Skip to main content

De novo Prediction of Drug-Target Interaction via Laplacian Regularized Schatten-p Norm Minimization

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12304))

Included in the following conference series:

Abstract

The identification of drug-target interactions plays a crucial role in drug discovery and design. However, capturing interactions between drugs and targets via traditional biochemical experiments is an extremely laborious, expensive and time-consuming procedure. Therefore, the use of computational methods for predicting potential interactions to guide the experimental verification has attracted a lot of attention. In this paper, we propose a new algorithm, named Laplacian Regularized Schatten-p Norm Minimization (LRSpNM), to predict potential target proteins for novel drugs and potential drugs for new targets. First, we take advantage of the drug and target similarity information to dynamically prefill the partial unknown interactions. Then based on the assumption that the interaction matrix is low-rank, we use Schatten-p norm minimization model to improve prediction performance in the new drug/target cases by combining the loss function with a Laplacian regularization term. Finally, we numerically solve the LRSpNM model by an efficient alternating direction method of multipliers (ADMM) algorithm. Performance evaluations on benchmark datasets show that LRSpNM achieves better and more robust performance than five state-of-the-art drug-target interaction prediction algorithms. In addition, we conduct case study in practical applications, which also illustrates the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wishart, D.S., et al.: Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(Database issue), D901–D906 (2008)

    Google Scholar 

  2. Apweiler, R., et al.: UniProt: the universal protein knowledgebase. Nucleic Acids Res. 32(Database issue), D115–D119 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bleakley, K., Yamanishi, Y.: Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics 25(18), 2397–2403 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Xia, Z., Wu, L.Y., Zhou, X., Wong, S.T.: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4(2), S6 (2010)

    PubMed  PubMed Central  Google Scholar 

  5. Van Laarhoven, T., Marchiori, E.: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One 8(6), e66952 (2013)

    PubMed  PubMed Central  Google Scholar 

  6. Gönen, M.: Predicting drug-target interactions from chemical and genomic kernels using bayesian matrix factorization. Bioinformatics 28(18), 2304–2310 (2012)

    PubMed  Google Scholar 

  7. Zheng, X., Ding, H., Mamitsuka, H., Zhu, S.: Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery And Data Mining, pp. 1025–1033 (2013)

    Google Scholar 

  8. Liu, Y., Wu, M., Miao, C., Zhao, P., Li, X.L.: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS Comput. Biol. 12(2), e1004760 (2016)

    PubMed  PubMed Central  Google Scholar 

  9. Fan, X., Hong, Y., Liu, X., Zhang, Y., Xie, M.: Neighborhood constraint matrix completion for drug-target interaction prediction. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10937, pp. 348–360. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93034-3_28

    Chapter  Google Scholar 

  10. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc. 125(39), 11853–11865 (2003)

    CAS  PubMed  Google Scholar 

  12. Smith, T.F., Waterman, M.S., et al.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)

    CAS  PubMed  Google Scholar 

  13. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford University (2002)

    Google Scholar 

  14. Nie, F., Huang, H., Ding, C.: Low-rank matrix recovery via efficient Schatten p-norm minimization. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  15. Nie, F., Wang, H., Huang, H., Ding, C.: Joint schatten \(p\)-norm and \(\ell _{p}\)-norm robust matrix comletion for missing value recovery. Knowl. Inf. Syst. 42(3), 525–544 (2015)

    Google Scholar 

  16. Chen, C., He, B., Yuan, X.: Matrix completion via an alternating direction method. IMA J. Numer. Anal. 32(1), 227–245 (2012)

    Google Scholar 

  17. Yang, M., Luo, H., Li, Y., Wang, J.: Drug repositioning based on bounded nuclear norm regularization. Bioinformatics 35(14), i455–i463 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartels, R.H., Stewart, G.W.: Solution of the matrix equation AX+XB=C [F4]. Commun. ACM 15(9), 820–826 (1972)

    Google Scholar 

  19. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240 (2006)

    Google Scholar 

  20. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M.: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40(D1), D109–D114 (2012)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant No. 61972423), the Graduate Research Innovation Project of Hunan (Grant No. CX20190125), Hunan Provincial Science and technology Program (No. 2018wk4001), and 111Project (No. B18059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, G., Yang, M., Li, Y., Wang, J. (2020). De novo Prediction of Drug-Target Interaction via Laplacian Regularized Schatten-p Norm Minimization. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds) Bioinformatics Research and Applications. ISBRA 2020. Lecture Notes in Computer Science(), vol 12304. Springer, Cham. https://doi.org/10.1007/978-3-030-57821-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57821-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57820-6

  • Online ISBN: 978-3-030-57821-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics