Skip to main content

Research on Quality Control of Marine Monitoring Data Based on Extreme Learning Machine

  • Conference paper
  • First Online:
  • 1096 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12239))

Abstract

The collection and research of marine monitoring data are the main work of marine science. How to obtain the observation data of un-known sea area is of great significance to marine scientific research. Using the data provided by the Argo project, in this work we aim to effectively predict the marine monitoring data with the extreme learning machine which is simple in structure with short training time, in order to achieve the accuracy of marine information. According to the size of the sample for adjusting the corresponding model parameters, the pre-diction of marine data can be achieved. By comparing the forecast data of the unknown sea area and the data originally provided by the Argo plan, the accuracy of the ocean data is higher and the trend of the reflected data is more detailed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huang, G., Song, S., Gupta, J.N., Wu, C.: Semi-supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2014)

    Article  Google Scholar 

  2. Zheng, A., Labrinidis, A., Chrysanthis, P. K., Lange, J.: Argo: architecture-aware graph partitioning. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 284–293. IEEE (2016)

    Google Scholar 

  3. Mohammed, A.A., Minhas, R., Wu, Q.J., Sid-Ahmed, M.A.: Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recogn. 44(10–11), 2588–2597 (2011)

    Article  Google Scholar 

  4. Wan, C., Xu, Z., Pinson, P., Dong, Z.Y., Wong, K.P.: Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Trans. Power Syst. 29(3), 1033–1044 (2013)

    Article  Google Scholar 

  5. Jiang, Y., Gou, Y., Zhang, T., Wang, K., Hu, C.Q.: A machine learning approach to argo data analysis in a thermocline. Sensors 17(10), 2225 (2017)

    Article  Google Scholar 

  6. Qin, H.D., Wang, C., Jiang, Y., Deng, Z.C., Zhang, W.: Trend prediction of the 3D thermocline’s lateral boundary based on the SVR method. EURASIP J. Wirel. Commun. Networking 2018(1), 252 (2018)

    Article  Google Scholar 

  7. Jiang, Y., Zhang, T., Gou, Y., He, L.L., Bai, H.T., Hu, C.Q.: High-resolution temperature and salinity model analysis using support vector regression. J. Am. Intell. Humanized Comput. (2018). https://doi.org/10.1007/s12652-018-0896-y

  8. Jiang, Y., Zhao, M.H., Hu, C.Q., He, L.L., Bai, H.T., Wang, J.: A parallel fp-growth algorithm on world Ocean Atlas data with multi-core CPU. J. Supercomput. 75(2), 732–745 (2019)

    Article  Google Scholar 

  9. Zhao, M.H., Hu, C.Q., Wei, F.L., Wang, K., Wang, C., Jiang, Y.: Real-time underwater image recognition with FPGA embedded system for convolutional neural network. Sensors 19(2), 350 (2019)

    Article  Google Scholar 

  10. Qin, H.D., Chen, H., Sun, Y.C.: Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying nodes. J. Franklin Inst. (2019). https://doi.org/10.1016/j.jfranklin.2019.05.034

  11. Liu, Y.Q., Wang, X.X., Zhai, Z.G., Chen, R., Zhang, B., Jiang, Y.: Timely daily activity recognition from headmost sensor events. ISA Trans. 94, 379–390 (2019)

    Article  Google Scholar 

  12. Qin, H., Chen, H., Sun, Y., Chen, L.: Distributed finite-time fault-tolerant containment control for multiple ocean bottom flying node systems with error constraints. Ocean Eng. 189, 106341 (2019)

    Article  Google Scholar 

  13. He, L.L., Bai, H.T., Ouyang, D.T., Wang, C.S., Wang, C., Jiang, Y.: Satellite cloud-derived wind inversion algorithm using GPU. Comput. Mater. Continua 60(2), 599–613 (2019)

    Article  Google Scholar 

  14. Li, X., Liang, Y.C., Zhao, M.H., Wang, C., Jiang, Y.: Few-shot learning with generative adversarial networks based on WOA13 data. Comput. Mater. Continua 60(3), 1073–1085 (2019)

    Article  Google Scholar 

  15. He, L.L., et al.: A method of identifying thunderstorm clouds in satellite cloud image based on clustering. Comput. Mater. Continua 57(3), 549–570 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (61872160, 51679105, 51809112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Liu, F., Wang, K., Huang, H., Wei, F., Qi, H. (2020). Research on Quality Control of Marine Monitoring Data Based on Extreme Learning Machine. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Lecture Notes in Computer Science(), vol 12239. Springer, Cham. https://doi.org/10.1007/978-3-030-57884-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57884-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57883-1

  • Online ISBN: 978-3-030-57884-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics