Skip to main content

A New Network-Based Tool to Analyse Competing Endogenous RNAs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12304))

Abstract

Interactions between microRNA targets are defined as competing endogenous RNAs. After discovery of the repressive activity of microRNAs with different mechanisms, various experimental or computational approaches have been developed to understand the relationships among their targets. We developed a package ceRNAnetsim that provides network-based computational method as considering the expressions and interaction factors of microRNAs and their targets. By using ceRNA targets that have similar expression value as trigger on a relatively small network with 4 microRNAs and 20 gene targets, the perturbation efficiency of these ceRNAs on the network has been shown to be significantly different. However, the change was observed in the time (or iteration) to gaining steady-state of nodes on the network. So, we have provided the package which defines a user-friendly method for understanding complex ceRNA relationships, simulating the fluctuating behaviors of ceRNAs, clarifying the mechanisms of regulation and defining potentially important ceRNA elements. The ceRNAnetsim package can be found in Bioconductor software packages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ala, U., et al.: Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc. Natl. Acad. Sci. 110(18), 7154–7159 (2013). https://doi.org/10.1073/pnas.1222509110

  2. Arvey, A., Larsson, E., Sander, C., Leslie, C.S., Marks, D.S.: Target mRNA abundance dilutes microRNA and siRNA activity. Mol. Syst. Biol. 6 (2010). https://doi.org/10.1038/msb.2010.24

  3. Bartel, D.P.: MicroRNAs. Cell 116(2), 281–297 (2004). https://doi.org/10.1016/S0092-8674(04)00045-5, https://linkinghub.elsevier.com/retrieve/pii/S0092867404000455

  4. Bartel, D.P.: MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009). https://doi.org/10.1016/j.cell.2009.01.002, https://linkinghub.elsevier.com/retrieve/pii/S0092867409000087

  5. Bosson, A., Zamudio, J., Sharp, P.: Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 56(3), 347–359 (2014). https://doi.org/10.1016/j.molcel.2014.09.018, https://linkinghub.elsevier.com/retrieve/pii/S1097276514007503

  6. Breda, J., Rzepiela, A.J., Gumienny, R., van Nimwegen, E., Zavolan, M.: Quantifying the strength of miRNA-target interactions. Methods 85, 90–99 (2015). https://doi.org/10.1016/j.ymeth.2015.04.012, https://linkinghub.elsevier.com/retrieve/pii/S1046202315001589

  7. Davis, J.A., Saunders, S.J., Mann, M., Backofen, R.: Combinatorial ensemble miRNA target prediction of co-regulation networks with non-prediction data. Nucleic Acids Res. 45(15), 8745–8757 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Denzler, R., Agarwal, V., Stefano, J., Bartel, D., Stoffel, M.: Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54(5), 766–776 (2014). https://doi.org/10.1016/j.molcel.2014.03.045, https://linkinghub.elsevier.com/retrieve/pii/S1097276514002780

  9. Denzler, R., McGeary, S., Title, A., Agarwal, V., Bartel, D., Stoffel, M.: Impact of MicroRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol. Cell 64(3), 565–579 (2016). https://doi.org/10.1016/j.molcel.2016.09.027, https://linkinghub.elsevier.com/retrieve/pii/S1097276516305767

  10. Hausser, J., Syed, A.P., Bilen, B., Zavolan, M.: Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res. 23(4), 604–615 (2013). https://doi.org/10.1101/gr.139758.112, http://genome.cshlp.org/cgi/doi/10.1101/gr.139758.112

  11. Hayes, J., Peruzzi, P.P., Lawler, S.: MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20(8), 460–469 (2014)

    CAS  PubMed  Google Scholar 

  12. Helwak, A., Kudla, G., Dudnakova, T., Tollervey, D.: Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3), 654–665 (2013). https://doi.org/10.1016/j.cell.2013.03.043, https://linkinghub.elsevier.com/retrieve/pii/S009286741300439X

  13. List, M., Dehghani Amirabad, A., Kostka, D., Schulz, M.H.: Large-scale inference of competing endogenous RNA networks with sparse partial correlation. Bioinformatics 35(14), i596–i604 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu, M., et al.: An analysis of human microRNA and disease associations. PloS One 3(10) (2008)

    Google Scholar 

  15. Markus List, M.S.: SPONGE (2017). https://doi.org/10.18129/B9.bioc.SPONGE, https://bioconductor.org/packages/SPONGE

  16. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W.J., Pandolfi, P.P.: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465(7301), 1033–1038 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rüegger, S., Großhans, H.: MicroRNA turnover: when, how, and why. Trends Biochem. Sci. 37(10), 436–446 (2012). https://doi.org/10.1016/j.tibs.2012.07.002, https://linkinghub.elsevier.com/retrieve/pii/S096800041200103X

  18. Salmena, L., Poliseno, L., Tay, Y., Kats, L., Pandolfi, P.: A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell 146(3), 353–358 (2011). https://doi.org/10.1016/j.cell.2011.07.014, https://linkinghub.elsevier.com/retrieve/pii/S0092867411008129

  19. Seo, J., Jin, D., Choi, C.H., Lee, H.: Integration of microRNA, mRNA, and protein expression data for the identification of cancer-related microRNAs. PloS One 12(1) (2017)

    Google Scholar 

  20. Smillie, C.L., Sirey, T., Ponting, C.P.: Complexities of post-transcriptional regulation and the modeling of cerna crosstalk. Critical Rev. Biochem. Mol. Biol. 53(3), 231–245 (2018)

    CAS  Google Scholar 

  21. Tay, Y., Rinn, J., Pandolfi, P.P.: The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483), 344–352 (2014). https://doi.org/10.1038/nature12986, http://www.nature.com/articles/nature12986

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selcen Ari Yuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuka, S.A., Yilmaz, A. (2020). A New Network-Based Tool to Analyse Competing Endogenous RNAs. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds) Bioinformatics Research and Applications. ISBRA 2020. Lecture Notes in Computer Science(), vol 12304. Springer, Cham. https://doi.org/10.1007/978-3-030-57821-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57821-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57820-6

  • Online ISBN: 978-3-030-57821-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics