
Energy-Efficient MIMO Multiuser Systems:
Nash Equilibrium Analysis

Hang Zou1, Chao Zhang1, Samson Lasaulce1, Lucas Saludjian2, and Patrick
Panciatici2

1 L2S, CNRS-CentraleSupelec-Univ. Paris Saclay, Gif-sur-Yvette, France
2 RTE, France

{hang.zou, chao.zhang, samson.lasaucle}@centralesupelec.fr

Abstract. In this paper, an energy efficiency (EE) game in a MIMO
multiple access channel (MAC) communication system is considered. The
existence and the uniqueness of the Nash Equilibrium (NE) is affirmed.
A bisection search algorithm is designed to find this unique NE. Despite
being sub-optimal for deploying the ε-approximate NE of the game when
the number of antennas in transmitter is unequal to receiver’s, the pol-
icy found by the proposed algorithm is shown to be more efficient than
the classical allocation techniques. Moreover, compared to the general
algorithm based on fractional programming technique, our proposed al-
gorithm is easier to implement. Simulation shows that even the policy
found by proposed algorithm is not the NE of the game, the deviation
w.r.t. to the exact NE is small and the resulted policy actually Pareto-
dominates the unique NE of the game at least for 2-user situation.

Keywords: Energy efficiency · Multiple access channel · MIMO · Game theory
· Nash Equilibrium · Approximate Nash Equilibrium.

1 Introduction

With the release of first 5G package, it turns out that the number of devices
in the upcoming wireless network will increase tremendously, e.g., Internet of
Things (IoT). Consequently, classical paradigm which merely aims at optimizing
the quantitative performance, e.g., data-rate, bit-error-rate and latency faces
extreme difficulty in many domains in both academic research and industrial
application. Thus the issue of energy-efficient design of the wireless system tends
to be crucial. Different definition of energy efficiency (EE) has been proposed in
recent years in [12–15]. Amongst which the most popular one is defined as the
total benefit obtained under the unit consumption of energy or power known as
global energy efficency (GEE) e.g., in [3–5, 11]. Taken the bits-per-second type
rate function as benefit function, one will obtain well-known the bits-per-joule
energy efficiency.

One of the pioneer works of studying the maximization of EE in Multiple-
Input Multiple-Output (MIMO) system is [5]. In [5], the optimal precoding
scheme is studied and divided into different cases with different assumptions
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on the systems. Till now the optimal precoding matrix for general condition is
merely conjectured and unproved. Hereafter, optimal precoding matrix design
for single user MIMO system is performed for imperfect channel state informa-
tion (CSI) scenario in [9]. Then it is later widely realized that the problem of EE
maximization actually belongs to the category of fractional programming. Tech-
niques such as Dinkelbach’s algorithm (see [8]) is used to solve EE maximization
in [9,10]. These algorithms are generally based on the idea that the optimal solu-
tion can be found by solving a sequence of convex optimization problems related
to the original one. The main difficulty of EE maximization OP is usually due
to the non-convexity of energy efficiency function. Under some assumption on
the benefit function, the EE function is well-known as being quasi-concave or
even pseudo-concave. However, it is generally difficult to trace the Nash Equi-
librium (NE) of a game where the individual utility function of player is of EE
type. In [3], it is shown that there always exists an unique NE for scalar power
allocation game in a relay-assisted MIMO systems due to the standard property
of the best response dynamics. Similar results in MIMO-MAC system will be
given latter in the paper.

The contribution of this paper is twofold: 1) we first extend the work in [3]
to a more general situation where each user is allowed to choose its covariance
matrix to maximize its individual EE instead of tuning its scalar power merely.
The existence and uniqueness of the NE is proved under some assumptions.
2) An algorithm is proposed to to find the unique NE of this MIMO-MAC
game. When the number of antennas of transmitter is equal the one of receiver,
proposed algorithm leads to exact NE. Otherwise it leads to the ε-approximate
NE defined latter in the paper for replacing the exact best response dynamic by
its linear approximation.

The remaining parts of the paper is organized as follows: the MIMO-MAC
system and the EE game are first presented in Sec. 2. Then some basics of game
theory are given and the existence and the uniqueness of NE of the EE game
is proved in Sec. 3. In Sec. 4, a basic algorithm is proposed and an improved
bisection search algorithm is given which yields an ε-approximate NE slightly
Pareto-dominating the exact NE. The numeric results of proposed algorithms
are compared with classical allocation policy and analyzed in Sec. 5. The paper
concludes by several remarkable conclusions in Sec. 6.

Notations: (·)H and (·)† denote matrix transpose and Moore-Penrose inverse
respectively. IN stands for identity matrix of size N . det (·) and Tr (·) denote the
determinant and the trace of a matrix respectively. Denote the natural number
set inferior or equal than N as [N ] , {1, . . . , N}.

2 System model

Consider a multiple access channel (MAC) with one base station (BS) and K
users (players) to be served. BS is equipped with Nr receive antennas and each
user terminal is equipped with Nt transmit antennas. We assume a block fading
channel where the realization of channel remains a constant during the coher-
ence time of transmission and randomly generated according to some statistical
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distributions from period to period. The received signal at BS is given by:

y =

K∑
k=1

Hkxk + z, (1)

where Hk , [Hk,i,j ]
Nr,Nt

i,j=1 ∈ CNr×Nt is the channel transmit matrix of k-th
user and Hk,i,j is the channel from i-th transmit antenna of k-th user to j-th
receive antenna at BS which is assumed to be i.i.d. complex Gaussian distributed
according to CN (0, 1). xk = (xk,1, . . . , xk,Nt

)
T

is the transmit symbol of k-
th user and z is the noise observed by the receiver with complex Gaussian
distribution CN

(
0, σ2INr

)
. For the sake of simplicity, we assume that single

user decoding is implemented for each user. Then the capacity the k-user can be
achieved is

Rk = log
det
(
σ2INr +

∑K
j=1 HjQjH

H
j

)
det
(
σ2INr

+
∑K
j 6=k HjQjHH

j

) , (2)

where Qk = E
[
xkx

H
k

]
∈ CNt×Nt is the covariance matrix of symbol xk which

determines how power should be allocated for each antenna and Pc > 0 is the
power dissipated in transmitter circuit to operate the devices. It is reasonable to
assume that each user has perfect knowledge about its own channel, e.g., through
downlink pilot training. Therefore user k is able to perform the singular value
decomposition (SVD) of its own channel Hk and its covariance matrix Qk as
well. The SVD of Hk and Qk is given by Hk = UkΛkV

H
k and Qk = WkPkW

H
k

respectively. To simplify the problem, we assume that user k always adapts its
covariance matrix to Hk, i.e., choosing Wk = Vk. Pk is a diagonal matrix
with Pk = diag (pk) = diag (pk1, . . . , pkNt) where we use diag (·) to generate a
diagonal matrix from a vector or vice versa. Thus user k’s only legal action is
represented by pk or Pk and the action set of k-th user is

Pk =

{
pk

∣∣∣∣∣
Nt∑
i=1

pki ≤ P k, pki ≥ 0

}
(3)

where P k is power budget of k-th user. Through out the paper, we will use
the matrix Pk or its diagonal pk interchangeably to represent user k’s action
depending on the context. Further more, we denote p =

(
pk,p−k

)
with p−k ,(

p1, . . . ,pk−1,pk+1 . . . ,pK
)
∈ P−k and P−k , P1×· · ·×Pk−1×Pk+1×· · ·×PK .

In this paper energy efficiency defined as the ratio between a benefit function
and the power consumed by producing it can be proven to has the following
expression for user k after some simplifications:

uk (Pk,P−k) =
log

det(σ2INr+
∑K

j=1 UjΛjPjΛ
H
j UH

j )
det(σ2INr+

∑K
j 6=k UjΛjPjΛH

j UH
j )

Tr (Pk) + Pc
(4)

To this end, the MIMO MAC EE game is thus given by the following strategic
form in triplet:

G =
(
K, (Pk)k∈K , (uk)k∈K

)
(5)
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3 Game-theoretic Analysis

In this section, we will firstly give some basic concepts of any game-theoretic
analysis. The central concept of game-theoretic analysis is Nash Equilibrium
(NE) defined as:

Definition 1. For game G =
(
K, (Pk)k∈K , (uk)k∈K

)
, an action profile p =(

pk,p−k
)

is called a Nash Equilibrium if for ∀k ∈ K and ∀p′ =
(
p′k,p−k

)
:

uk
(
pk,p−k

)
≥ uk

(
p′k,p−k

)
(6)

The meaning of NE is that any unilateral change of action at this point won’t
lead to an enhance of individual benefit. Furthermore, we introduce an important
conception in game-theoretic analysis known as best response dynamics.

Definition 2. (Best Response): In a non-cooperative game G, the correspon-
dence BRk

(
p−k

)
: P−k → Pk s.t.

BRk

(
p−k

)
, arg max

pk∈Pk

uk
(
pk,p−k

)
(7)

is called the best response (BR) of player k ∈ K given the action profile of
other player p−k. From the definition of best response, one has immediately the
following characterization for NE:

Proposition 1. [Nash,1950] An action profile p? is an NE if and only if :
∀k ∈ K, p?k ∈ BRk

(
p?−k

)
.

To identify the NE of game in (5), the properties of individual utility function
should be identified as first step. We define two critical properties satisfied by
the individual utility function.

Definition 3. (Quasi-concavity) Let X ∈ Rn be a convex set, a function f :
X → R is said to be quasi-concave if

f (λx + (1− λ)y) ≥ min {f (x) , f (y)} (8)

for any x,y ∈ X with x 6= y and 0 < λ < 1.

Definition 4. (Pseudo-concavity) Let X ∈ Rn be a convex set, a function f :
X → R is said to be quasi-concave if it is differentiable and for any x,y ∈ X , it
holds:

f (y) < f (x) =⇒ ∇f (y)
T

(x− y) > 0 (9)

With the definition of quasi-concavity and the pseudo-concavity, Prop. 2 shows
that the individual utility function does possess these important properties:

Proposition 2. Rk is a concave functions w.r.t. pk and uk is a pseudo-concave
(quasi-concave) function w.r.t. pk for ∀k ∈ K; For any fixed p−k ∈ P−k and pkj
with j 6= i, only one of following statements is true for all i ∈ [Nt]:

i) ∃ p?ki > 0 s.t. uk is an increasing function in (0, p?ki) and a decreasing
function in (p?ki,+∞) w.r.t. pki.

ii) uk is a decreasing function in (0,+∞) w.r.t. pki.
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Proof. It is well-known that Rk is a concave function for pk. Then the pseudo-
concavity (quasi-concavity) of uk comes from the fact that it is a ratio of a
concave function and an affine function of pk. For more details of the proof,
see [2]. Now we prove the second part of this proposition. Rewrite the individual

utility function as uk = Rk(γk)∑Nt
i=1 pki+Pc

with Rk (γk) = log (1 + γk). Then we can

prove that ∂2uk

∂p2ki
≤ 0 due to the fact that Rk is an increasing concave function

w.r.t. γk and γk is a also increasing concave function w.r.t. pki. However we can’t
conclude directly of the sign of limpki→+∞

∂uk

∂pki
. It can be positive or negative

depending on the value of pkj with j 6= i. Therefore, if limpki→+∞
∂uk

∂pki
≥ 0 then

we are in case ii), otherwise we are in case i).

Before stating the best response dynamics of the game, we define the following
boundary of set Pk indicated by an index subset E ⊂ [Nt] :

Pk [E ] , {pk ∈ Pk, pki = 0 for i ∈ E} (10)

and the non-negative index set for a given action Pk:

I (Pk) , {i ∈ [Nt] s.t. pki ≥ 0} (11)

Proposition 3. For any given P−k and provided that the power budget P k is
sufficiently large, denote the unique solution of the following equation as P∗k:

diag
(
ΛH
k

(
ΛkPkΛ

H
k + Fk + σ2Ir

)−1
Λk

)
= uk (Pk,P−k) INt

(12)

with Fk =
∑
j 6=k SjPjS

H
j is the interference matrix of k-th user with Sj =

UH
k UjΛj. Then the BR of Pk w.r.t. P−k is standard and converges to the unique

NE admitted by game (5); The BR is the unique solution of (12) restricted to
the boundary of Pk indicated by I (P∗k) with I (P∗k) 6= ∅.

Proof. our proof consists of two parts: i) existence of NE; ii) uniqueness of NE.
i) Existence of NE: it is easy to prove that the action set Pk for each player
is compact (closed and bounded), combining the quasi-concavity of uk claimed
in Prop. 2, the existence is due to Debreu-Fan-Glicksberg theorem [7]. More-
over, Prop. 2 claims that uk is a pseudo-concave function w.r.t. Pk. Due to the
property of pseudo-concave function, the unique stationary point (points where
derivative vanishes) is the global optimizer of the utility function if the station-
ary point is in the feasible action set. We first calculate the stationary point of
uk for ∀k ∈ K using matrix calculus which leads to (12). However, the station-
ary point might not belong to the feasible action set Pk. Denote P∗k the unique
solution of (12) in RNt . It is easy to prove that for given P−k, p∗ki is a decreasing
function w.r.t. ∀pkj with j 6= i by contradiction. Due to this monotonicity of the
BR and knowing that the feasible action set Pk is a polyhedron, BR must be
on the boundary of Pk except 0Nt×Nt

defined as (10) which corresponds to the
index set I (p∗k) 6= ∅ , which completes the proof for existence.
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ii) Now we would like to prove that the BR converges to a point which is the
unique NE of the game. We will achieve that by showing that the best response
is a standard function 3, i.e.,

1) Positivity: ∀ P−k < 0, BRk (P−k) < 0;

2) Monotonicity: if P
′
−k < P−k, then BRk

(
P

′
−k

)
< BRk (P−k);

3) Scalability: BRk (αP−k) ≺ αBRk (P−k) for any α > 1.
Positivity is obviously observed in its form given by Prop. 3. The proof for

monotinicity and scalability is similar to [3]. The strict proof is omitted due to
the limit of space.

4 Algorithm for finding NE

Prop. 3 actually provides an approach for us to find the NE of the game (5).
One can easily deduce an iterative equation according to (12):

diag

(
ΛH
k

(
ΛkP

(t)
k ΛH

k + F
(t−1)
k + σ2Ir

)−1
Λk

)
= uk

(
P

(t−1)
k ,P

(t−1)
−k

)
INt

(13)
However, due to Prop. 3, this stationary point might not be in the feasible action
set. One can design the following basic algorithm to find NE of the game (5)
based on Prop. 3 summarized in alg. 1.

Algorithm 1 Basic Algorithm for finding NE of MIMO-MAC EE game

Initialization: P
(0)
k = 1

Nt
INt ,∀k. Choose T and ε

For t = 1 to T , do
For k = 1 to K, do

Compute P
(t)
k using (13)

If I
(
P

(t)
k

)
6= [Nt]

Compute P
(t)
k using (13) restricted to I

(
P

(t)
k

)
End If

End For
If
∑
k

∥∥∥P(t)
k −P

(t−1)
k

∥∥∥ < ε

Break
End If

End For
Output: PNE

k = P
(t)
k for ∀k.

Nevertheless, alg. 1 is not satisfatory way to find the NE of the game. More
precisely, to find the BR for given P−k, one actually need to solve an optimization
problem. However, if h = U (P−k) = maxPk∈Pk

uk (Pk,P−k) is known as a

3 The generalized inequality for matrix defined here is referred to its diagonal and
takes the non-negative orthant as the underlying cone.
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priori information, (13) can be transformed into following equation which is
relatively easy to be solved compared to (13) :

diag

(
ΛH
k

(
ΛkP

(t)
k ΛH

k + F
(t−1)
k + σ2Ir

)−1
Λk

)
= hINt

(14)

Introducing an auxiliary parameter h, one obtains an iterative equation of Pk.
Without loss of generality, we assume that the solution of (13) belongs to the
feasible action set for given P−k. Otherwise, similar analysis can applied for Pk

but restricted on a boundary given by Prop. 3. For the sake of simplicity, we
omit the discussion here and restrict ourselves to the situation where the BR
is strictly included in the interior of the feasible action set. Therefore for all
i ∈ [Nt], there exists p?ki such that individual utility function uk (Pk,P−k) is
an increasing function in (0, p?ki) and a decreasing function in (p?ki,+∞) with
respect to pki, where p?ki is the i-th component of user k’s BR for given P−k.
Then uk is also an increasing function in (0, U (P−k)) and a decreasing function
in (U (P−k) ,+∞) w.r.t. parameter h. In other words, to find Pk = BR (P−k), it
is sufficient to find U (P−k) by a bisection search due to the special monotonicity
of the utility function.

However, it is worth mentioning that it is still difficult to directly find the
solution of iterative equation (14). because this solution is actually implicitly
given. We would like to further simplify (14) to facilitate the calculation of BR
or NE. To start with, we assume that Nt = Nr. Firstly, we remove the diagonal
operator of LHS of (14). Therefore we have:

P
(t)
k =

1

h
INt −Λ−1k

(
F

(t−1)
k + σ2INr

)
Λ−1k (15)

If Nt > Nr or Nt < Nr then Λk is not directly invertible, then we should
consider the pseudo-inverse matrix of Λk. Without loss of generality, we assume
that Nt > Nr, denoting the right pseudo-inverse of Λk as Λ†k then one has

ΛkΛ
†
k = INr

and
(
Λ†k

)H
ΛH
k = INr

. Similarly, one has:

ΛH
k

(
ΛkP

(t)
k ΛH

k + F
(t−1)
k + σ2Ir

)−1
Λk = hINt(

ΛkP
(t)
k ΛH

k + F
(t−1)
k + σ2Ir

)−1
= h

(
Λ†k

)H
Λ†k (16)

However, it is generally impossible to have Λ†kΛk = INt
. Thus the equality

does not always holds when we multiply Λ†k on left and
(
Λ†k

)H
on the right

on both sides of the equation. Nevertheless, this operation will yield a linear
approximation of the BR dynamics:

P̂
(t)
k =

Λ†k

[(
Λ†k

)H
Λ†k

]−1 (
Λ†k

)H
h

−Λ†k

(
F

(t−1)
k + σ2INr

)(
Λ†k

)H
(17)
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Similarly, if Nt < Nr we can obtain exactly the same iterative equation as (17).
This type of dynamics belongs to the so-called ε-approximate best response
which generally leads to the ε-approximate Nash Equilibrium defined as:

Definition 5. For game G =
(
K, (Pk)k∈K , (uk)k∈K

)
, an action profile p =(

pk,p−k
)

is called an ε-approximate Nash Equilibrium if for ∀k ∈ K and p′ =(
p′k,p−k

)
for ε ≥ 0:

uk
(
pk,p−k

)
− uk

(
p′k,p−k

)
≥ −ε (18)

Obviously ε-approximate Nash Equilibrium is actually an extension of the con-
cept of Nash Equilibrium. Notice that when ε = 0 then we are exactly back to
the definition of Nash Equilibrium. If one deploys (17) as the BR dynamics to
compute NE according to alg. 2, one may only result in ε-approximate Nash
Equilibrium of the game. To this end, we obtain a sub-optimal algorithm sum-
marized in alg. 2 by using the iterative equation deduced in (17) instead of using
(13).

Algorithm 2 Bisection Search Algorithm for find the NE of MIMO-MAC EE
game

Initialization: P
(0)
k = 1

Nt
INt ,∀k. choose T , ε1 and ε2

For t = 1 to T , do
For k = 1 to K, do

Initialization: h = 0 and h = hmax
Repeat Until h− h ≤ ε1
hL = max

(
0, hM − ε1

2

)
and hM = h+h

2

hR = min
(
hmax, hM + ε1

2

)
Compute Pk (hi) using (17), i ∈ {L,M,R}
Ui = uk

(
Pk(hi),P

(t−1)
−k

)
, i ∈ {L,M,R}

If UL < UM < UR
h = hL
Else If UL > UM > UR

h = hR
End If

Else
h = hL and h = hR

End If
Compute P

(t)
k by (17) with h = hM

End For
If
∑
k

∥∥∥P(t)
k −P

(t−1)
k

∥∥∥ < ε2

Break
End If

End For
Output: PNE

k = P
(t)
k for ∀k.



Energy-Efficient MIMO Multiuser Systems: Nash Equilibrium Analysis 9

Remark 1. Alg. 2 actually works for general utility function possessing the same
property as uk. Moreover, this algorithm should be slightly faster than general
bisection search. The reason is once by coincidence that the case neither UL >
UM > UR nor UL < UM < UR occurs, we are surely to be very close to the
stationary point of function. Otherwise we are in the monotonic region of the
function, then this algorithm works as regular bisection search algorithm. In the
worst case, this algorithm should have same complexity as the general bisection
algorithm. Finally, alg. 2 merely requires the value of utility function instead of
derivative of the utility function. Notice that alg. 2 is actually an off-line learning
algorithm. Therefore a online-learning-version of alg. 2 by combing it with some
deep learning techniques could be an important extension of this paper.

5 Numeric Results

The goal of this part is to show the performance of the proposed algorithms.
Notice if Nt = Nr, (17) degenerates to (15) which conserves the optimality of
best response. For this situation, we choose Nt = Nr = 2 with K = 2 users. A
sufficient large power budget is chosen so that the BR is included in the feasible
action set P k = 10mW for ∀k ∈ {1, 2} and the circuit power is Pc = 1mW . The
error tolerance for alg. 2 is ε1 = ε2 = 0.001.
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Fig. 1. Energy Efficiency under NE and uniform power allocation with Nt = Nr = 2
for 2-user situation. Policy found by our algorithms outperforms UPA policy.
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Fig. 2. Average social welfare under NE and UPA as function of number of antennas
(Nt = Nr) with P k = 10mW for 2-user situation.

In Fig. 1, the achievable utility region, the average performance under NE
found by alg. 2 and the averaged performance achieved by uniform power alloca-
tion (UPA) are depicted. All results are averaged over 1000 randomly generated
channel samples. It is observed that the performance achieved by deploying UPA
is Pareto-dominated by NE which can be found by alg. 2. Furthermore, the NE
found by alg. 2 is closed to the Pareto frontier achieved by some centralized
algorithms which suggest the efficiency using alg. 2 is higher than UPA.

Moreover, define the social welfare for a given action profile as w (p) =∑
k∈K uk

(
pk,p−k

)
. Then the average social welfare as function of number of

number of antennas (still we keep Nt = Nr) and the power budget in Fig. 2 and
Fig. 3 respectively. For Fig. 2, the averaged social welfare of both UPA policy
and our proposed algorithm is increased quasi-linearly as the number of an-
tennas grows. However our proposed algorithm always outperforms the optimal
UPA policy which is allowed to tune the power but always equally shared among
each transmit antenna. In Fig. 3, we would like to show the influence of user’s
power budget. There are two different regions for social welfare. In the first re-
gion where the power budget is sufficiently large, the NE found by our proposed
algorithm is independent of the power budget while the performance of UPA is
decreasing with respect to the increase of the power budget. In the second region
where the power budget is relatively small, Using proposed algorithm, it is not
sure to converge to the NE of the game because Prop. 3 is no more valid in this
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Fig. 3. Performance under NE and UPA as function of the power budget of user with
Nt = Nr = 2 for 2-user situation. There are two different regions: one corresponds to
Prop. 3. In the region uncovered by Prop. 3, proposed algorithm still dominates UPA.

region. Nevertheless, the performance achieved by our algorithm is still better
than UPA which prove the superiority of our algorithm.

Then a more probable situation is considered where Nt < Nr meaning that
the number of antennas in user terminal is less than the one in base station. The
discussion in Sec. 4 shows that the proposed suboptimal algorithm is actually
suboptimal due to the usage of ε-approximate best response. For numeric demon-
stration, we choose Nt = 2 < Nr = 4. The performance of alg. 2 is illustrated
in Fig. 4. The sub-optimality is clearly demonstrated in this figure. However,
the resulted policy actually Pareto-dominates the exact NE found by alg. 1 and
the dispersion is relatively small in terms of average performance. This remark
entails that even the policy found by alg. 2 is not the NE of the game in its
sub-optimal region however its performance does slightly outperforms the exact
NE. Moreover the proposed algorithm is easy to implement for using explicit
iterative equation even if it is approximated.

6 Conclusions

In this paper, a game where the individual utility function is the energy efficiency
in a MIMO multiple access channel system is considered. The existence and
the uniqueness of Nash Equilibrium is proved and an exact algorithm and a
suboptimal algorithm is proposed to find the NE of this game. Simulation results
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Fig. 4. Performance achieved by alg. 1 (NE) and alg. 2 (Approximate NE) and UPA
with Nt = 2 and Nr = 4 for 2-user situation. Policy found by alg. 2 is very near
to the exact NE and Pareto-dominates it. Moreover, two policies found by proposed
algorithms both outperform UPA.

show that if the the number of transmit antennas and the number of receiving
antennas is the same, performance under NE found by proposed algorithms is
always better than uniform power allocation policy for both inside or outside
the range covered by the main proposition of the paper. When the condition for
antennas is not met, our proposed algorithm actually deploys an ε-approximate
best response which might leads to an ε-approximate Nash Equilibrium. Quiet
surprisingly the approximate NE found by our sub-optimal algorithm slightly
Pareto-dominates the exact NE of the game. This observation shows that the
performance of proposed algorithm is acceptable while it is relatively easy to
implement. Other techniques such as pricing might be useful to improve the
efficiency of the overall system. The situation where each user is allowed to
freely choose its covariance matrix merely constrained to the maximum power
is the natural extension of this paper. Moreover, the discussion over the effect of
successive interference cancellation and multiple carrier seems to be complicated
and serve as the challenge of the future works.
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