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Abstract—In this paper, we consider a multisource
network transmitting information through relays to a base
station using Network Coding. We design a model for this
scenario and use the rank metric to address the problem
of packet errors (caused for example by a malicious
user or a defective node). We introduce a new family
of codes, the extended LRPC codes, that are very well
suited to this model and extensively use the fact that the
information comes from multiple sources to decode. They
therefore improve the communication reliability compared
to classical LRPC codes and Gabidulin codes. We provide
a theoretical analysis of their decoding failure probability,
both in a one source and multisource scenario, as well as
simulation results confirming our analysis.

I. INTRODUCTION

Network coding (NC) has been recently introduced to
reduce the traffic in general networks. Plenty of works
have investigated this idea in both wired and wireless
networks. Indeed, NC is proved to be an appropriate
solution increasing data throughput and reducing energy
consumption for WSNs. NC was first introduced in
the seminal paper [1] and since, it has been shown
to significantly improve network efficiency by reducing
the number of transmissions. Random linear network
coding (RLNC) [2] is a class of network coding that
uses a linear code generated randomly by every node of
the network. It assumes that the data are vectors over a
finite field and that each node of the network performs
a random linear combination of all the received packets
so far and forwards them to nearby nodes. Never-
theless, if packet error occurs, the erroneous packets
are combined with unharmed ones causing the whole
combination to be affected. This kind of errors can
be illustrated in three use-cases. The first use-case is
when a malicious user injects erroneous packets into
the network to disrupt the overall system, such as the
scenarios studied in [3] and [4]. The second use-
case is depicted by the presence of a node failure
within the network, see [5]. The third case is when we

take into consideration the impact of background noise
that is caused by propagation channel and electronic
impairment (additive white Gaussian noise (AWGN) for
example). In order to solve the problem of background
noise, we propose to use convolutional codes. Each node
uses a linear combination of the received packets and
decodes them using convolutional decoder. The first and
the second cases can be solved by using rank metric
codes. It has been proven that rank codes are efficient
against rank errors [6]. In particular, Gabidulin proposed
a class of correcting codes named Gabidulin codes in
order to apply them for correcting criss-cross errors. A
class of rank metric codes has been proposed in [7],
called Low Rank Parity Check (LRPC), that has ap-
proximately the same performance of Gabidulin codes.
Koetter and Kschischang tested the performance of rank
codes combined with RLNC schemes for intentional
attacks [8].

In this paper, we investigate existing solution in [9]
for multisource networks using error correcting codes
and we propose a generalized solution. We also intro-
duce a new family of codes, the extended LRPC codes,
that are very well suited to this model.

The main contribution of this paper is a new family of
LRPC codes, the extended LRPC codes, that features a
probabilistic decoding algorithm whose decoding failure
rate gets really low when using multiple sources. In
particular, the error support can be naturally recovered
from the first coordinate of the received word in such
a way that the decoding capability is improved. We
also derive theoretical expression of failure decoding
probability at the destination for extended LRPC in
multisource networks. Finally, we validate the theo-
retical results with simulations and we show that our
proposition achieves good performance compared to
existing ones. The simulations illustrate the advantages
of using extended LRPC codes compared to classical
LRPC and Gabidulin codes.



The remainder of this paper is organized as follows.
In section II, notations and fundamental preliminaries
of finite field and vector spaces are detailed. A detailed
description of rank codes is provided in Section III.
Section IV describes the system model and formulates
the problem statement. The framework of the calculation
of the failure decoding probability and the description
of extended LRPC are expressed in Section V. In
Section VI, we present the simulation results and the
conclusions are drawn in Section VII.

II. PRELIMINARIES

Let q be a power of prime number p and u be an
element of Fqm rFq . In this paper, all coefficients of a
vector are in the finite field Fqm . Let Fm×N

q denote the
set of all m × N matrices over Fq such that m ≥ N
and let b = {b1, b2, . . . , bm} be a basis of Fqm over Fq .

Let (x1, . . . xn) n elements of Fqm . The Fq-subspace
generated by these elements is denoted 〈x1, . . . , xn〉. If
E and F are two subspaces of FN

qm , then 〈E.F 〉 denotes
the subspace generated by the product of elements of E
and F , ie 〈E.F 〉 = 〈eifj〉 where the (ei) (respectively
the (fj)) are a basis of E (respectively F ). If X is a
matrix in Fm×N

q , the row space of a matrix X is denoted
by 〈X〉.

As it has been shown in [10], the number of t-
dimensional subspace of an m-dimensional vector space
over Fq is the Gaussian coefficient calculated by[

m
t

]
,

t−1∏
i=0

qm − qi

qt − qi
. (1)

Hence, we can deduce from Equation (1) the number of
matrices of rank t in the space Fm×N

q , which is

S(m,N, q, t) =

t−1∏
i=0

(qm − qi)(qN − qi)
qt − qi

. (2)

Let Y1 and Y2 be two m×N matrices over Fq . The
row space of a matrix Y1 is denoted by 〈Y1〉. It means
that the the space 〈Y1〉 is generated by the rows of the
matrix Y1. Then, we have〈[

Y1
Y2

]〉
= 〈Y1〉+ 〈Y2〉. (3)

Therefore

rank

[
Y1
Y2

]
= dim (〈Y1〉+ 〈Y2〉)

= rank(Y1) + rank(Y2)− dim(〈Y1〉 ∩ 〈Y2〉).
(4)

Let u be an element of Fqm r Fq and E be a
subspace of Fqm of dimension r over Fq . We suppose

that 2r � m and we investigate the typical dimension
of the subspace E + uE. We rely on the following
observation:

Proposition 1. The probability that E + uE is of
dimension 2r is given by

P(dim(E + uE) = 2r) ≈ 1− q2r − qr+1

qm − q
.

Proof. Let us take a fixed r-dimensional subspace E
in Fqm . Suppose that the dimension of E + uE is less
than 2r for u randomly chosen in Fqm r Fq . It means
that: ∃(e1, e2) ∈ E2, that verifies ue2 = e1. Now, we
compute the number of possibilities of choosing u that
verifies u = e1e

−1
2 , for (e1, e2) ∈ E2. The number of

possible values of (e1, e2) is at most q2r and since u is
not in Fq the case (αe, e) for α ∈ Fq and e ∈ E is not
possible. Thus, the number of possibilities to choose u
that verifies u = e1e

−1
2 , for (e1, e2) ∈ E2 is q2r−qr+1.

The number of possible values of u is qm − q.

Let A be a matrix in Fq
2r×N−k and suppose that

2r ≤ N − k. By using (2), the probability that A is a
full rank matrix is given by

P(rank(A) = 2r) =

2r−1∏
i=0

(1− qi−(N−k)). (5)

Let E be a subspace of dimension r over Fq . Let s
be a vector in E + uE of length N − k. We have the
following proposition:

Proposition 2. The probability that the subspace 〈s〉 is
of dimension 2r over Fq is given by

P(dim(〈s〉) = 2r) ≈(
1− q2r − qr+1

qm − q

) 2r−1∏
i=0

(1− qi−(N−k)).

Proof. Suppose that dimension of E+uE is 2r and let
{E1, E2, ..., Er,uE1,uE2, ...,uEr} be a basis of E +
uE. All coefficients of the vector s are in E + uE by
definition of s. The vector s can be written as follows:

s = (E1, ..., Er,uE1, ...,uEr)×A,

where, A is a matrix in Fq
2r×N−k. Since the coefficients

of s are random elements of E+uE, the matrix A is also
random. The probability that the set of all coefficients of
s generates the whole space is the probability that A is a
full rank matrix. From Equation (5), the probability that

a random matrix A is full rank is
2r−1∏
i=0

(1− qi−(N−k)).



Now, the probability that dim(E + uE) = 2r is given
in the Proposition 1.

It is interesting to remark that in practice the prob-
ability P(dim(E + uE) = dr) decreases much more
faster to 0 when dr � m. Thus, the probability that
dim(〈s〉) = dr given in the previous proposition can
be approximated by:

P(dim(〈s〉) = dr) ≈
dr−1∏
i=0

(1− qi−(N−k)). (6)

III. RANK METRIC

In this section, we present some concepts from rank
metric coding theory. The reader is referred to [7]
and [10] and references therein for further details. A
brief overview of concepts relevant to this work can
be found in [11]. Afterwards, we introduce Gabidulin
codes and LRPC codes, and then we propose modified
decoding algorithm of LRPC.

Let v be a vector of FN
qm . For i ∈ {1, 2, . . . , N}, we

have vi =
m∑
j=1

vijbj and v can be interpreted as a matrix

V = (vij) ∈ Fm×N
q . We can define the rank weight of v

over Fq as the rank of the associated matrix V , denoted
rank(v). The rank distance between two vectors v and
w of FN

qm is defined by dr(v,w) = rank(v − w).
These definitions are independent of the choice of the
basis {b1, b2, . . . , bm}.

We can now define the support of a vector. This
definition differs from the Hamming metric:

Definition 3. Let v ∈ FN
qm . The support of v is the

Fq − subspace of Fqm generated by its coordinates:

Supp(v) = 〈v1, . . . , vN 〉

Definition 4. A rank code C of length N and dimension
k over Fqm is a subspace of dimension k of FN

qm

equipped with the rank metric.

Similar to the minimum Hamming distance for linear
codes we define the minimum rank distance of a code
C.

Definition 5. The minimum rank distance of a code C
is given by:

dmr = min{rank(v) | v ∈ C, v 6= 0}.

A. Gabidulin codes

Gabidulin codes are introduced in [10], the well-
known class of Maximum Rank Distance (MRD) codes.
They have been already used successfully in many

applications such as cryptography [7], power-line com-
munications [11] and network coding [8].

The Gabidulin code of length N , dimension k and
support g = (g1, g2, . . . , gN ) is the set of words ob-
tained by evaluating q-polynomials of q-degree at most
k − 1 at g1, g2 and gN .

Gab(g, k,N) =
{(P (g1), . . . , P (gN )) | degq(P ) ≤ k − 1}.

The decoding of Gabidulin codes can be done based
on q-polynomials by using modified Berlekamp-Massey
algorithm [12] or extended euclidean algorithm in the
non-commutative ring of q-polynomial. They can de-
code errors of weight up to

⌊
N−k
2

⌋
without probability

of failure.

B. Low Rank Parity Check codes

The LRPC code and its parity check matrix are
described in the following definition.

Definition 6. A Low Rank Parity Check code of low
rank d, length N and dimension k and with a parity
check matrix H = (hij) over Fqm such that the sub-
vector space of Fqm , generated by the coefficients hij
of the matrix H, has dimension equals to d.

Without loss of generality, in this article we are
interested in the case d = 2. Let M = (mij) be a
lower triangular matrix in F2(N−k)×N

q and let F be a
subspace of Fqm of dimension 2 generated by the basis
{1,u}. The matrix H = (hij) is constructed such that
hij ∈ F . Then, for 1 ≤ i ≤ N − k, 1 ≤ j ≤ N ,
hij = hij1 + uhij2, where hij1 and hij2 are elements
of Fq . In order to reduce the complexity of decoding the
LRPC codes, we set hij1 = m(2i−1),j and hij2 = m2i,j ,
for 1 ≤ i ≤ N − k and 1 ≤ j ≤ N .

Suppose that the error (e1, ..., eN ) is of weight r
and ei are elements of the error space E of dimension
r generated by a basis {E1, E2, · · · , Er}. Then, all
ei(1 ≤ i ≤ N) can be written as ei =

∑r
j=1 eijEj .

Suppose that the dimension of the space E+uE is ex-
actly 2r (see Proposition 1). It is then possible to express
the system of equations H.eT = s over Fqm into system
of equations over Fq , by expressing the syndrome coor-
dinates in the product basis {E1, .., Er,uE1, ...,uEr},
for 1 ≤ i ≤ N − k, as follows:

si =

r∑
k=1

si1kEk + u
r∑

k=1

si2kEk.

We have Ar
H .e
′T = s′, where e′ =

(e11, ..., e1r, e21, ..., enr) and s′ =
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Figure 1: Example of a network composed of 3 sources,
number of relay nodes and BS.

(s111, ..., s11r, ..., s(n−k)2r). We have detailed the
matrix Ar

H in a previous work (see [11]).
The decoding algorithm can fail if the support of s

is of dimension strictly smaller than 2r. Thus we have
the following proposition:

Proposition 7. An LRPC code of rank d, length N and
dimension k can decode errors of weight up to

⌊
N−k
2

⌋
with probability of ≈ 1 − qN−k+1−dr, where r is the
rank of the error.

Proof. According to Equation (6), we have

P(dim(〈s〉) = dr − 1) ≈
dr−1∏
i=0

(1− qi−(N−k))

≈ 1− q−(N−k+1−dr)

IV. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a network comprising a base station BS,
s source nodes S1,S2, ...,Ss and a number of relay
nodes. Each source node is attempting to transmit m
packets to the BS through relay nodes, as illustrated
in Figure 1.

To this end, the source Si segments data into m
packets ui1, ui2, ..., uim of length k , then encodes them
using a rank code and transmits the coded packets to
the relay nodes. Let Ci1, Ci2, ..., Cim denote the coded
packets of node Si. Hence, S1,S2, ...,Ss transmit m×s
coded packets of length N to the relay nodes. Each
relay node that receives the source packets employs
RLNC to combine them and generates coded packets.
Note that the coefficients are randomly chosen from Fq ,
where q is the field size. Afterwards, relays send the
generated packets to other relays until the coded packets

are received by the destination BS. Let Y11, Y12, ..., Ysm
denote the received packets which can be expressed in
s block matrices of size (m×N).

We consider the application of Physical-layer Net-
work Noding (PNC) between the relay nodes as shown
in Figure 2. Each stage of the network behaves as
independent network and differently of other stages. In
this model, relays N1,N2, ...,Nl send information to a
node N in the next stage. We assume that all nodes are
half-duplex. The first time slot corresponds to an uplink
phase, in which nodes N1,N2, ...,Nl transmit their
coded packets simultaneously to the node N . The node
N then constructs a network coded packet based on
the simultaneously received signals fromN1,N2, ...,Nl.
The second time slot corresponds to a downlink phase,
in which N attempts to recover the original packet
transmitted by N1,N2, ...,Nl and sends it to next stage
nodes.

In the following, we focus on improving the error
decoding performance of convolutional code. As shown
in Figure 2, nodes N1,N2, ...,Nl adopt the same convo-
lutional code with length N and k. In this paper, nodes
use the same pseudo-random bit-interleaver instead of
the conventional bit-interleaver to allocate the coded bits
to different modulation levels. Without loss of general-
ity, we focus on BPSK modulation. Our framework can
be easily extended to higher order constellations. We
assume that the power control and the synchronization
at all nodes are perfect.

Consider transmission of l packets to the node N .
The received packet is:

y = (x1h1+n1)+(x2h2+n2)+ · · ·+(xlhl+nl), (7)

where hi is the channel coefficients of the channels be-
tween the node Ni and the node N . It can be considered
as an N×N diagonal matrix where diagonal coefficients
have a Rayleigh distribution with parameter σ =

√
1
2 .

The parameter n = n1 + n2 + · · · + nl represents
the channel additive Gaussian noise (AWGN), where
n1, n2, ..., nl are independent Gaussian variables with
zero mean and variance σ2

1 = σ2
2 = · · · = N0

2 ; i.e.
n ∼ N (0, mN0

2 ).
In order to limit the impact of background noises that

are caused by the nature of the wireless channel, we
use a convolutional code. Each relay node verifies the
integrity of the received packets. If the received packets
is erroneous, the node uses convolutional decoder in
order to recover the transmitted packet. However, if we
combine a big number of packets the total variance of
the noise increases significantly and then the convo-
lutional decoder cannot recover the correct codeword.
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Figure 2: The system model for the inner code.

Also, packets generated by malicious nodes cannot
be detected by the convolutional since the latter can
use convolutional code too. In this case, relay node
that receives the wrong packets combine them with
the correct ones generating a wrong packet too. Let r
denote the number of erroneous packets caused by the
combination of a big number of received packets.

Suppose that r erroneous packets are injected into the
network during the transmission of the m × s source
packets. Since packets are randomly combined, errors
may affect all the packets. Particularly, errors may affect
all the packets of one source. At the BS, the packets of
each source are put together in order to apply the rank
decoder. By using a classical rank code, the decoding
algorithm uses the information of m received packets so
as to recover the source packets. For a particular source,
if r is bigger than m, the rank error may be bigger than
the decoding capability of the rank code. Thus, the BS
cannot recover the source packets.

The main idea of this paper is to use the error
information of all received packets in order to recover
the error basis. Then, we use the error basis in the
decoding algorithm to recover packets of each source.

V. EXTENDED LRPC CODES

A. Definition and decoding algorithm

Definition 8. Extended LRPC codes
An [n + t, k] extended LRPC code of rank d over

Fqm is a code such that it has a parity check matrix H
consisting of an n× (n− k) parity check matrix of an
LRPC code, extended by an identity matrix of size t on
the first coordinates :

H =

(
It 0
0 HLRPC

)
.

The probabilistic decoding algorithm of this family
of codes is an adaptation of the decoding algorithm of
the LRPC codes, to use the fact that the first syndrome
coordinates are actually coordinates of the error. In the

following we only consider extended LRPC codes of
rank 2.

Algorithm 1: Decoding algorithm of the ex-
tended LRPC codes
Input: The parity check matrix H , the

syndrome s
Output: The error vector e of rank r

1 E′ ←< s1, . . . , st >
2 S ←< E′.F > + < st+1, . . . , sn−k+t >
3 E ← F−11 .S ∩F−12 .S, where {F1, F2} is a basis

of F
4 Try solving H.et = s with e ∈ En+t

5 return e

B. Probability of failure

In order to estimate the decoding failure rate of this
algorithm, we need to study the probability that we do
not recover the support E of the error. Since we can
choose the parity check matrix H such that the system
H.et = s is invertible, this can not be a source of
failure.

Theorem 9. An [n + t, k] extended LRPC code of
rank 2 can decode errors of rank r up to b 2t+k

2 c with
probability :

min(r−1,t)∑
j=0

S(t, r, q, j)

qrt
× (1− S(k + 2j, 2r, q, 2r)

q2r(k+2j)
)

Proof. The probability that the first t coordinates of
the syndrome span a subspace of dimension j of E is
equal to the number of matrices of size t× r of rank j
over Fq divided by the total number of matrices of size
t × r over Fq : S(t,r,q,j)

qrt . If the dimension is exactly
r, then the algorithm will succeed. For each other
potential dimension, we need to study the probability
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Figure 3: Simulation results for d = 2, n = 24, k = 15
and t = 6.

that < E′.F > + < st+1, . . . , sn−k+t > span the
whole product space 〈E.F 〉.

If we write < E′.F > + < st+1, . . . , sn−k+t > as
a k + 2j × 2r matrix over Fq , then the probability that
these vectors do not span the whole space < E′.F > is
1− S(k+2j,2r,q,2r)

q2r(k+2j) , hence the result.

We use the expression for the failure decoding prob-
ability given in Theorem 9 and compare the resulting
values with the simulation results. Figure 3 depicts sim-
ulated (S) and theoritical (T) expression of successful
decoding probability for d = 2, n = 24, k = 15, s = 1
and t = 6 as a function of the number of erroneous
packets. It can be observed that the system performance
is close to the formula given in Theorem 9.

