Skip to main content

A Quantum Proxy Arbitrated Signature Scheme Based on Two Three-Qubit GHZ States

  • Conference paper
  • First Online:
  • 1132 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12240))

Abstract

In this paper, we proposed a quantum proxy arbitrated signature scheme based on two three-qubit GHZ states. In the scheme, we chose a trust third party (TP) as proxy signer, which can finish the signature process without the original signer’s authority. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. It could guarantee not only the unconditionally security but also the anonymity of the message owner. We prove that our scheme can resist the eavesdropping attack, and the security analysis shows the scheme satisfies the security features of proxy arbitrated signature, singers cannot disavowal his signature while the signature cannot be forged by others, and the message owner can also be traced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bennett, C.H., Brassard, G.: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, pp. 175–179. IEEE, New York (1984)

    Google Scholar 

  2. Liu, W.-J., Gao, P.-P., Yu, W.-B., Qu, Z.-G., Yang, C.-N.: Quantum relief algorithm. Quantum Inf. Process. 17(10), 1–15 (2018). https://doi.org/10.1007/s11128-018-2048-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Qu, Z.-G., Wu, S.-Y., Wang, M.-M., et al.: Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels. Quantum Inf. Process. 16(306), 1–25 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Chang, Y., Zhang, S.-B., Yan, L.-L., et al.: A quantum authorization management protocol based on EPR-pairs. Comput. Mater. Continua. 59(3), 1005–1014 (2019)

    Article  Google Scholar 

  5. Yan, L.-L., Chang, Y., Zhang, S.-B., et al.: Measure-resend semi-quantum private comparison scheme using GHZ class states. Comput. Mater. Continua 61(2), 877–887 (2019)

    Article  Google Scholar 

  6. Zhang, S.-B., Chang, Y., Yan, L.-L., et al.: Quantum communication networks and trust management: a survey. Comput. Mater. Continua 61(3), 1145–1174 (2019)

    Article  Google Scholar 

  7. Tao, Z., Chang, Y., Zhang, S., Dai, J., Li, X.: Two semi-quantum direct communication protocols with mutual authentication based on bell states. Int. J. Theoret. Phys. 58(9), 2986–2993 (2019). https://doi.org/10.1007/s10773-019-04178-5

    Article  MATH  Google Scholar 

  8. Yang, Y.-G., Sun, S.-J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13(3), 805–813 (2013). https://doi.org/10.1007/s11128-013-0692-8

    Article  MathSciNet  Google Scholar 

  9. Yang, Y.-G., Zhang, M.-O., Yang, R.: Private database queries using one quantum state. Quantum Inf. Process. 14(3), 1017–1024 (2014). https://doi.org/10.1007/s11128-014-0902-z

    Article  MathSciNet  MATH  Google Scholar 

  10. Zheng, T., Zhang, S.-B., Gao, X., Chang, Y.: Practical quantum private query based on Bell state. Modern Phys. Lett. A 34, 1950196 (2019)

    Article  MathSciNet  Google Scholar 

  11. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint arXiv:quant-ph/0105032 (2001)

  12. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  Google Scholar 

  13. Lee, H., Hong, C., Kim, H., Lim, J., Yang, H.J.: Arbitrated quantum signature scheme with message recovery. Phys. Lett. A 321(5–6), 295–300 (2004)

    Article  MathSciNet  Google Scholar 

  14. Curty, M., Lütkenhaus, N.: Comment on arbitrated quantum-signature scheme. Phys. Rev. A 77(4), 046301 (2008)

    Article  MathSciNet  Google Scholar 

  15. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  MathSciNet  Google Scholar 

  16. Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 042325 (2010)

    Article  Google Scholar 

  17. Yang, Y.-G., Zhou, Z., et al.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61(3), 773–778 (2011)

    Article  Google Scholar 

  18. Yang, Y.-G., Lei, H., Liu, Z.-C., Zhou, Y.-H., Shi, W.-M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016). https://doi.org/10.1007/s11128-016-1293-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, L., Sun, H.-W., Zhang, K.-J., Jia, H.-Y.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), 1–15 (2017). https://doi.org/10.1007/s11128-017-1531-0

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, Y.-G., Liu, Z.-C., Li, J., Chen, X.-B., Zuo, H.-J., Zhou, Y.-H., Shi, W.-M.: Theoretically extensible quantum digital signature with starlike cluster states. Quantum Inf. Process. 16(1), 1–15 (2016). https://doi.org/10.1007/s11128-016-1458-x

    Article  MATH  Google Scholar 

  21. Feng, Y., Shi, R., Shi, J., Zhou, J., Guo, Y.: Arbitrated quantum signature scheme with quantum walk-based teleportation. Quantum Inf. Process. 18(5), 1–21 (2019). https://doi.org/10.1007/s11128-019-2270-1

    Article  MathSciNet  Google Scholar 

  22. Li, D., Wang, R., Baagyere, E.: Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state. Quant. Inf. Process. 18(5), 1–15 (2019). https://doi.org/10.1007/s11128-019-2252-3

    Article  MathSciNet  Google Scholar 

  23. Su, X.: Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull. 59(11), 1083–1090 (2014). https://doi.org/10.1007/s11434-014-0193-x

    Article  Google Scholar 

  24. Wang, L., et al.: Correction to: New scheme for measurement-device-independent quantum key distribution. Quantum Inf. Process. 18(1), 12 (2019)

    Article  Google Scholar 

  25. Yang, Y.-G., Liu, Z.-C., Chen, X.-B., Cao, W.-F., Zhou, Y.-H., Shi, W.-M.: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15(9), 3833–3840 (2016). https://doi.org/10.1007/s11128-016-1367-z

    Article  MathSciNet  MATH  Google Scholar 

  26. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  Google Scholar 

  27. Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16(2), 1–23 (2017). https://doi.org/10.1007/s11128-016-1508-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical bob. Quantum Inf. Process. 14, 681 (2015)

    Article  MathSciNet  Google Scholar 

  29. Jouguet, P., Kunz-Jacques, S., Leverrier, A.: Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 84(6), 062317 (2011)

    Article  Google Scholar 

  30. Cai, H., Long, C.M., DeRose, C.T., Boynton, N., Urayama, J., Camacho, R., Pomerene, A., Starbuck, A.L., Trotter, D.C., Davids, P.S., Lentine, A.L.: Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution. Opt. Express 25(11), 12282–12294 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61572086, No.61402058), the Key Research and Development Project of Sichuan Province (No. 20ZDYF2324, No. 2019ZYD027, No. 2018TJPT0012), the Innovation Team of Quantum Security Communication of Sichuan Province (No. 17TD0009), the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province (No. 2016120080102643), the Application Foundation Project of Sichuan Province (No. 2017JY0168), the Science and Technology Support Project of Sichuan Province (No. 2018GZ0204, No.2016FZ0112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Bin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, T., Zhang, SB., Chang, Y., Yan, L. (2020). A Quantum Proxy Arbitrated Signature Scheme Based on Two Three-Qubit GHZ States. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Lecture Notes in Computer Science(), vol 12240. Springer, Cham. https://doi.org/10.1007/978-3-030-57881-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57881-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57880-0

  • Online ISBN: 978-3-030-57881-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics