Skip to main content

Diagnosis of ASD from rs-fMRI Images Based on Brain Dynamic Networks

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12304))

Included in the following conference series:

Abstract

The resting-state functional magnetic resonance imaging (rs-fMRI) as a non-invasive technique with the high spatial and temporal resolution can help characterize the pathogenesis of autism spectrum disorder (ASD). Some results have been achieved with machine learning techniques to diagnose ASD with rs-fMRI data. However, most of machine learning methods have neglected the temporal dependency of the time-series fMRI data. In this study, we propose a method for diagnosing ASD based on brain dynamic networks (BDNs) which are constructed with time series rs-fMRI brain image data to describe the dynamic relationship among multiple brain regions. The least squares method with the forward model selection method was used to establish BDNs, and the Bayesian information criterion (BIC) was adopted as the model selection criteria to avoid overfitting. The resulted DBNs are weighted directed networks. Then a feature extraction method was proposed to extract representative and discriminated features from BDNs. Lastly, machine learning classifiers were trained with the whole ABIDE I cohort to diagnose ASD. The accuracy of 88.8% was achieved, which is higher than any previously reported methods.

Supported by Natural Science and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, A., et al.: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. NeuroImage 147, 736–745 (2017)

    Article  Google Scholar 

  2. Anzellotti, S., Kliemann, D., Jacoby, N., Saxe, R.: Directed network discovery with dynamic network modelling. Neuropsychologia 99, 1–11 (2017). https://doi.org/10.1016/j.neuropsychologia.2017.02.006. http://www.sciencedirect.com/science/article/pii/S0028393217300520

    Article  PubMed  PubMed Central  Google Scholar 

  3. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  4. Dvornek, N.C., Ventola, P., Pelphrey, K.A., Duncan, J.S.: Identifying autism from resting-state fMRI using long short-term memory networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 362–370. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_42

    Chapter  Google Scholar 

  5. Eslami, T., Mirjalili, V., Fong, A.C.M., Laird, A., Saeed, F.: ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front. Neuroinform. (2019)

    Google Scholar 

  6. Friston, K., Moran, R., Seth, A.K.: Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 23(2), 172–178 (2013). https://doi.org/10.1016/j.conb.2012.11.010. http://www.sciencedirect.com/science/article/pii/S0959438812001845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greicius, M.: Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 21(4), 424–430 (2008)

    Article  Google Scholar 

  8. Gutlein, M., Frank, E., Hall, M., Karwath, A.: Large-scale attribute selection using wrappers. In: 2009 IEEE Symposium on Computational Intelligence and Data Mining, pp. 332–339, March 2009. https://doi.org/10.1109/CIDM.2009.4938668

  9. Hall, M.A., Holmes, G.: Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 15(6), 1437–1447 (2003). https://doi.org/10.1109/TKDE.2003.1245283

    Article  Google Scholar 

  10. Heinsfeld, A.S., Franco, A.R., Craddock, R.C., Buchweitz, A., Meneguzzi, F.: Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage: Clin. 17, 16–23 (2018)

    Article  Google Scholar 

  11. Khosla, M., Jamison, K., Kuceyeski, A., Sabuncu, M.R.: 3D convolutional neural networks for classification of functional connectomes. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 137–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_16

    Chapter  Google Scholar 

  12. Liu, Y., et al.: Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia 46(6), 1648–1656 (2008). https://doi.org/10.1016/j.neuropsychologia.2008.01.027

    Article  PubMed  Google Scholar 

  13. Mostafa, S., Tang, L., Wu, F.: Diagnosis of autism spectrum disorder based on eigenvalues of brain networks. IEEE Access 7, 128474–128486 (2019)

    Article  Google Scholar 

  14. Murphy, K., Birn, R.M., Bandettini, P.A.: Resting-state fMRI confounds and cleanup. NeuroImage 80, 349–359 (2013)

    Article  Google Scholar 

  15. Parisot, S., et al.: Spectral graph convolutions for population-based disease prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21

    Chapter  Google Scholar 

  16. Power, J.D., et al.: Functional network organization of the human brain. Neuron 72(4), 665–678 (2011)

    Article  CAS  Google Scholar 

  17. Price, T., Wee, C.-Y., Gao, W., Shen, D.: Multiple-network classification of childhood autism using functional connectivity dynamics. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 177–184. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_23

    Chapter  Google Scholar 

  18. Quesnel-Vallières, M., Weatheritt, R.J., Cordes, S.P., Blencowe, B.J.: Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat. Rev. Genet. 20(1), 51–63 (2019)

    Article  Google Scholar 

  19. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461 (1978). https://doi.org/10.1214/aos/1176344136

    Article  Google Scholar 

  20. Tang, L., Mostafa, S., Liao, B., Wu, F.X.: A network clustering based feature selection strategy for classifying autism spectrum disorder. BMC Med. Genomics 12(Suppl 7), 153–153 (2019)

    Article  Google Scholar 

  21. Van Essen, D.C., Ugurbil, K.: The future of the human connectome. NeuroImage 62(2), 1299–1310 (2012)

    Article  Google Scholar 

  22. Wong, E., Anderson, J.S., Zielinski, B.A., Fletcher, P.T.: Riemannian regression and classification models of brain networks applied to autism. In: Wu, G., Rekik, I., Schirmer, M.D., Chung, A.W., Munsell, B. (eds.) CNI 2018. LNCS, vol. 11083, pp. 78–87. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00755-3_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Xiang Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, H., Yin, W., Mostafa, S., Wu, FX. (2020). Diagnosis of ASD from rs-fMRI Images Based on Brain Dynamic Networks. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds) Bioinformatics Research and Applications. ISBRA 2020. Lecture Notes in Computer Science(), vol 12304. Springer, Cham. https://doi.org/10.1007/978-3-030-57821-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57821-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57820-6

  • Online ISBN: 978-3-030-57821-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics