Skip to main content

An Efficient Method for Generating Matrices of Quantum Logic Circuits

  • Conference paper
  • First Online:
  • 1097 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12239))

Abstract

This paper presents an efficient method for generating matrices of quantum logic circuits. First, the truth table is generated by the operation rules of quantum gates in the quantum circuit, and then the matrix of the quantum circuit is constructed according to the mapping relationship between the truth table and the matrix. A common method is to generate a matrix by using the topological transformation rules of quantum gates, and then multiply these matrices generated by each quantum gate in the quantum circuit to construct a quantum circuit. When the scale of the quantum circuit is large, the method involves the generation and product of many large matrices, and complicated matrix multiplication, which takes a huge time cost. In contrast, our method achieves dimensionality reduction skillfully, which greatly improves the efficiency of the algorithm. Taking the GT circuit and the NCV circuit as examples, when the number of quantum lines is as large as 8, our method is hundreds of thousands of times faster than the method proposed in the previous paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Math. Struct. Comput. Sci. 17(6), 1115 (2007)

    MathSciNet  Google Scholar 

  2. IBM Quantum Computing. http://www.ibm.com/quantum-computing/. Accessed 1 Nov 2019

  3. Yiru, W.U., Chen, Y., Ahmad, H., et al.: An asymmetric controlled bidirectional quantum state transmission protocol. Comput. Mater. Continua 59(1), 199–214 (2019)

    Article  Google Scholar 

  4. Xue, X., Chen, H., Liu, Z., et al.: Divide and conquer algorithms for quantum circuit simulation. Acta Electronica Sin. 38(02), 439–442 (2010)

    Google Scholar 

  5. Dou, Z., Xu, G., Chen, X., et al.: Rational non-hierarchical quantum state sharing protocol. Comput. Mater. Continua 58(2), 335–347 (2010)

    Article  Google Scholar 

  6. Li, Z., Chen, H., Xu, B., et al.: Fast algorithms for 4-qubit reversible logic circuits synthesis. In: 2008 IEEE Congress on Evolutionary Computation, CEC 2008 (2008)

    Google Scholar 

  7. Cheng, X., Tan, Y., Guan, Z., et al.: An optimized simplification algorithm for reversible MCT circuits. Chin. J. Quantum Electron. 34(06), 713–720 (2007)

    Google Scholar 

  8. Feynman, R.: Quantum mechanical computers. Opt. News 16(6), 1120 (1986)

    MathSciNet  Google Scholar 

  9. Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class of quantum gates. In: 49th Design Automation Conference (DAC). ACM/EDAC/IEEE (2012)

    Google Scholar 

  10. Li, Z., Chen, S., Song, X., et al.: Quantum circuit synthesis using a new quantum logic gate library of NCV quantum gates. Int. J. Theor. Phys. 56(4), 1023–1038 (2017)

    Article  MathSciNet  Google Scholar 

  11. Bennett, A., et al.: Elementary gates for quantum computation. Phys. Rev. A At. Mol. Opt. Phys. 52(5), 3457 (1995)

    Google Scholar 

  12. Reversible logic synthesis benchmark. http://webhome.cs.uvic.ca/~dmaslov/. Accessed 1 Nov 2019

  13. Chen, X., Chen, H., Liu, Z., Li, Z.: A fast quantum simulation algorithm based on state vector. Acta Electronica Sin. 39(03), 500–504 (2011)

    Google Scholar 

  14. Wille, R., Lye, A., Drechsler, R.: Considering nearest neighbor constraints of quantum circuits at the reversible circuit level. Quantum Inf. Process. 13(2), 185–199 (2013). https://doi.org/10.1007/s11128-013-0642-5

    Article  MATH  Google Scholar 

  15. Liu, W., Xiao, Y., Yang, J.C.N., Yu, W., Chi, L.: Privacy-preserving quantum two-party geometric intersection. Comput. Mater. Continua 60(3), 1237–1250 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Hu, J., Wu, X., Dai, J., Zhang, W., Yang, D. (2020). An Efficient Method for Generating Matrices of Quantum Logic Circuits. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Lecture Notes in Computer Science(), vol 12239. Springer, Cham. https://doi.org/10.1007/978-3-030-57884-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57884-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57883-1

  • Online ISBN: 978-3-030-57884-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics