0

⌈
‖pQ‖
x0

⌉)
. In particular, if

C is a fresh ciphertext, then ‖N (C)‖ < n`b(2ρ + 2ρ0).

Proof. Write U =
⌊
(pG−1(αK)Q +G−1(αK)R + αM)/x0

⌋
and proceed in the same way as in

the proof of Lemma 4. The extra term n`b comes from the fact that
∥∥G−1(αK)R

∥∥ ≤ n`b ‖R‖.
ut

For the decryption to work, the noise has to be smaller than α/2 ≈ p/(4B + 2). We prove
that in the following lemmas.

Lemma 6 (Sufficient conditions for correctness vector decryption). Let c be an en-
cryption of m and ‖m‖ ≤ B. If ‖N (c)‖ < α

2 , then HE.DecVec(sk, c) outputs m.

Proof. Considering the vector c′ defined in HE.DecVec, there is a u such that

c′ = (pq + r + m)K−1K mod x0 = pq + r + αm mod x0 = pq + r + αm− x0u.

Then, reducing c′ modulo p gives us c? = [r + αm− r0u]p = [αm +N (c)]p.

But the last inequality holds over the integers because the norm of αm +N (c) is bounded
by p/2, namely, since α < p/(2B + 1), we have

‖αm‖+ ‖N (c)‖ < α

(
‖m‖+

1

2

)
≤ α

(
B +

1

2

)
= α

(
2B + 1

2

)
<
p

2
.

Therefore, the output of HE.DecVec is

bc?/αe = bαm +N (c)/αe = m + bN (c)/αe = m

where the last equality holds because α > 2 ‖N (c)‖. ut

Lemma 7 (Sufficient conditions for correctness matrix decryption). Let C be an en-
cryption of M such that ‖M‖ ≤ B. If ‖N (C)‖ < α

2 , then HE.DecVec(sk, c) outputs m.

Proof. Essentially the same as the proof of Lemma 6. Provided in Appendix B for completeness.
ut

3.4 Homomorphic Properties

- Additions: One just has to add the corresponding ciphertexts over Zx0 , since

c0 + c1 = (p(q0 + q1) + (r0 + r1) + α(m0 + m1))K
−1 mod x0

and

C0 + C1 = (p(Q0 + Q1) + (R0 + R1) + GK(M0 + M1))K
−1 mod x0

are valid encryptions of the corresponding sums.

8

- Matrix-matrix product: Given ciphertexts C0 and C1, we apply G−1 to each row of C0

and do Cmult := G−1(C0)C1 mod x0. Notice that the following holds over Zx0 :

Cmult = (pG−1(C0)Q1 + G−1(C0)R1 + G−1(C0)GKM1)K
−1

= (pG−1(C0)Q1 + G−1(C0)R1 + (pQ0 + R0 + GKiM0)K
−1KM1)K

−1

= (p (G−1(C0)Q1 + Q0M1)︸ ︷︷ ︸
Qmult

+ (G−1(C0)R1 + R0M1)︸ ︷︷ ︸
Rmult

+GKM0M1))K
−1

which is a valid encryption of the matrix M0 ·M1.

- Vector-Matrix product: We can multiply ci and Ci homomorphically by doing ci+1 :=
G−1(ci)Ci mod x0. Like the matrix-matrix product, we have the following over Zx0 :

ci+1 = (p (G−1(ci)Qi + qiMi)︸ ︷︷ ︸
qi+1

+ (G−1(ci)Ri + riMi)︸ ︷︷ ︸
ri+1

+αmiMi)K
−1

which is a valid encryption of the vector mi ·Mi.

3.5 Analysis of the accumulated error

Using the analysis done in Section 3.4, it is easy to derive upper bounds to the noise accumulated
by the homomorphic operations.

Lemma 8 (Sum of vectors). Let k ∈ Z≥2. For i ∈ J1, kK, let ci be an encryption of mi with
noise term N (ci). Define c as the homomorphic sum of those ciphertexts, i.e., c :=

∑k
i=1 ci

mod x0. Then, N (c) =
∑k

i=1N (ci). In particular, if all ci’s are fresh ciphertexts, we have

‖N (c)‖ ≤ k(2ρ + 2ρ0).

Proof. From the analysis of Section 3.4, we see that c =
∑k

i=1(pqi + ri + αmi)K
−1 mod x0,

from which we can easily derive that N (c) =
∑k

i=1N (ci). If all ci are fresh ciphertexts, then
‖N (ci)‖ ≤ 2ρ + 2ρ0 and the particular case holds. ut

Lemma 9 (Sum of matrices). Let k ∈ Z≥2. For i ∈ J1, kK, let Ci be an encryption of Mi.
Define C as the homomorphic sum C :=

∑k
i=1 Ci mod x0. Then, N (C) =

∑k
i=1N (Ci). In

particular, if all Ci’s are fresh ciphertexts, then

‖N (C)‖ ≤ kn`b(2ρ + 2ρ0).

Proof. Essentially the same as the proof of Lemma 8. We present it in Appendix B. ut

Let’s analyze the noise growth after a sequence of k vector-matrix products and show that

computing homomorphically a ciphertext ck that encrypts a product of the form m
(∏k−1

i=0 Mi

)
makes the noise grow just linearly in k. Namely, using the bounds of lemmas 4 and 5 to say
that the noise of the vector ciphertext is ‖N (c0)‖ ≈ ‖r0‖+ 2ρ0 ‖pq0‖ /x0 and the noises of the
ciphertexts encrypting the matrices are ‖N (Ci)‖ ≈ n`b(‖Ri‖+ 2ρ0 ‖pQi‖ /x0), then we see that
the noise of the final ciphertext is ‖N (ck)‖ ≈ nB(‖N (c0)‖ +

∑k−1
i=0 ‖N (Ci)‖). Notice that the

noise growth is similar to the one of [GGH+19].

Lemma 10 (Products of vectors and matrices). Let k ∈ Z≥2. For all i ∈ J1, kK, let Ci be
an encryption of Mi. Let also c0 be an encryption of m0. Assume that B is an upper bound to

9

the entries of the product of plaintext matrices, i.e.,
∥∥∥∏k−1

i=j Mi

∥∥∥ ≤ B for 0 ≤ j ≤ k−1. Finally,

for 1 ≤ i ≤ k − 1, define ci+1 := G−1(ci) ·Ci mod x0. Then,

‖N (ck)‖ < nB · (‖r0‖+ 2ρ0 ‖pq0‖ /x0︸ ︷︷ ︸
≈‖N (c0)‖

+

k−1∑
i=0

n`b (‖Ri‖+ 2ρ0 ‖pQi‖ /x0)︸ ︷︷ ︸
≈‖N (Ci)‖

) + 2ρ0 . (1)

In particular, if c0 and all the Ci’s are fresh ciphertexts, then

‖N (ck)‖ < nB(2ρ + 2ρ0 + kn`b(2ρ + 2ρ0)) + 2ρ0 . (2)

Proof. By the analysis done in section 3.4, we know that the term ri+1 of ci+1 is G−1(ci)Ri +
riMi. Therefore, the term rk after k homomorphic products is

rk = r0

k−1∏
i=0

Mi +

k−1∑
i=0

G−1(ci)Ri

 k−1∏
j=i+1

Mj

 .

Thus, using the properties of the max-norm, we have

‖rk‖ ≤ n ‖r0‖

∥∥∥∥∥
k−1∏
i=0

Mi

∥∥∥∥∥+
k−1∑
i=0

n`
∥∥G−1(ci)∥∥

∥∥∥∥∥∥Ri

k−1∏
j=i+1

Mj

∥∥∥∥∥∥ ≤ nB ‖r0‖+
k−1∑
i=0

n2`bB ‖Ri‖ .

Similarly, ‖qk‖ ≤ nB ‖q0‖+
∑k−1

i=0 n
2`bB ‖Qi‖ . Thus, we get Inequality (1) from Lemma 4,

because

‖N (ck)‖ < ‖rk‖+ 2ρ0
⌈
‖pqk‖
x0

⌉
≤ ‖rk‖+

2ρ0

x0
‖pqk‖+ 2ρ0 .

If all the operands are fresh ciphertexts, then both ‖r0‖ and ‖Ri‖ are bounded by 2ρ and
both ‖pq0‖ and ‖pQi‖ are bounded by x0, therefore, the particular case also holds. ut

When we compute a sequence of k homomorphic products like
∏k
i=0 Mi, the noise growth

is basically the same as the one described in Lemma 10, that is, approximately from β :=
n`b(2ρ + 2ρ0) to knBβ.

Lemma 11 (Products of matrices). Let k be an integer bigger than 1. For i ∈ J0, kK, let Ci

be an encryption of Mi. Let also C′0 := C0, C′i := G−1(C′i−1)Ci mod x0 for i > 0. (Notice

that C′i is an encryption of
∏i
j=0 Mj). Assume that B is an upper bound to the entries of the

product of plaintext matrices, i.e.,
∥∥∥∏k

i=j Mi

∥∥∥ ≤ B for 1 ≤ j ≤ k. Then,

∥∥N (C′k)
∥∥ < nB · (‖R0‖+ 2ρ0 ‖pQ0‖ /x0︸ ︷︷ ︸

≈‖N (C0)‖

+
k∑
i=1

n`b (‖Ri‖+ 2ρ0 ‖pQi‖ /x0)︸ ︷︷ ︸
≈‖N (Ci)‖

) + 2ρ0 .

In particular, if all the products only involve fresh ciphertexts, then∥∥N (C′k)
∥∥ < nB(2ρ + 2ρ0 + kn`b(2ρ + 2ρ0)) + 2ρ0 .

Proof. Similar to the proof of Lemma 10. ut

10

4 Security analysis

4.1 Hardness of approximate GCD implies semantic security

In this section we prove that our scheme is CPA secure under the assumption that decisional
AGCD problem is computationally hard. To do so, we first prove the indistinguishably of en-
crypted matrices. Then, essentially the same proof can be used to show that encryptions of
vectors are also indistinguishable. Finally, those two results imply CPA security.

Lemma 12. Under the decisional AGCD assumption, encryptions of any pair of matrices are
computationally indistinguishable.

Proof. Via a sequence of hybrids we prove that no PPT adversary A can distinguish between
encryptions of two matrices M0 and M1 of their choice.

Hybrid H0: Use the key generation function to get sk = (p,K) and the public parameters params.
Given M0 and M1 chosen by A, we always encrypt M0, that is, we let C0 := HE.EncMat(sk,M0)
and return C0 to A. �

Hybrid H1: The only difference between this hybrid and H0 is that we use U(Zx0) instead of
D<x0 to encrypt M0, i.e., we sample X1 ← U(Zx0)n`×n and define C1 := (X1 + GKM0)K

−1

mod x0. �

Since in H0 we have C0 := (X0 + GKM)K−1 mod x0 for some X0 ← (D<x0)n`×n, then by
Lemma 3, it holds that∣∣∣∣Pr

H0

[A(1λ, params,C0)]− Pr
H1

[A(1λ, params,C1)]

∣∣∣∣ ≤ negl(λ) .

Hybrid H2: In this hybrid, we ignore the two plaintext matrices, we sample X2 ← U(Zx0)n`×n,
and define C2 := X2. �

We know that for any t ∈ Zx0 , U(Zx0) and U(Zx0) + t mod x0 are the same distribution.
Consequently, X1 + GKM0 follows U(Zx0)n`×n. Additionally, multiplying by an invertible el-
ement also does not change the distribution, thus, C1 = (X1 + GKM0)K

−1 mod x0 follows
U(Zx0)n`×n as well. Therefore, C1 and C2 are indistinguishable.

Hybrid H3: In this hybrid, we encrypt M1 using U(Zx0), i.e., we sample X3 ← U(Zx0)n`×n and
define C3 := (X3 + GKM1)K

−1 mod x0. �

By the same argument used in the transition from H1 to H2, we see that C2 and C3 are
indistinguishable, therefore, A’s advantage in distinguishing H2 from H3 is negligible.

Hybrid H4: In this hybrid, we replace U(Zx0) with D<x0 to get a valid encrypt of M1, that is,
we define C4 := HE.EncMat(sk,M1) and return C4 to A. �

Using Lemma 3 again, we conclude that A’s advantage in distinguishing between hybrids 3
and 4 is also negligible. Since A’s advantage in each transition is negligible, it holds that∣∣∣∣Pr

H0

[A(1λ, params,C0)]− Pr
H4

[A(1λ, params,C4)]

∣∣∣∣ ≤ negl(λ) .

But this is exactly the definition of A’s advantage in distinguishing encryptions of M0 from
encryptions of M1. ut

Lemma 13. Under the decisional AGCD assumption, encryptions of any pair of vectors are
computationally indistinguishable.

11

Proof. We can use basically the same sequence of hybrids used in the proof of Lemma 12, but
replacing matrices by vectors and HE.EncMat by HE.EncVec. ut

Theorem 1. The scheme is CPA-secure under the decisional AGCD assumption.

Proof. This follows directly from Lemma 12 and Lemma 13. ut

4.2 Distribution of the noise term of randomized AGCD

Considering the analysis done in [CP19], the costs of attacks against the randomized AGCD
are basically the n-th power of the costs of the corresponding attacks against the AGCD, e.g.,
GCD-attacks on AGCD cost Õ(2ρ) and the GCD-attacks generalized to the randomized AGCD
cost Õ(2nρ). But one could wonder if the attacks proposed in [CP19] could be improved, so that
we have a much smaller value multiplying the exponent, for instance, (log n)ρ instead of nρ,
which would leave us with no choice but selecting much bigger parameters, reducing drastically
the advantages of randomizing the problem.

In this section, we present some theoretical evidence that corroborates the practical analysis
done in [CP19] and argue that, for typical parameters, if any improvement on those attacks can
be done, the factor n in the exponent can only be replaced by Θ(n) (e.g., improving from nρ to
nρ/2), but it will not be possible to replace the factor n by any function asymptotically smaller.

In fact, in the randomized AGCD problem we have n-dimensional samples x := (pq + r)K,
and the matrix K is secret. It is then easy to see that each entry xj of x is of the form xj = pq̃j+r̃j
where r̃j is the scalar product between r and the j-th column of K modulo p, that is, r̃j = 〈r,Kj〉
mod p, but as we will see in Lemma 14, each r̃j is close to the uniform on Zp, which means that
one cannot hope to treat each xj as an instance of the AGCD problem and apply the known
attacks against AGCD, since such distribution of the noise term erases all the information that
xj carries about p.

But the joint distribution of (r̃1, ..., r̃n) is different from U(Znp) since they are all defined
with the same vector r, which implies some correlation among them. Consequently, to solve the
randomized AGCD problem, we indeed need attacks “in higher dimension”, that is, we must
consider more than one entry of each instance x in order to try to exploit the correlation in the
errors.

Thus, let’s consider m entries of x. Without loss of generality, take the m first entries, denoted
here by x(m) := (x1, ..., xm). Likewise, let’s consider the first m columns of K, denoted by the
matrix K(m) := [K1 ...Km] ∈ Zn×m. Now, the error term of x(m) is r(m) = rK(m) mod p.

In which follows, we prove that for specific parameters, even when we consider m as a
constant fraction of n, like n/2, the distribution r(m) is still statistically close to the distribution
of m independent samples of U(Zp).

Lemma 14 (Distribution of r(m)). If m ≤ (ρn + 2 − 2λ)/η, then the statistical distance
between r(m) = rK(m) mod p and U(Zmp) is negligible in λ.

Proof. Substituting N by 2ρ in Lemma 1 and B by K(m), we see that hB(x) = r(m). Therefore,
by the LHL, the statistical distance between r(m) and U(Zmp) is upper bounded by

∆ :=
1

2

√
|Y |
|X|

=
1

2

√
pm

2nρ
≤ 2(mη−nρ)/2−1.

But m ≤ (ρn + 2 − 2λ)/η implies (mη − nρ)/2 − 1 ≤ −λ, therefore, ∆ ≤ 2−λ, which is
negligible. ut

Thus, since we usually set η ≥ λ, we see that the minimum m that we need to take to make
it possible to attack the randomized AGCD problem is mmin ≈ (ρ/η)n. In particular, we have:

Corollary 1. If η = λ and ρ = λ/2, then r(m) is statistically close to U(Zmp) for all m ≤ n/2−2.

12

4.3 Practical security estimate

In this section, we analyze the known attacks and find the constraints that they impose to the
parameters. There are two main types of attacks apart from the trivial factorization: the ones
that focus on the noise, as Chen-Nguyen’s and Lee-Seo’s GCD attacks [CN12,LS14], and the ones
that use lattices, as the Simultaneous Diophantine Approximation and the orthogonal lattice
attacks [DGHV10,CS15]. The Simultaneous Diophantine Approximation attack does not seem
to apply to our scheme, because the matrix K acts as a masking forbidding the access to scalar
values pqi + ri, which are needed to construct the lattice basis that is then reduced. Moreover,
it has the same asymptotic complexity as the orthogonal lattice attack. Thus, we analyze the
GCD-like and the orthogonal lattice attacks.

A unified GCD attack against variants of the AGCD problem Let’s consider n-
dimensional samples c̃i := ciK = (pqi + ri)K. In [CP19], the CGD attacks against the AGCD
problem are recapitulated and Lee-Seo’s attack is extended to the scenario where vectors c̃i’s
and a noiseless x0 are available, obtaining then a GCD attack that runs in time Õ(2nρ/2) and
finds p with overwhelming probability. But this attack is not sufficient when x0 is noisy (r0 6= 0)
or when x0 is not published. Hence, in this section we show how to generalize the attack of [LS14]
to dimension n and how to combine it with the attack of [CNT12] to create a GCD attack that
is applicable even when x0 is not known.

Notice that since K is invertible over Zp, we have c̃i = c̃j (mod p) ⇔ ri = rj . But for two
independent samples, Pr[ri = rj] = 2−nρ, therefore, if we have around 2nρ/2 samples, we expect
to have a pair with same noise term, which we call a colliding pair. Thus, as in [LS14], we can
construct two lists L1 and L2 with around 2nρ/2 vectors each and look for a collision modulo p.
If there is a colliding pair (c̃i, c̃j) ∈ L1 × L2 then for each t ∈ J1, nK, we have that p divides the
following product

yt :=

|L1|∏
i=1

|L2|∏
j=1

(c̃i[t]− c̃j [t]).

Hence, each yt is a multiple of p and we can use the strategy of [CNT12], that is, proceed
taking gcd’s of those yt’s to generate smaller multiples, until we obtain g = p

∏
zi for zi’s

smaller than some relatively small S, and then we can remove those zi using a cheap procedure
like computing the S-smooth part of g.

We can use polynomial multi-point evaluation to compute each yt using Õ(2nρ/2) integer
operations, however, the bit length of yt is roughly γ2nρ, therefore, computing each gcd(yt, yt′)
takes time Õ(2nρ) instead of Õ(2nρ/2). Notice that if we had a noiseless scalar x0 = pq0, then all
the operations could be done over Zx0 and the time complexity would then be Õ(2nρ/2), since the
bit length of yt and of the other integers would not increase. And if we had a scalar x0 = pq0+r0
for some r0 ∈ J0, 2ρ0 − 1K, then we could repeat the attack 2ρ0 times using x′0 = x0 − r (for
0 ≤ r < 2ρ0) as a modulus, obtaining then time complexity Õ(2ρ0+nρ/2). The attack is shown
explicitly in Appendix C.

Therefore, if a scalar x0 is available, we have the cost

TGCD,x0(η, ρ, ρ0, γ, n) := (nρ)22ρ0+nρ/2γ log γ

where ρ0 = 0 if x0 is noiseless, and if x0 is not public, then we have

TGCD(η, ρ, γ, n) := (nρ)22nργ log γ.

13

Orthogonal Lattice attack In [CP19], the orthogonal lattice attacks are generalized to the
randomized AGCD problem with a noiseless x0. We conservatively assume that they have the
same time complexity when x0 is noisy or private. To make this attack ineffective, we have to

set γ = Ω
(
λ(η−ρ)2
n log λ

)
, which is basically the same expression obtained in [CS15], if we set n = 1.

Factorization If a noiseless x0 is given, an attacker can simply run a factorization algorithm
on x0, but if x0 has a ρ0-bit noise term, then the attacker has to try the factorization of x0 − r
for all 2ρ0 possible values of r. We consider two factorization algorithms:

– Elliptic-curve factorization [Len87], whose cost is TECM (η, γ) := exp
(√

2η(ln η)(ln 2))
)
γ log γ.

– Number field factorization [LLMP93], which costs TNFS(γ) := exp((64/9)1/3(γ ln 2)1/3 ln(γ ln 2)2/3).

Hence, the cost of this attack is given by

TFAC(η, ρ0, γ) := 2ρ0 min(TECM (η, γ), TNFS(γ))

where ρ0 = 0 when x0 is noiseless. We stress that this attack does not apply when no scalar x0
is published.

5 Choosing the parameters

We first recall the role of the main parameters:

– η: it is the bit-length of the secret prime p;

– ρ: the noise terms sampled during encryption are bounded by 2ρ;

– ρ0: the noise r0 of x0 satisfies −2ρ0 < r0 < 2ρ0 ;

– γ: the entries of the vectors and matrices ciphertexts are bounded by 2γ ;

– n: it is the dimension of the vectors and matrices we want to encrypt;

– b: it is the base in which we perform the decomposition G−1;

– `: it is defined as dlogb(2
γ)e, thus, it is the number of words used in G−1;

– B: we must have ‖m‖ ≤ B and ‖M‖ ≤ B for any plaintext m or M.

Taking into account the analysis of the orthogonal lattice attack, we see that we can choose
γ =

⌈
λ(η − ρ)2/(n log λ)

⌉
. But when n is close to λ, we can have γ < 2η, and in this case

we simply choose γ = 2η. Those two scenarios are very distinct, so, let’s first analyze the case
γ > 2η.

For the correctness, we just have to guarantee that the inequality (2) is satisfied. It basically
means that we can choose ρ, ρ0 and b such that

η − 2 log n− log k − log `− logB = max(ρ, ρ0) + log b. (3)

Typically, we will have ρ ≥ ρ0, thus, if B is somehow small, we are free to choose ρ+log b ≈ η,
say ρ + log b = (1 − ε)η for some ε ∈]0, 1[. Using η − ρ = εη + log b we can express the size of
encrypted matrices as

n2`γ ≈ n2γ2

log b
≈ λ2

log2 λ

(η − ρ)4

log b
=

λ2

log2 λ

(εη + log b)4

log b

which is minimized when log b = εη/3. The cost of evaluating a product like m
∏k
i=1 Mi is

dominated by kn2`γ, and the cost of HE.EncMat is dominated by n3`γ, thus, both are also
minimized when log b = εη/3.

14

Table 1. Proposed sets of parameters for two levels of security, considering that x0 is public. Set ` = dlogb(2
γ)e

and α =
⌊
2η−1/(2B + 1)

⌋
where B defines the plaintext space.

8 ≤ n ≤ 52 n = 64 n = 128 n = 256 n = 512 n = 1024

λ = η = 80

γ
⌈
80 · 282/n log(80)

⌉
2η 2η 2η 2η 2η

ρ 52 52 40 23 2 2

ρ0 38 38 40 40 40 40

log b 7 7 13 14 14 15

λ = η = 100

γ
⌈
100 · 272/n log(100)

⌉
2η 2η 2η 2η 2η

ρ 73 71 59 43 19 2

ρ0 58 58 59 59 59 59

log b 7 11 17 17 17 16

Therefore, in order to choose the parameters, we first set the desired security level λ. For usual
applications, the noise factor 2 log n+ log k+ logB in equation (3) is small and it is sufficient to
take η = λ. If it is not the case, we can choose η = λ+c for some positive constant c. Once we have
defined η, we use equation (3) to estimate ε, for instance, taking ε = 2(log k + logB + log n)/η.
Then, we set ρ = b2εη/3c and log b = bεη/3c.

For security reasons, we must ensure that TGCD,x0(η, ρ, ρ0, γ, n) ≥ 2λ and TFAC(η, ρ0, γ) ≥
2λ. In general, we can find a ρ0 ≤ ρ such that these two constraints are satisfied. If there is
no such ρ0, then we can increase η and choose all the parameters again. Notice that we choose
ρ close to η, generally bigger than what we would need to guarantee the security, because it
decreases the size of γ, which makes the operations cheaper. However if n is big enough to force
us to choose γ = 2η, then there is no advantage in choosing a big ρ. In this case, we simple
choose the minimum ρ and ρ0 such that TFAC(η, ρ0, γ) ≥ 2λ, TGCD,x0(η, ρ, ρ0, γ, n) ≥ 2λ, and⌈
λ(η − ρ)2/(n log λ)

⌉
< 2η, then we choose log b = (1− ε)η−max(ρ, ρ0), i.e., we decrease ρ and

ρ0 as much as the security allows us, and we increase log b respecting the correctness condition.
In Table 1, we propose some sets of parameters for two security levels (λ = 80 and λ = 100)

and several values of n. We see that increasing n allows us to choose smaller ρ to maintain the
same security, but ρ0 does not depend on n, and it is basically fixed. As a consequence, we
cannot increase log b too much as we decrease ρ in the regime γ = 2η, because when ρ becomes
smaller than ρ0, the final noise begins to be dominated by ρ0 and we must then respect the
constraint log b+ ρ0 = (1− ε)η. In Section 7, we attempt to resolve this problem by proposing
a simple variant of the scheme that has better parameters for large n.

6 Implementation, performance, and applications

In this section, we show practical results, like running times of encryption functions, and also two
applications, homomorphic evaluation of nondeterministic finite automata and a homomorphic
Näıve Bayes Classifier.

6.1 General performance

We implemented a proof of concept of our scheme3 in C++ using the NTL library, version
11.3.2. All the experiments were ran on a machine with the GNU/Linux operating system
Ubuntu 18.04.2 LTS, 32GB of RAM memory, and processor Intel Core i5-8600K 3.60GHz. One
single core was used. We ran the experiments using parameters for the two different levels of
security λ = 80 and λ = 100 described in Table 1.

3 Code available in https://github.com/hilder-vitor/HEVaM

15

0 100 200
0

2

4

6

8

10

12

Matrix dimension (variable n)

T
im

e
in

se
co

n
d
s

Encryption of n× n matrix

λ = 80

λ = 100

0 100 200
0

3

6

9

12

15

18

21

Matrix dimension (variable n)

S
iz

e
in

M
B

Size of encrypted matrix

λ = 80

λ = 100

Fig. 1. Running times of HE.EncMat and size of encrypted matrix.

The running times and the size of the encrypted matrices are shown in Figure 1. Since the
the bit-length of a matrix ciphertext is n2`γ and for small n both γ and ` are proportional
to 1/n, the size of the encrypted matrices and also the encryption and decryption times are
approximately constant as we increase n, until we switch to the regime of parameters that uses
γ = 2η. From this point, the efficiency starts to deteriorate, but it is still very good even for
moderate values of n. For instance, for λ = 80, it takes less than 2.5 seconds to encrypt a
150× 150 matrix and we need less than 6 MB to represent the corresponding ciphertext. Even
considering that the plaintext matrix is binary, we are encrypting 1502 bits into 6 MB, which
corresponds to a ciphertext expansion of 0.266 KB per encrypted bit. As a comparison, for 80
bits of security, the basic scheme of [BBL17] encrypts a single bit into a 19 MB ciphertext, and
the batched version, that uses the CRT to encrypt several bits into a single ciphertext, encrypts
roughly 70 bits into the same 19 MB, which represents a ciphertext expansion of 217 KB per
encrypted bit.

6.2 Nondeterministic finite-state automaton evaluation

In this section we show how to homomorphically evaluate finite state automaton using our
scheme. We represent an n-state automaton A over an alphabet Σ by n× n transition matrices
Ma for each a ∈ Σ. They are defined as follows: each entry (i, j) of Ma is equal to 1 if A has a
transition from state i to state j using the letter a, and it is equal to 0 otherwise. Additionally, we
need an n-dimensional vector m to represent the current states. At any point of the evaluation,
mi = 0 if we are not in state i, and mi ≥ 1 if we are in state i. If A is deterministic, we are
always at one single state, then m ∈ {0, 1}n and there is a unique position i such that mi = 1.
However, if A is nondeterministic, then we can be in several states at the same time and m
may have multiples non-zero entries, which can be larger than 1. In particular, it implies that
products of transition matrices are always binary for deterministic automata, hence, the noise
accumulated on the homomorphic evaluation is typically smaller, i.e., we can set the parameter
B to be one, while with nondeterministic automata, we may need B > 1. However, in general
we need fewer states to represent a language using non-deterministic automata.

We start the evaluation with a state vector m0 that has ones in the positions corresponding
to initial states and zeros elsewhere. Then, given a length-k input string s ∈ Σk, at each step
i (from 1 to k), we look at the letter si and update the state vector as mi = mi−1Msi . If mk

has a non-zero entry in some position corresponding to an accepting state of A, then the input
string is said to be accepted by A. Hence, to evaluate an NFA homomorphically, it is sufficient
to perform homomorphic vector-matrix products.

16

Table 2. Practical results of the homomorphic evaluation of Ln on input strings with k letters. All running times
are presented in seconds. The second column shows the size of each encrypted matrix. The third column shows
the time needed to encrypt the entire automaton (two transition matrices and state vector). Parameters used:
setting λ = 100 from Table 1. The last row shows the corresponding data for the NFA evaluation presented on
[GGH+19]. For all n up to 1024, their scheme has the same encryption and evaluation times, and also ciphertext
size.

n Encrypted matrix Encr. time
Evaluation time on inputs of length k
16 32 64 128 256 512 1024

8 2.15 MB 0.10 0.015 0.028 0.06 0.12 0.24 0.47 0.96

16 2.15 MB 0.12 0.021 0.041 0.08 0.17 0.34 0.67 1.34

32 2.15 MB 0.20 0.033 0.065 0.13 0.27 0.53 1.08 2.15

64 1.94 MB 0.44 0.041 0.083 0.17 0.33 0.67 1.33 2.67

128 4.91 MB 2.20 0.121 0.240 0.49 0.98 1.97 3.9 7.87

256 19.66 MB 19.15 0.567 1.138 2.27 4.55 9.12 18.35 36.88

512 78.64 MB 202.60 2.596 5.235 10.4 20.8 41.7 83.6 167.8

1024 340.78 MB 2211.96 22.080 44.061 86.3 174.0 352.3 704.4 1414

≤ 1024 33 MB 16.5 - - - - 1.53 3.34 6.63

As a possible application of homomorphic evaluation of NFA, we can imagine a server that
holds input strings, say, text files, and a user that wants to retrieve the files that contain strings
respecting some regular expression R, but without revealing R. For example, to get files that
contain an e-mail of someone from the University of Luxembourg, the user could use R as [a-
z][a-z0-9][a-z0-9]*@uni.lu, for which we can construct an NFA with 10 states. Then, the user
would encrypt the 10× 10 transition matrices and send them to the server, that would evaluate
the NFA homomorphically on each file fi, generating an encrypted state vector ci, and return
each ci to the user. Finally, the user could decrypt each ci to check if the file fi matches R.

In the article [GGH+19], the authors construct a homomorphic scheme for NFA evaluation. In
order to compare the results of this section with their results, we use the same family of automata
and the same security level used there (namely, λ = 100). Thus, let’s consider the regular
language Ln := (a+b)∗a(a+b)n−2. It is known that one needs at least 2n−1 states to represent Ln
with a deterministic automaton, however, we can represent it with a nondeterministic automaton
with n states [MF71]. We evaluated Ln homomorphically for various values of n and k, using
always random input strings sampled from {a, b}k. The practical results are summarized in
Table 2. For n up to 100, our scheme is faster and requires less memory than [GGH+19]. For
n = 128, our ciphertext size and encryption times are better, but the evaluation times start
to be worse than theirs. Then, for bigger n, our scheme is less efficient. Notice that in their
scheme, the variable n has a double role, acting as the security parameter and as the number
of states at the same time. Moreover, to achieve a security level of 100 bits, they set n = 1024.
Hence, to evaluate automata with less than 1024 states, they must embed the low-dimensional
transition matrices into 1024 × 1024 matrices. In particular, it means that for all n presented
in Table 2, their scheme uses 33 MB per encrypted matrix and around 16.5 seconds to encrypt
Ln. Moreover, they use an ad hoc hardness assumption while we use the AGCD.

6.3 Näıve Bayes Classification

As a second application, we implemented a homomorphic classifier. In this scenario, the server
has a trained model and the client has some data (instances) to be classified. The client then
encrypt each instance and send it to the server, which evaluate the model homomorphically and
return to the client an encryption of the assigned class.

Each instance has a fixed number of attributes, say m, and is represented by a vector y =
(y1, ..., ym). For example, we could have a data set about patients containing medical information
as the three following attributes: x1 = “blood type”, x2 = “age”, and x3 = “body mass index”.

17

And an instance could be y = (O+, 47, 22). The number of possible classes is fixed and typically
small (say, between two and fifty). In the Näıve Bayes Classification, we use an already classified
data set, called training set, to estimate the probabilities that each attribute xi is equal to yi
given that the class is c, that is, Pr[xi = yi| class = c], and also the probabilities Pr[class = c].
Then, to classify y, we note that for each class c,

Pr[class(y) = c] is equal to

Pr[class = c|x1 = y1, ..., xm = ym] =
Pr[x1 = y1, ..., xm = ym|class = c] Pr[class = c]

Pr[x1 = y1, ..., xm = ym]

and the denominator is a constant that does not depend on c. Thus, to classify y, we just
compute each Pr[class(y) = c] and assign the class c for which this probability is the biggest.
But, ignoring the denominator, using the “näıve” hypotheses of independence of attributes,
and applying logarithm, we see that log(Pr[class(y) = c]) is proportional to log(Pr[class =
c]
∏m
i=1 Pr[xi = yi|class = c]). Thus, we classify the instances based on the following formula

βy,c := log(Pr[class = c]) +
m∑
i=1

log(Pr[xi = yi|class = c]).

To efficiently evaluate this classifier with our scheme, we assume that each attribute xi can
be represented by the finite set J1, niK, for some ni, and we define n := max{n1, ..., nm}. If
we try to classify one instance per time, the server has to send to the client an encryption
of the vector (βy,c, 0, ..., 0), thus, n − 1 entries are not used. Hence, we classify n instances
simultaneously. To represent the instances, we use “indicator vectors”, that is, we define φ(i) :=
ei to be an n-dimensional binary vector with a single 1 in the i-th entry. Then, given an instance
y = (y1, ..., ym), notice that φ(yi) is a vector whose non-zero entry indicates the value of the
i-th attribute of y. Considering that, the protocol to perform homomorphic classification is the
following:

- Client’s setup: Do sk = HE.KeyGen, then ẽi := HE.EncVec(ei) for i ∈ J1, nK and send (ẽi)
n
i=1

to the server.
- Server’s setup: Assume that all the logarithms are scaled to integers. For each class c, compute

p̃c =
∑n

i=1 log(Pr[class = c]) · ẽi and p̃i,c =
∑n

j=1 log(Pr[xi = j|class = c]) · ẽj . Precompute

each decomposition G−1(p̃i,c).
- Client’s query: Given n instances y(j), construct m matrices

Ys =
(
φ
(
y
(1)
s

)
. . . φ

(
y
(n)
s

))
∈ {0, 1}n×n,

do Ỹs := HE.EncMat(Ys), and send Ỹ1, ..., Ỹm to the server.
- Server’s classification: For each c, do b̃c := p̃c +

∑m
s=1G

−1(p̃i,c)Ỹs mod x0. Return all the
b̃c’s to the client. If there are only two possible classes, return b̃ := b̃0 − b̃1 instead.

- Client’s decoding: If there are more than two possible classes, then for each c, do bc :=

HE.DecVec(b̃c), and for each j, select the maximum among the j-th entry of each bc and
assign to y(j) the class c corresponding to that maximum. If there are only two possible
classes, do b := HE.DecVec(b̃), assign class 0 to y(j) if the j-th entry of b is positive and class
1 otherwise.

It is easy to see that each b̃c is an encryption of bc = (βy(1),c, ..., βy(n),c), therefore, we are
assigning the classes based on the correct formula.

We have implemented this protocol and executed it using the Breast Cancer Wisconsin
(Diagnostic) Data Set4, which is a data set with two classes, benign and malignant, and nine

4 UCI’s Machine Learning Data Sets Repository: archive.ics.uci.edu/ml

18

Table 3. Homomorphic evaluation of Näıve Bayes Classifier on Breast Cancer Wisconsin Data Set for two security
levels. Columns Classification, Upload, and Download show values per instance.

λ
Client Server

Setup Classification Upload Download Setup Classification

80 1 ms 34.3 ms 46 KB 0.13 KB 5 ms 1.44 ms

100 1 ms 45.36 ms 49 KB 0.14 KB 5 ms 1.66 ms

variables about tumors (like “Clump Thickness” and “Uniformity of Cell Shape”), each one with
ten possible values. The logarithms of the probabilities were computed and multiplied by 105

to scale to integers. Then we executed the homomorphic classification for the two parameter
sets proposed in Table 1 (with n = 10 and B = 219). We also executed a normal Näıve Bayes
Classifier over the plaintext, obtaining always the same accuracy for the clear text and the
homomorphic versions. We summarize the results in Table 3. The protocol is very efficient,
as the amount of data that each party needs to send over the network is just a few kilobytes
per classified instance and the running times are just a few milliseconds. When compared with
other papers about Näıve Bayes classification over encrypted data, our solution seems to be
more straightforward and to run faster, although the comparisons are not trivial, since there are
always some differences in the models.

For example, in [BPTG15], the client has an instance y, the server encrypts a table T with all
the probabilities and sends it to the client, then the client runs the classification homomorphically
and locally, obtaining ciphertexts encrypting the scores of each class. Finally, the client and the
server run an interactive algorithm to reveal the class with the largest score, which is then
assigned to y. But downloading the entire model may represent a huge overhead for the client
and the interactive step is surely a drawback. Furthermore, when they ran their protocol on the
same dataset we used, the total time to classify a single instance was 419 milliseconds using 4
cores at 2.66 GHz each, for 80 bits of security, while our protocol takes about 42 milliseconds to
classify one instance on a single core at 3.6 GHz, also for λ = 80, and with no interactive step.

In [PKK+18], the protocol is non-interactive and closer to ours. Namely, the client just
encrypts y and send it to the server, which then uses the client’s public key to encrypt the
model and to run the classification homomorphically, sending the encrypted answer to the client
at the end. However, all the functions evaluated homomorphically are quite complicated, because
they are described as binary circuits, thus, in low level. As for the running times, they are much
worse: the authors report that the server took about 60 seconds to classify one instance of the
same dataset using 4 cores at 3.4 GHz each, for 80 bits of security.

7 A variant with private x0

In this section we propose keeping the modulus x0 secret and show that for some applications,
like the homomorphic evaluation of NFA, we can obtain better running times by doing so. The
main motivation is to improve the efficiency for large values of n. As observed in Section 5, when
n is big, we choose γ = 2η and there is no reason to use a big value of ρ, thus, we can decrease
it. Ideally, we would like to decrease both ρ and ρ0 and increase b, which would give us a smaller
` = dlogb(2

γ)e, reducing thus the size of the ciphertexts and improving the efficiency. But we
cannot set ρ0 to be a small value because of the factorization attacks that are applicable on x0,
consequently, we cannot increase b as we wish, because the final noise imposes the constraint
log b ≤ (1− ε)η −max(ρ, ρ0).

However, if we keep x0 private, the factorization attack is no longer possible, then we can set
ρ0 = 0 and increase b, but we cannot perform the reductions modulo x0 during the homomorphic
evaluations and the norm of the ciphertexts are not bounded by 2γ anymore. Actually, if we

19

do not work over Zx0 , the bit length of the ciphertexts may increase indeterminately. But if
in each homomorphic multiplication one of the operands is a fresh ciphertext (or a ciphertext
that has passed for only a constant number of operations), then we are always operating with
a ciphertext that is potentially large and one that is for sure short, thus, we can decompose the
larger one, and the ciphertext produced by the homomorphic product has norm approximately
n`b times the norm of the short ciphertext.

To analyze this more formally, define `0 := logb(2
γ) + 1, which is an upper bound to the

number of words that we need to use to perform the decomposition of fresh ciphertexts. Let all
Ci be fresh ciphertexts, thus, `n×n matrices with entries bounded by s0 := 2γ and with ` being
some integer bigger than `0 (we will define later how bigger ` must be). Let also c0 be a fresh
ciphertext, thus, ‖c0‖ ≤ s0. Hence, the most significant words of the decomposition G−1(c0) will
be zero. Actually, only n`0 words of G−1(c0) will be non zero.

Therefore, we see that the entries of c1 := G−1(c0)C0 are bounded by s1 := `0nb2
γ . Now,

letting `1 := logb(s1) + 1, we see that applying the decomposition G−1 to c1 produces at most
n`1 nonzero words. Therefore, the entries of c2 := G−1(c1)C1 are bounded by s2 := `1nb2

γ .
In general, after k such products, the entries of ck are bounded by sk := `k−1nb2

γ and the
number of words we need to decompose ck is `k := logb(sk) + 1 = logb(nb2

γ) + logb(`k−1) + 1.
Thus, letting y := logb(nb2

γ) + 1, we see that

`k = y + logb(`k−1) = y + logb(y + logb(y + ...+ logb(y + `0)...))︸ ︷︷ ︸
logb applied k times.

.

But the growth rate of the iterated logarithm is actually very slow and, as k increases, `k is
bounded by y + logb y + δ where δ = logb(3) < 2. Thus, noticing that y = `0 + logb(n) + 1 we
can set

` = y + logb y + δ = `0 + logb(n) + 1 + logb(`0 + logb(n) + 1) + δ

which in is just slightly bigger than the dimension `0 that we would need if the operations were
done over Zx0 , considering that we choose the same value of b. But since we will be able to use
bigger values of b, this ` can even be smaller than the one we have to use when x0 is public.
Consequently, the size of the entries of the ciphertexts, that is, sk, converges to `nb2γ after k
homomorphic products, while they would be bounded by 2γ if we worked modulo x0.

We now prove that the value `k is bounded by the expression above.

Lemma 15. Let y, b ∈ Z≥2 and δ = logb(3). Then, logb(y + logb(y) + δ) ≤ logb(y) + δ.

Proof. Using basic properties of subtraction of logarithms, we see that

logb(y + logb(y) + δ) ≤ logb(y) + δ ⇔ 1 + logb(y)/y + δ/y ≤ bδ = 3

but because b ≥ 2, we have

1 + logb(y)/y + δ/y < 1 + y/y + δ/y ≤ 3.

ut

Lemma 16. Let δ = logb(3). For all k ∈ N, `k ≤ `0 + logb(n) + 1 + logb(`0 + logb(n) + 1) + δ.

Proof. Let’s do a proof by induction. To simplify the notation, consider again y = `0+logb(n)+1.
The base case k = 0 is obviously true. Now, suppose that `k ≤ y+ logb(y) + δ for some k. Then,

`k+1 = y + logb(`k) (Definition of `k+1)

≤ y + logb(y + logb(y) + δ) (Inductive hypothesis)

≤ y + logb(y) + δ (Lemma 15)

ut

20

Table 4. Proposed sets of parameters for 100 bits of security, considering that x0 is private. Set ` =
dlogb(2

γ) + logb(n) + logb(logb(2
γ) + logb(n) + 1)e+ 1, ρ0 = 0, and λ = η = 100. Now b is bigger than in Table 1.

8 ≤ n ≤ 52 n = 64 n = 128 n = 256 n = 512 n = 1024

γ
⌈
100 · 272/n log(100)

⌉
2η 2η 2η 2η 2η

ρ 73 72 59 42 18 2

log b 7 11 19 36 60 76

Table 5. Practical results of the homomorphic evaluation of Ln on input strings with k letters when x0 is kept
secret. The security level is λ = 100 and the parameters used are presented in Table 4. The last row shows again
the corresponding data for the NFA evaluation presented in [GGH+19]. Compare with Table 2.

n Encrypted matrix Encr. time
Evaluation time on inputs of length k

16 32 64 128 256 512 1024

128 5.73 MB 3.06 0.138 0.27 0.55 1.11 2.21 4.42 9.06

256 14.74 MB 14.11 0.351 0.704 1.41 2.81 5.68 11.32 22.66

512 45.87 MB 117.64 1.282 2.552 5.16 10.28 20.56 41.13 82.53

1024 157.28 MB 1020.70 5.354 10.768 21.54 43.49 87.36 175.48 350.24

≤ 1024 33 MB 16.5 - - - - 1.53 3.34 6.63

Thus, we propose the parameters in Table 4. Now, ρ0 is considered to be zero. The other
parameters are basically the same when n is small, but when we turn to the regime γ = 2η,
we can use much bigger values of b, since ρ0 has no longer impact on the noise. We then used
these parameters to evaluate NFA again and obtained the results presented in Table 5 (we omit
the results for small n, since they are roughly the same as when x0 is public). Comparing it
with Table 2, we see that for large n the running times and the memory requirements become
much better: the big values of b gives us ` smaller than before, and since the dimensions of
the ciphertext matrices are n` × n, their sizes decrease and the running times are improved.
For example, for λ = 100 and n = 1024, when x0 is public, we have γ = 200 and b = 215,
which gives us ` = dlogb(2

γ)e = 14, while with private x0, we have γ = 200, b = 276 and
` = dlogb(2

γ) + logb(n) + logb(logb(2
γ) + logb(n) + 1)e + 1 = 4. When compared to [GGH+19],

the difference between the running times decreased for big n. For example, for n = 1024, the
time we need to evaluate a string with k = 1024 letters is now around 52 times slower than the
time spent by [GGH+19], but with x0 public, our evaluation time for n = k = 1024 is about 213
times slower. Notice that for n up to 100 our running times and ciphertext sizes are still better
than the ones of [GGH+19].

8 Conclusion

We presented a leveled homomorphic scheme that operates natively with vectors and matrices
and is based on the AGCD problem. The running times and ciphertext expansion are good even
for circuits with high multiplicative depth, and it is specially suitable for programs that do not
produce large values during the computation, for example, finite automata. Another possible
application is the homomorphic evaluation of Matrix Branching Programs, since they can be
represented by binary matrices and evaluated using vector-matrix products. We proposed a
simple classification protocol to show that it is also possible to evaluate programs on matrices
with bigger entries (we used B = 219 in this application). When compared to other schemes
and protocols, our solutions seem very efficient, specially for moderate dimension. We notice
that it may still be possible to improve the efficiency of our scheme by using the Chinese
Remainder Theorem to encrypt about γ/η matrices (or vectors) in a same ciphertext and to
perform homomorphic operations in parallel.

21

References

[BBL17] Daniel Benarroch, Zvika Brakerski, and Tancrède Lepoint. Fhe over the integers: Decomposed and
batched in the post-quantum regime. In Public-Key Cryptography – PKC 2017, pages 271–301, Berlin,
Heidelberg, 2017. Springer Berlin Heidelberg.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, ITCS ’12, pages 309–325, New York, NY, USA, 2012. ACM.

[BPTG15] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine learning classification
over encrypted data. In NDSS, volume 4324, page 4325, 2015.

[CCK+13] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint, Mehdi Ti-
bouchi, and Aaram Yun. Batch fully homomorphic encryption over the integers. In Advances in
Cryptology – EUROCRYPT 2013, pages 315–335, Berlin, Heidelberg, 2013. Springer Berlin Heidel-
berg.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant fully homomorphic en-
cryption over the integers. In Public-Key Cryptography – PKC 2014, pages 311–328, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

[CN12] Yuanmi Chen and Phong Nguyen. Faster algorithms for approximate common divisors: Breaking fully-
homomorphic-encryption challenges over the integers. In Advances in Cryptology – EUROCRYPT
2012, volume 7237 of Lecture Notes in Computer Science. Springer, 2012.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and modulus
switching for fully homomorphic encryption over the integers. In Advances in Cryptology – EURO-
CRYPT 2012, pages 446–464, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[CP19] Jean-Sebastien Coron and Hilder V. L. Pereira. On kilian’s randomization of multilinear map encodings.
In To appear in ASIACRYPT 2019, 2019. https://eprint.iacr.org/2018/1129.

[CS15] Jung Hee Cheon and Damien Stehlé. Fully Homomophic Encryption over the Integers Revisited.
In EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 513–536, Sofia, Bulgaria, April 2015.

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryp-
tion over the integers. In Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes
in Computer Science. Springer, 2010.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009. crypto.
stanford.edu/craig.

[GGH+19] Nicholas Genise, Craig Gentry, Shai Halevi, Baiyu Li, and Daniele Micciancio. Homomorphic encryp-
tion for finite automata. In To appear in ASIACRYPT 2019, 2019. https://eprint.iacr.org/2019/
176.

[GGM16] Steven D. Galbraith, Shishay W. Gebregiyorgis, and Sean Murphy. Algorithms for the approximate
common divisor problem. LMS Journal of Computation and Mathematics, 19(A):58–72, 2016.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in Cryptology – CRYPTO
2013, pages 75–92, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[HAO15] Ryo Hiromasa, Masayuki Abe, and Tatsuaki Okamoto. Packing messages and optimizing bootstrapping
in gsw-fhe. In Public-Key Cryptography – PKC 2015, pages 699–715, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[HG01] Nick Howgrave-Graham. Approximate integer common divisors. In Cryptography and Lattices, pages
51–66, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[Len87] H. W. Lenstra. Factoring integers with elliptic curves. Annals of Mathematics, 126, 1987.
[LLMP93] A. K. Lenstra, H. W. Lenstra, M. S. Manasse, and J. M. Pollard. The number field sieve. In The de-

velopment of the number field sieve, pages 11–42, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.
[LS14] Hyung Tae Lee and Jae Hong Seo. Security analysis of multilinear maps over the integers. In Advances

in Cryptology - CRYPTO 2014 - Proceedings, Part I, 2014.
[MF71] A. R. Meyer and M. J. Fischer. Economy of description by automata, grammars, and formal systems.

In 12th Annual Symposium on Switching and Automata Theory (swat 1971), pages 188–191, Oct 1971.
[PKK+18] Heejin Park, Pyung Kim, Heeyoul Kim, Ki-Woong Park, and Younho Lee. Efficient machine learning

over encrypted data with non-interactive communication. Computer Standards and Interfaces, 58:87
– 108, 2018.

22

Supplementary Material

A An asymmetric variant

To transform our scheme into an asymmetric one, we can publish encryptions of elementary
vectors and matrices along with several encryptions of zero, then, to encrypt a particular vector
or matrix, one just has to sum homomorphically a linear combination of elementary plaintexts
to get an encryption of the desired value and randomize it by adding a random combination
of the encryptions of zero. This technique is standard and has already been used, with some
variations, in several important homomorphic schemes, e.g. [DGHV10,BGV12,BBL17].

In detail, in the procedure HE.KeyGen, we let ei be a vector with 1 in the i-th entry and 0
elsewhere. Likewise, let Ei,j be a matrix with 1 in the entry (i, j). Let τ ∈ Z be another parameter

of the scheme. Then we compute êi := HE.EncVec(sk, ei) and Êi,j := HE.EncMat(sk,Ei,j), for
all 1 ≤ i, j ≤ n. Besides that, we compute zi := HE.EncVec(sk,0) and Zi := HE.EncMat(sk,0)
for 1 ≤ i ≤ τ . Finally, the secret key is defined as before, that is to say, sk := (p,K), and the
public key is defined as

pk := (ê1, . . . , ên, Ê1,1, . . . , Ên,n, z1, . . . , zτ ,Z1, . . . ,Zτ)

Hence, to encrypt a vector m = (m1, . . . ,mn) ∈ Zn using pk, we just sample τ random bits
bi and do

c :=
n∑
i=1

miêi +
τ∑
i=1

bizi mod x0.

Similarly, to encrypt a matrix M ∈ Zn×n whose entries are mi,j , we just sample τ random
bits bi and do

C :=

n∑
i=1

n∑
j=1

mi,jÊi,j +

τ∑
i=1

biZi mod x0.

The decryption methods are the same and even the analysis of the error growth is equal,
with the exception that now the initial noise is approximately τ2ρ instead of simply 2ρ.

To guarantee the security, it is sufficient to take τ = γ + Ω(λ), since it allows us to use
the Leftover hash lemma to show that random linear combination of τ encryptions of zero
modulo x0 is statistically close to U(Zx0), and therefore, the ciphertexts themselves are also
indistinguishable from uniform.

B Proofs

B.1 Proof of Lemma 3

Proof. The proof is adapted from lemma 2.3 of [BBL17].

We can sample efficiently from U(Zx0) by sampling from U(J0, 2γJ) and rejecting samples
that are larger than or equal to x0. Since x0 > 2γ−1, the probability that a sample is rejected is
less than 1/2, therefore, sampling from U(Zx0) uses only a constant number of calls to U(J0, 2γJ).
Replacing U(J0, 2γJ) by D gives us an efficient sampling procedure to D<x0 .

Moreover, if one can distinguish between D<x0 and U(Zx0), then it is also possible to distin-
guish between D and U(J0, 2γJ) simply by using this sampling procedure and deciding whether
the produced distribution is D<x0 or U(Zx0). Therefore, the decisional AGCD assumption implies
that D<x0 is computational indistinguishable from U(Zx0).

23

B.2 Proof of Lemma 7

Proof. To simplify the notation, denote G−1(αK−1) by A. Remember that AGK = αI mod x0.
Considering the matrix C′ defined in HE.DecMat, we have

C′ = ACK mod x0

= A((pQ + R + GKM)K−1)K mod x0

= pAQ + AR + αM mod x0.

Thus, there exists a U ∈ Zn`×n such that C′ = pAQ + AR + αM− x0U.
Then, when we perform the reduction modulo p, we obtain

C? = [C′]p = [AR + αM− r0U]p = [αM +N (C)]p

where the last equality holds also over Z because ‖αM +N (C)‖ is bounded by

α ‖M‖+ ‖N (C)‖ < α

(
‖M‖+

1

2

)
≤ α

(
B +

1

2

)
= α

(
2B + 1

2

)
<
p

2
.

Finally, because α > 2 ‖N (C)‖, the output of HE.DecMat is⌊
C?

α

⌉
= M +

⌊
N (C)

α

⌉
= M.

B.3 Proof of Lemma 9

Proof. To simplify the notation, let A = G−1(αK−1). Let C′i := ACiK mod x0 = pAQi +
ARi + αMi − x0Ui. Then, the noise of Ci is N (Ci) = ARi − r0Ui.

Doing the same for C, we have

C′ := ACK mod x0 = pA

k∑
i=1

Qi + A

k∑
i=1

Ri + α

k∑
i=1

Mi − x0
k∑
i=1

Ui

and it is easy to see that N (C) = A
∑k

i=1 Ri − r0
∑k

i=1 Ui =
∑k

i=1N (Ci).
If all Ci are fresh ciphertexts, then ‖N (Ci)‖ ≤ n`b(2ρ + 2ρ0) and the particular case holds.

C Algorithm for GCD-attack with private x0

For completeness, we write explicitly the algorithm described in Section 4.3.

24

Algorithm 1: GCD Attack

Input: (ρ+ 1) · 2nρ/2 vector-AGCD samples c̃i ∈ Zn
Output: The secret prime p

1 Let L1 be a list with 2nρ/2 samples.
2 for t = 1 until n do
3 Let ft(x) be the polynomial

∏
c̃∈L1

(x− c̃[t]).

4 s← ρ

5 S ← 2nρ(ns+1)/(ns−1)

6 g ← 1 . Variable g stores p at the end of the execution

7 for j = 1 until s do

8 Let L2 be a list with 2nρ/2 samples.
9 for t = 1 until n do

10 Use multi-point evaluation to compute di ← ft(c̃i[t]) for each c̃i ∈ L2.

11 yt ←
∏|L2|
i=1 di

12 if g = 1 then
13 Let y′ be the S-smooth part of yt
14 g ← yt/y

′

15 else
16 g ← gcd(g, yt)
17 if η − 1 ≤ log2 g ≤ η then
18 return g

19 return g

25

