Sheffield
Hallam
University

Some Programming Optimizations for Computing Formal
Concepts

ANDREWS, Simon <http://orcid.org/0000-0003-2094-7456>
Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/26404/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ANDREWS, Simon (2020). Some Programming Optimizations for Computing Formal
Concepts. In: Ontologies and Concepts in Mind and Machine. 25th International
Conference on Conceptual Structures, ICCS 2020 Bolzano, Italy, September 18-20,
2020 Proceedings. Lecture Notes in Artificial Intelligence, part of Lecture Notes in
Computer Science (12277). Springer, 59-73.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Some Programming Optimizations for
Computing Formal Concepts

Simon Andrews

Conceptual Structures Research Group
Department of Computing
College of Business, Technology and Engineering
and The Industry and Innovation Research Institute
Sheffield Hallam University, Sheffield, UK
s.andrews@shu.ac.uk

Abstract. This paper describes in detail some optimization approaches
taken to improve the efficiency of computing formal concepts. In particu-
lar, it describes the use and manipulation of bit-arrays to represent FCA
structures and carry out the typical operations undertaken in computing
formal concepts, thus providing data structures that are both memory-
efficient and time saving. The paper also examines the issues and com-
promises involved in computing and storing formal concepts, describing
a number of data structures that illustrate the classical trade-off between
memory footprint and code efficiency. Given that there has been limited
publication of these programmatical aspects, these optimizations will be
useful to programmers in this area and also to any programmers inter-
ested in optimizing software that implements Boolean data structures.
The optimizations are shown to significantly increase performance by
comparing an unoptimized implementation with the optimized one.

1 Introduction

Although there have been a number of advances and variations of the Close-By-
One algorithm [14] for computing formal concepts, including [4, 5,12, 13], op-
timization approaches used when implementing such algorithms have not been
described in detail. Mathematical and algorithmic aspects of FCA have been
well covered, for example in [7,9,15], but less attention has been paid to pro-
gramming. Using a bit-array to represent a formal context has previously been
reported [5,11], but without the implementation details presented here. Provid-
ing detailed code for these optimizations will be useful to programmers in this
area and also to any programmers interested in optimizing software that imple-
ments and manipulates Boolean data structures. Thus, this paper sets out to
describe and explain these optimizations, with example code, and to explore the
classical efficiency trade-offs between memory and speed in a CbO context. As
an example CbO-type algorithm, this paper makes use of In-Close2 as presented
in [6]. However, the optimization approaches detailed here should be generaliz-
able for most, if not all, algorithms that compute formal concepts.

The programming language chosen is C++; it is often the language of choice
for efficient coding as it facilitates low level programming and its compilers are
extremely adept at producing efficient assembler.

2 Formal Concepts

A description of formal concepts [9] begins with a set of objects X and a set
of attributes Y. A binary relation I C X x Y is called the formal context. If
x € X and y € Y then xly says that object x has attribute y. For a set of
objects A C X, a derivation operator T is defined to obtain the set of attributes
common to the objects in A as follows:

At:={yeY |VzecA:aly}. (1)

Similarly, for a set of attributes B C Y, the + operator is defined to obtain
the set of objects common to the attributes in B as follows:

Bt:={zeX|VyeB:aly}. (2)

(A, B) is a formal concept iff AT = B and B¥ = A. The relations A x B
are then a closed set of pairs in I. In other words, a formal concept is a set of
attributes and a set of objects such that all of the objects have all of the attributes
and there are no other objects that have all of the attributes. Similarly, there
are no other attributes that all the objects have. A is called the extent of the
formal concept and B is called the intent of the formal concept.

A formal context is typically represented as a cross table, with crosses in-
dicating binary relations between objects (rows) and attributes (columns). The
following is a simple example of a formal context:

L [[o[1]2]3]4]
X | X
X|X|X|X
X
X | X X

U |
X X

Formal concepts in a cross table can be visualized as closed rectangles of
crosses, where the rows and columns in the rectangle are not necessarily con-
tiguous. The formal concepts in the example context are:

= ({a,b,c,d},0) Cs= ({b},{1,2,3,4})
({a7 C} {0}) Cr = ({b’ d}’ {17 2, 4})
03 - ((Z) {07 2,3, 4} CS ({b7) d}7 {2})
04 = ({c},{0, 2}) = ({a,b},{3,4})
({a’}7 {0’ 3, 4}) ClO - ({a’ b, d}7 {4})

For readers not familiar with Formal Concept Analysis, further background
can be found in [17-19].

3 A Re-Cap of the In-Close2 Algorithm

In-Close2 [6] is a CbO variant that was ‘bred’ from In-Close [2] and FCbO [13,16]
to combine the efficiencies of the partial closure canonicity test of In-Close with
the full inheritance of the parent intent achieved by FCbO.

The In-Close2 algorithm is given below, with a line by line explanation, and
is invoked with an initial (4, B) = (X,) and initial attribute y = 0, where A
is the extent of a concept, B is the intent and X is a set of objects such that
ACX.

In-Close2
ComputeConceptsFrom((4, B),y)

1 for j < y upton—1do
2 if j ¢ B then

3 C <+ An{j}*

4 if A=C then
5 | B+« BU{j}
6 else

7 if BNY; = C" then
8 L L PutInQueue(C,j)

ProcessConcept ((A, B))

10 while GetFromQueue (C, j) do

11 D+ BU{j}

12 ComputeConceptsFrom((C, D), + 1)

©

Line 1 - Iterate across the context, from starting attribute y up to attribute
n — 1, where n is the number of attributes.

Line 2 - Skip inherited attributes.

Line 3 - Form an extent, C, by intersecting the current extent, A, with the
next column of objects in the context.

Line 4 - If C = A, then...

Line 5 - ...add the current attribute j to the current intent being closed, B.

Line 7 - Otherwise, apply the partial-closure canonicity test to C' (is this a
new extent?). Note that Y; = {y € Y|y < j}. Similarly, CTi is C closed up to
(but not including) j: CTv ={y €Y, |Vz € C:aly }

Line 8 - If the test is passed, place the new (child) extent, C, and the location
where it was found, j, in a queue for later processing.

Line 9 - Pass concept (A, B) to notional procedure ProcessConcept to pro-
cess it in some way (for example, storing it in a set of concepts).

Lines 10 - The queue is processed by obtaining each child extent and asso-
ciated location from the queue.

© 00Uk WN

Line 11 - FEach new partial intent, D, inherits all the attributes from its
completed parent intent, B, along with the attribute, j, where its extent was
found.

Line 12 - Call ComputeConceptsFrom to compute child concepts from j + 1
and to complete the closure of D.

4 Implementation of the Formal Context as a Bit Array

Common to most efficient implementations of CbO-type algorithms is the im-
plementation of the formal context as a bit array, with each bit representing a
Boolean ‘true/false’ cell in the cross-table. Such an approach leads to efficient
computation in two ways: it allows for bit-wise operations to be performed over
multiple cells in the context at the same time and reducing the size of cells to
bits allows a much larger portion of the context to be held in cache memory. So,
for example, in a 64 bit architecture the formal context can be declared in the
heap using C++ thus:

unsigned __int64 x*context;

Once the number of objects, m, and number of attributes, n, are known, the
required memory can be allocated thus:

/* create empty context */

//calculate size for attributes — 1 bit per attribute
nArray = (n—1)/64 + 1;

//create one dimension of the context

context = new unsigned __int64 *[m];

for (i = 0;i<m;i++){ //for each object
context [i] = new unsigned __int64[nArray];//create a row of
for (j=0;j<nArray;j++) context [i][j]=0; //attributes

}

Clearly this is a memory efficient way of storing the context: not only are bits
being used to represent the individual cells, but dynamic memory allocation is
being used to declare only the number of bits required for a particular context.
Although dynamic memory allocation is a relatively time-consuming process,
here this does not matter as the context is being allocated once only, before the
invocation of the main algorithm.

It is important to declare the context so that attributes are contiguous in
memory, rather than objects. This structure allows the efficient use of cache
memory when the processing is operating on contiguous attributes, such as the
iteration across attributes in In-Close. A cache-line will be filled with row of the
table, rather than a column, so that contiguous attributes are readily available.
Arranging the context column-wise in memory would mean that the subsequent
processing would be operating ‘against the grain’ of memory, causing continuous
cache-misses when trying to access contiguous attributes, as the next attribute
would be a whole column-worth of memory away from the current one.

© 00O U W -

Obviously the use of bits to represent the Boolean cells of the cross-table
requires careful programming to identify specific cells in the cross-table. Each 64
bit unsigned integer represents 64 cells in a row of the cross-table, thus the arith-
metic required is the use of modulo-64 to identify a required cell. For example,
attribute 137 would be bit 9 of integer 3: 137 mod 64 = 9 and 137 div 64 = 2.

If the formal context is being input as a cxt file, for example, the program
will need to populate the bit array by reading and parsing rows of character
strings where .’ represents an empty cell and ‘X’ represents a cross. For exam-
ple, a single row in the formal context in a cxt file will look something like this:

X D0 U Xooooooo, X..X.X... XXt X....X..... X
The procedure to input the formal context will then look something like this:

/* input instances (rows) and translate into temporary context */
//for each row (object)
for(i = 0; i < m; i++){
//get instance
cxtFile.getline (instance, instanceSize);
//for each attribute
for(j = 053 < n; j++){
//if object has the attribute

if (instance[j] == 'X'){
//set context bit to true at byte: i div 8, bit: i mod 8
contextTemp [j|[(i>>6)] |= (1i64<<(i%64));

//increment column support (density of Xs) for attribute j
co15up [4]++;
}

}
}

Because binary arithmetic is being used, the C++ bit shift operators <<
and >> provide an efficient means of implementing modulo-64. Thus, j>>6 shifts
the bits in j rightwards by 6 bits, which is equivalent to integer division by 64
(26 = 64). This identifies the required 64 bit integer in the row of the bit array.
The mod operator in C++ is % and the 64 bit literal integer representation of 1
is defined as 1i64 so, similarly, bit shifting 1164 leftwards by j%64 places 1 at
the required bit position in a 64 bit integer, with all other bits being zero. The
C++ bit-wise logical ‘or’ operator, |, can then be used to set the required bit
to 1 in the context.

Bit shift operators and bit-wise logical operators are extremely efficient (typ-
ically taking only a single CPU clock-cycle to execute) and thus are fundamental
to the fast manipulation of structures such as bit arrays. This becomes even more
important in the main cycle of CbO-type algorithms and in efficient canonicity
testing, as can be seen later in this paper. However, before considering the im-
plementation of the algorithm itself, some consideration needs to be given to the
data structures required for the storage and processing of formal concepts.

Note that a temporary bit array, contextTemp, is used to initially store
the context in column-wise form, because we next wish to physically sort the
columns (see Section 4: Physical Sorting of Context Columns, below). After
sorting, the context will be translated into row-wise form in the permanent bit-
array, context, for the main computation.

© 00O Ui W -

QT W~

5 Physical Sorting of Context Columns

It is well-known that sorting context columns in ascending order of support
(density of Xs) significantly improves the efficiency of computing formal concepts
in CbO-type implementations. The typical approach is to sort pointers to the
columns, rather than the columns themselves, as this takes less time. However, in
actuality, physically sorting the columns in large formal contexts provides better
results, because physical sorting makes more efficient use of cache memory. If
data is contiguous in RAM, cache lines will be filled with data that are more
likely to be used when carrying out column intersections and when finding an
already closed extent in the canonicity test. This can significantly reduce level
one data cache misses, particularly when large contexts are being processed [3].
The overhead of physically sorting the context is outweighed by the saving in
memory loads.

Thus the column-wise bit array, contextTemp, is physically sorted by making
use of an array of previously logically sorted column indexes, colOriginal:

/* rewrite sorted context (physical sort) x/
int tempColNums [MAX_COLS];
int rank [MAX_COLS];
for(j = 0; j < n; j++){
//use the sorted original col nos to index the physical sort
tempColNums [j]=colOriginal [j];
rank [colOriginal [j]]=j; //record the ranking of the column
3
for(j = 0; j <n — 15 j++){
for(i = 0; i < mArray; i++){
unsigned __int64 temp = contextTemp[j]|[i];
contextTemp [j][i] = contextTemp|[tempColNums [j]|][i];
contextTemp [tempColNums [j]|][i] = temp;

//make note of where swapped—out col has moved to using its rank
tempColNums [rank[j]]=tempColNums [j];
rank [tempColNums [j]]=rank[j];

}

If, for example, tempColNums = [4,7,0,2,1,6,5,3], it means that column
4 is the least dense column and column 3 the most dense. The array rank is
used to record and maintain the relative ranking of the columns in terms of
density. Thus, in this example, rank = [2,4,3,7,0,6,5,1], which means that
that column 0 has ranking 2, column 1 has ranking 4, column 2 has ranking 3,
and so on.

Once the columns have been physically sorted, the column-wise context,
contextTemp, is written, a bit at a time, into the row-wise context, context,
ready for the main computation:

for (int i=0;i<m;i++){
for (int j=0;j<n;j++){
if (contextTemp [j][(1i>>6)]&(1i64<<(1i%64)))
context [1][(j>>6)] = context[i][(j>>6)]]|(1i64<<(j%64));

6 Storing and Processing Formal Concepts

For the purposes of efficiency, it would be desirable to store each formal concept
literally and completely, say as a two-dimensional array of objects (for the ex-
tents) and a corresponding two-dimensional array of attributes (for the intents).
Adding a new formal concept as it is computed would require very little in the
way of data management and processing the computed concepts would be via
simple iteration of the arrays. However, if we wish to deal with large numbers of
objects and attributes, and large numbers of formal concepts, it soon becomes
impossible to store them in available memory and in any case would be a very
inefficient means of storing them with very little of the allocated memory actu-
ally being used (if there are 10,000 objects, for example, each extent would need
to be declared as size 10,000 even though most extents will contain far fewer
objects). An alternative approach, in an attempt to avoid memory considera-
tions altogether, would be to process each concept as it is computed and not to
store them at all. However, it is often the case that the ‘processing’ is not speci-
fied. It may be more useful to compute all formal concepts as a service for later
batch-type processing. Or, if the processing is simply to output the concepts to
a file, outputting each concept as it is computed is a terribly inefficient process
and would make any attempt to optimize the implementation of the algorithm
redundant. The approach adopted here, for In-Close2, is a compromise: it is de-
cided to store the formal concepts for later processing, but to store them in such
a way as to reduce the memory required, whilst maintaining an efficient means
of data management. For speed, the most efficient data structure to use to store
intents and extents would be standard two-dimensional arrays, indexing each
item in its entirety. However, given that the storage space for each extent would
need to be of size m, and size n for each intent, it is quickly apparent that the
memory required for a typical computation would be enormous and impractical.
Compromises need to be made, and here extents are stored in full but in a list,
with the memory required for an extent being the size of the extent. This still
often requires a significant amount of memory, typically in the order of several
MBs, which, although large, is generally practicable on today’s standard PCs.
Whilst managing a list requires additional indexing overheads (storing start-
ing points and sizes for each extent) the number of additional computational
operations required is not large, enabling extents to be stored for later process-
ing but without drastically impacting speed. This illustrates, in the context of
FCA, some typical trade-offs between memory and speed that are so common
in dealing with optimization problems.

Another approach would be to employ dynamic memory allocation, allocating
memory on the fly (e.g. using malloc) with the exact size required for storage.
Whilst this intuitively seems like a sensible idea, the process of dynamic memory
allocation is rather slow and employing it to store extents and intents increases
run-time enormously.

Further computational details (and trade-offs) in the handling of intents and
extents are given below.

6.1 Intents

In the In-Close2 algorithm, each child intent inherits fully its parent’s attributes.
Each child is then specialized by adding one or more new attributes which are
then, along with its parental attributes, inherited by the next generation, and so
on. Thus, it seems sensible to store the intents in that natural ‘tree’ structure,
thus avoiding repetition of inherited attributes. To further save memory, a single
dimensional, linear memory, structure can be used with the addition of meta-
data to store the start of each intent in memory, the number of ‘own’ attributes
in each intent (i.e. those attributes in an intent not inherited from its parent)
and a pointer to a child intent’s parent intent so as to be able to obtain the
inherited attributes later when the concepts are ‘processed’. The data structure
can be declared in C++ as follows:

Tk W N

o

int *Bj //store for intents — memory will be allocated
//for B at start of main program
int sizeBnode [MAX_CONS]; //number of 'own' attributes in each intent

int xstartB[MAX_CONS]; //pointers to start of intents
int nodeParent [MAX_CONS]; //pointers to parent intents
int xbptr; //will point to next available location in B

At the start of the main program, the memory allocation for storing intents and
pointer initialization is carried out:

B = new int [MAX_FOR_B];
bptr = B;

Note that there are some predefined literals here, namely MAX_CONS (the max-
imum number of concepts that can be computed) and MAX_FOR_B (the amount
of memory to be allocated for storing intents). Although it would be possible to
dynamically allocate memory on the fly, in the process of computing the con-
cepts, the overheads in time required for this would reduce the efficiency of the
implementation. Again, a compromise has been made, in this case to increase
efficiency but at the expense of setting arbitrary limits on quantities and sizes.

6.2 Extents

In the In-Close2 algorithm, a new extent is formed as a sub-set of objects from
its parent extent. With the breadth then depth approach of the algorithm, it
would be possible to avoid repetition of objects (and thus save memory) by
removing the child objects from the parent once all the children have been found
and then adding meta-data to link the children to the parent. However, this
amount of data management would incur significant time overheads, so again a
compromise is chosen, in this case to store each extent in full, back-to-back, in
memory, adding meta-data to record the starting address of each extent and its
size. Thus, although individual objects may be repeated in a number of extents,
there is no ‘empty’, wasted memory that would occur if a two-dimensional array
was being used. The data structure can be declared in C++ as follows:

=W N

24

OO0 Uk W~

int* A; //store for extents — memory will be allocated
//at start of main program

int* startA[MAX_CONS]; //pointers to start of extents

int sizeA[MAX_CONS]; //extent sizes

At the start of the program, the memory allocation for storing extents is made,
making use of another arbitrary literal for the amount of memory to use:

A = new int [MAX_FOR_A];

Now that the underlying data structures are in place, it is possible to present
the optimized implementation of the algorithm itself.

7 Implementation of the Algorithm

The optimized implementation of the InClose2 algorithm is presented below. A
key optimization to note is the use of one-dimensional bit arrays (Bparent and
Bcurrent) to represent intents in Boolean form. It was described above how
intents are stored in a tree structure to save memory, as opposed to storing each
intent separately and in full. Even if they were stored in bit form, the memory
required for a large number of intents, each with a maximum size of n would be
prohibitive. However, in the algorithm, to skip inherited attributes (line 2) it is
necessary to search for j in B. To search the B tree data structure would require
some significant time overhead. Searching the intent in Boolean form, however,
is simply a logical ‘and’ bit-wise test (& in C++), locating the required bit in
the same way as previously described above:

if (!(Bcurrent [j>>6] & (1i64 << (j % 64))))

The memory required for a single Boolean form intent is insignificant. The parent
intent is passed down to the child intent at the next level of recursion, and thus
the total number of Boolean-form intents being stored (on the stack) at any
one time will be dependent on the level of recursion. This is unlikely to cause
problems with memory. Thus, the implementation is a two-way compromise
in the end: storing intents globally in a memory efficient data structure for
later processing, and at the same time storing intents locally in an operationally
efficient data structure to reduce computation time. The optimized code for the
In-Close2 algorithm is listed below:

/*OPTIMIZED IMPLEMENTATION OF INCLOSE2 ALGORITHM x/
void InClose(int ¢, int y, unsigned __int64 xBcurrent)
// c¢: concept number, y: attribute number

// Becurrent: the current intent in Boolean form

/* LOCAL VARIABLES x/

//attributes where new extents are found

int Bchildren [MAX_COLS];

//the number of new concepts spawned from current one

int numchildren = O0;

//the concept no.s of the spawned concepts
int Cnums [MAX_COLS];

//a child intent in Boolean form

unsigned __int64 Bchild [MAX_COLS /64 + 1];
//calculate the size of current extent
int sizeAc = startA[c+1l]—starthA[c];

/*********MAIN CYCLE *************************************/
//iterate across attribute columns in the context
//forming column intersections with current extent
for(int j = y; j < n; j++) {
/+* if j is not an element of B then x/
if (!(Bcurrent [j>>6] & (1i64 << (j % 64)))){
/* C = A intersect {j}downarrow x*/
//point to start of current extent

int xAc = startA[c];
//point to start of new extent
int xaptr = startA [highc];

//NOTE: highc is maintained globally as
//next available concept number

//iterate through objects in current extent
for (int i = sizelAc; i > 0; i—){
//looking for them in current attribute column
if (context [*Ac][j>>6] & (1i64 << (j % 64))){
//if object is found
xaptr = xAc; //add it to new extent
aptr++;

Ac++; //next object
}

//calculate size of new extent
int size = aptr — startA[highc];

/x if A = C then =/
if (size == sizelc){
//add current attribute to current intent
xbptr = j; //in the B tree
bptr++;
sizeBnode [c|++;
//and in the Boolean form of intent
Bcurrent [j>>6] = Bcurrent [j>>6] | (1i64 << (j % 64));

else { //size < sizeAc so:
//if new extent is canonical
if (IsCannonical (j,aptr ,Bcurrent)){
/% PUT CHILD IN THE QUEUE /
//record the attribute where it was found

Bchildren [numchildren] = j;

//record the new concept number

Cnums [numchildren++] = highc;

//record the parent concept number
nodeParent [highc] = c;

//record the start of the new extent in A
startA[++highc] = aptr;

}

/#* GET CHILDREN FROM THE QUEUE x/

for(int i = numchildren—1; i >= 0 ; i—){
/+D=BU{j}
//inherit attributes
memcpy (Bchild ,Bcurrent ,nArray*8);

T W N

//record the start of the child intent in B tree
startB[Cnums [i]] = bptr;

//add spawning attribute to B tree

xbptr = Bchildren[i];

bptr—++;

sizeBnode [Cnums [i]]++;

//and to Boolean form of child intent

Bchild [Bchildren [i]>>6] =

Bchild [Bchildren [i]>>6] | (1i64 << (Bchildren[i] % 64));

//close the child concept from j+1
InClose (Cnums [i], Bchildren[i]+1, Bchild);

7.1 Optimizing the Canonicity Test

Possibly the greatest time savings can be made in the implementation of the
canonicity test. The test is, essentially, a search and is the code most frequently
executed in the program. Any performance efficiencies made here will have a
significant impact on the overal computation time. The task is to find the can-
didate new extent in an earlier column in the context cross-table. If it can be
found, then the extent is not canonical and thus not new. However, the search
must avoid looking in columns representing attributes already in the intent of
the current concept - as these will, of course, contain the new extent as a subset.
The primary source of efficiency here, is the exploitation of the context as a bit
array. Using 64-bits, the search becomes a fine-grained parallelization, searching
64 columns of the context simultaneously. To avoid looking in columns repre-
senting attributes already in the intent, a bit-mask can be used to mask out the
attributes in question. The mask can be created simply by inverting the Boolean
form of the current intent, Bcurrent, so that bit positions corresponding to at-
tributes in the current intent become zero and all others are set to 1. The mask
is then applied to each object in the new extent (i.e. each corresponding row of
the context) using bit-wise ‘and’. If the object is present, the corresponding bit
in the mask will remain set, if the object is absent the bit will be zeroed.

Further efficiency is possible by stopping the search as soon as the mask
becomes completely zeroed - in other words, as soon as it is clear that an object
in the extent is not present in any of the columns, it is unnecessary to search
for the other objects. The search can then move on the next 64 columns in the
context. Conversely, the search can also be stopped as soon as the extent is found:
once found it is then not necessary to search any more columns. The combination
of fine-grained parallel processing using bit-wise operators and minimizing the
amount of searching required, makes the optimized canonicity test extremely
efficient. The optimizied canonicity test code is listed below:

/* OPTIMIZED CANONICITY TEST x/

bool IsCannonical (int y, intx endAhighc, unsigned __int64 Bcurrent [])
/* y: attribute number, endAhighc: points to end of the new extent x*/
/* Bcurrent: the current intent in Boolean form x/

/+* CREATE BIT MASK FOR SEARCHING x/

unsigned __int64 Bmask [MAX_COLS/64 + 1];

int p; //counter for 64 bit segments

for(p = 0; p < y>>6; p++){
//invert 64 bit segments of current intent
Bmask [p]="Bcurrent [p];

//invert last 64 bits up to current attribute
//zeroing any bits after current attribute
Bmask [p]= “Bcurrent[p] & ((1i64 << (y % 64))—1);

/* SEARCH 64 BIT SEGMENTS OF CONTEXT FOR THE EXTENT x/
for (p=0; p <= y>>6; p++){
int i; //object counter
//point to start of extent
intx Ahighc = startA[highc];
//iterate through objects in new extent
for (i = endAhighc — Ahighc; i > 0; i—){
//apply mask to context (testing 64 cells at a time)
Bmask [p] = Bmask[p] & context [*x Ahighc |[p];
//if an object is not found, stop searching this segment
if (!Bmask[p]) break;
Ahighc++; //otherwise , next object

//if extent has been found, it is not canonical
if (i==0) return(false);

//if extent has not been found, it is canonical
return (true) ;

}

8 Evaluation

Evaluation of the optimization was carried out using some standard FCA data
sets from the UCI Machine Learning Repository [8] and some artificial data
sets. The comparison was between a version of In-Close with and without the
optimizations described above, i.e. without a bit-array for the context (an array
of type Bool is used instead), without the Boolean form of intent being used to
skip inherited attributes (the ‘tree’ of intents is searched instead), and without
physical sorting of the context. The difference in performance on the standard
data sets, that can be seen in Table 1, is striking, particularly when bearing in
mind that the same algorithm is being implemented in both cases - the code
optimization is the only difference.

Table 1. UCI data set results (timings in seconds).

Data set |Mushroom Adult Internet Ads
| X| x Y| |8124 x 125 48842 x 96 3279 x 1565

Density 17.36% 8.24% 0.77%
#Concepts | 226,921 1,436,102 16,570
Optimized 0.16 0.83 0.05

Unoptimized 0.47 2.14 0.39

Artificial data sets were used that, although partly randomized, were con-
strained by properties of real data sets, such as many valued attributes and a
fixed number of possible values. The results of the artificial data set experiments
are given in Table 2 and, again, show a significant improvement achieved by the
optimized implementation.

Table 2. Artificial data set results (timings in seconds).

Data set |[M7X10G120K M10X30G120K T10I14D100K
| X| x |Y] 120,000 x 70 120,000 x 300 100,000 x 1,000
Density 10.00% 3.33% 1.01%
#Concepts 1,166,343 4,570,498 2,347,376
Optimized 0.98 8.37 9.10
Unoptimized 2.42 18.65 33.21

9 Conclusions and Further Work

It is clear that certain optimization techniques can make a significant difference
to the performance of implementations of CbO-type algorithms. Bit-wise opera-
tions and efficient use of cache memory are big factors in this, along with a choice
of data structures for storing formal concepts that make a good compromise
between size and speed, given the memory typically available and addressable
in standard personal computers. Clearly, with more specialized and expensive
hardware and with the use of multi-core parallel processing, other significant
improvements can be made. However, as far as optimizations are concerned, the
ones presented here are probably the most important.

Although space does not permit here, it would be interesting, perhaps in a
future, expanded work, to investigate the individual effects of each optimization.
It may be that some optimizations are more useful than others. Similarly, it
may be interesting to investigate the comparative effectiveness of optimization
with respect to varying the number of attributes, number of objects and context
density.

The power of 64-bit bit-wise operators naturally leads to the tempting possi-
bility of using even larger bit-strings to further increase the level of fine-grained
parallel processing. So-called streaming SIMD extensions (SSEs) and correspond-
ing chip architecture from manufacturers such as Intel and AMD [1,10] provide
the opportunity of 128 and even 256 bit-wise operations. However, our early at-
tempts to leverage this power have not shown any significant speed-up. It seems
that the overheads of manipulating the 128/256 bit registers and variables are
outweighing the increase in parallelism. It may be because we are currently ap-
plying the parallelism to the columns of a formal context (the bit-mask in the
canonicity test) rather than the rows, that we are not seeing good results from

SSEs. Whereas there are typically only tens or perhaps hundreds of columns,
there are often tens or even hundreds of thousands of rows, particularly if we
are applying FCA to data sets. Thus, a 256-bit parallel process is likely to have
more impact used column-wise than row-wise. The task will be to work out how
to incorporate this approach into an implementation.

It may also be worth exploring how the optimizations presented here could
be transferred into other popular programming languages, although interpreted
languages, such as Python, are clearly not an ideal choice where speed is of the
essence. For Java and C#, there appears to be some debate on efficiency com-
pared to C++. It would be interesting to experiment to obtain some empirical
evidence.

In-Close is available free and open source on SourceForge!.

References

1. AMD. AMDG6} Architecture Programmers Manual Volume 6: 128-Bit and 256-Bit
XOP, FMA/ and CVT16 Instructions, May 2009.
2. S. Andrews. In-Close, a fast algorithm for computing formal concepts. In
S. Rudolph, F. Dau, and S. O. Kuznetsov, editors, ICCS 2009, volume 483 of
CEUR WS, 2009.
3. S. Andrews. In-Close2, a high performance formal concept miner. In S. Andrews,
S. Polovina, R. Hill, and B. Akhgar, editors, Conceptual Structures for
Discovering Knowledge - Proceedings of the 19th International Conference on
Conceptual Structures (ICCS), pages 50—-62. Springer, 2011.
4. S. Andrews. A partial-closure canonicity test to increase the efficiency of
CbO-type algorithms. In Proceedings of the 21st International Conference on
Conceptual Structures, pages 37-50. Springer, 2014.
5. S. Andrews. A best-of-breed approach for designing a fast algorithm for
computing fixpoints of Galois connections. Information Sciences, 295:633-649,
2015.
6. S. Andrews. Making use of empty intersections to improve the performance of
cbo-type algorithms. In Proceeding of the 14th International Conference on
Formal Concept Analysis, pages 56-71. Springer, 2017.
7. C. Carpineto and G. Romano. Concept Data Analysis: Theory and Applications.
J. Wiley, 2004.
8. A. Frank and A. Asuncion. UCI machine learning repository:
http://archive.ics.uci.edu/ml, 2010.
9. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, 1998.
10. Intel. Intel Developer Zone, ISA Extensions,
https://software.intel.com/en-us/isa-extensions, Retreived June 2016.
11. P. Krajca, J. Outrata, and V. Vychodil. Parallel recursive algorithm for FCA. In
R. Belohavlek and S.O. Kuznetsov, editors, Proceedings of Concept Lattices and
their Applications, 2008.

12. P. Krajca, J. Outrata, and V. Vychodil. FCbO program:
http://fcalgs.sourceforge.net/, 2012.

! In-Close on SourceForge: https://sourceforge.net/projects/inclose/

13.

14.

15.

16.

17.

18.

19.

P. Krajca, V. Vychodil, and J. Outrata. Advances in algorithms based on CbO.
In M. Kryszkiewicz and S. Obiedkov, editors, CLA 2010, pages 325-337.
University of Sevilla, 2010.

S. O. Kuznetsov. A fast algorithm for computing all intersections of objects in a

finite semi-lattice. Nauchno-Tekhnicheskaya Informatsiya, ser. 2, 27(5):11-21,
1993.

S. O. Kuznetsov. Mathematical aspects of concept analysis. Mathematical
Science, 80(2):1654-1698, 1996.

J. Outrata and V. Vychodil. Fast algorithm for computing fixpoints of Galois
connections induced by object-attribute relational data. Information Sciences,
185(1):114-127, February 2012.

U. Priss. Formal concept analysis in information science. Annual Review of
Information Science and Technology (ASIST), 40, 2008.

R. Wille. Formal Concept Analysis as Mathematical Theory of Concepts and
Concept Hierarchies, volume 3626 of LNCS, pages 1-33. Springer, 2005.

K. E. Wolff. A first course in formal concept analysis: How to understand line
diagrams. Advances in Statistical Software, 4:429-438, 1993.