C. Multisource case

Theorem 10. Using syndromes from N sources, the
extended LRPC codes can decode errors of rank r up
to r 6 b 2Nt+Nk

2 c with probability :

min(r−1,Nt)∑
j=0

S(Nt, r, q, j)

qrNt
×(1−S(Nk + 2j, 2r, q, 2r)

q2r(Nk+2j)
).

Proof. The proof is similar to the proof of theorem 9,
except that we get Nt elements of the vector space E,
and Nk elements of 〈E.F 〉 in the syndrome coordinates.

VI. NUMERICAL RESULTS

In this section, we investigate the performance of
the proposed model via simulation and compare the

results of the proposed extended LRPC code with the
the classical LRPC code. First, we test the behavior of
the two codes in the absence of AWGN noise and then,
we evaluate the impact of background noise on both
codes.

A. The comparison between extended LRPC and clas-
sical LRPC in the absence of AWGN

We set the number of source packets to 80 and the
number of source nodes to 1, 2 and 3 respectively.
The source coded packets have the same length n.
The relevant dimensions of the parity-check matrix are
n = 17, k = 10, d = 2 and t = 3. We use a binary
phase shift keying (BPSK).
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s=1 - classical

s=2 - extended

s=2 - classical
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Figure 4: Probability of successful decoding for n = 17,
k = 10, t = 3 using 1, 2 and 3 sources.

Figure 4 illustrates the probability of successful de-
coding as a function of the number of erroneous pack-
ets injected into the network for different numbers of
sources. It can be observed that extended LRPC has a
good behavior compared to the classical LRPC. By in-
creasing the number of sources, the gap between the two
graphs becomes increasingly important. This is because
extended LRPC code has s× t/2 additional information
of the error support that uses in the decoding process.

B. The comparison between extended LRPC and clas-
sical LRPC in the presence of AWGN

In the second experiment we compare the perfor-
mance of the extended LRPC and classical LRPC in the
presence of additive white Gaussian noise. We fix the
number of erroneous packets injected into the network
to 4.



We use extended LRPC and classical LRPC as outer
codes. Then, the coded packets are coded again using
convolutional code at the source nodes, and transmitted
to the next relays. At the intermediate levels, we use
the classical RLNC. For convolutional encoder, with a
standard rate = 1

2 and K = 7, we use an interleaver to
improve the error correction.
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Figure 5: Packet Error Rate as a function of SNR for
r = 4 using 1, 2 and 3 sources.

We can observe, in Figure 5, that the extended LRPC
is about 0.4dB better than the classical LRPC. The use
of a rank code does not have a beneficial contribution
regards to the channel errors. This is because of the
property of the white noise, each symbol has a big
probability to generate a rank error and therefore re-
ducing the error-correction capability. This is the reason
of using a convolutional code to reduce the channel
errors impact. It is obvious that the performance of
both rank codes deteriorate for s = 1 this is because
the decoding failure probability of extended LRPC and
classical LRPC are affected by the rank error in the case
when s = 1.

VII. CONCLUSION

In this paper, we proposed a new family of LRPC
codes, extended LRPC codes, which are particularly
well suited for use in multisource network using RLNC.
We propose a new decoding algorithm that takes into ac-
count the fact that the information comes from multiples
sources, which is not possible when using Gabidulin
codes, and reduces the decoding failure rate over the
classical LRPC codes.

The considered scenario takes into account not only
errors caused by the nature of the wireless channel, but
also errors introduced by a malicious users or due to

node failures. In fact, we use extended LRPC as an outer
code and we use the convolutional code as an inner code
to deal with the wireless channel errors. We have de-
rived analytically the exact expression for the decoding
probability of extended LRPC codes. Numerical results
have shown that both the simulation and the theoretical
expression for the decoding probability of extended
LRPC codes are very tight and accurately predict the
decoding probability. Our analysis has also exposed the
clear benefits of the extended LRPC in terms of recovery
accuracy compared to both the classical LRPC codes
and the Gabidulin codes.
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