Skip to main content

Proposal of a Realistic Many-Objective Test Suite

  • Conference paper
  • First Online:
Book cover Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12269))

Included in the following conference series:

Abstract

Real-world many-objective optimization problems are not always available as easy-to-use test problems. For example, their true Pareto fronts are usually unknown, and they are not scalable with respect to the number of objectives or decision variables. Thus, the performance of existing multi-objective evolutionary algorithms is always evaluated using artificial test problems. However, there exist some differences between frequently-used many-objective test problems and real-world problems. In this paper, first we clearly point out one difference with respect to the effect of changing the value of each decision variable on the location of the objective vector in the objective space. Next, to make artificial test problems more realistic, we introduce a coefficient matrix to their problem structure. Then, we demonstrate that a different coefficient matrix leads to a different difficulty of a test problem. Finally, based on these observations, we propose a realistic many-objective test suite using various coefficient matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The problem formulations of DTLZ7 and WFG7-9 are slightly different from the general structures mentioned in this paper. Due to the page limitation, the discussions in this paper do not include DTLZ7 and WFG7-9.

References

  1. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)

    Article  Google Scholar 

  2. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: Test problems for large-scale multiobjective and many-objective optimization. IEEE Trans. Cybern. 47(12), 4108–4121 (2017)

    Article  Google Scholar 

  3. Chikumbo, O., Goodman, E., Deb, K.: Approximating a multi-dimensional Pareto front for a land use management problem: a modified MOEA with an epigenetic silencing metaphor. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–9 (2012)

    Google Scholar 

  4. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation CEC2002 (Cat. No.02TH8600), vol. 1, pp. 825–830 (2002)

    Google Scholar 

  7. Deb, K., Tiwari, S.: Omni-optimizer: a generic evolutionary algorithm for single and multi-objective optimization. Eur. J. Oper. Res. 185(3), 1062–1087 (2008)

    Article  MathSciNet  Google Scholar 

  8. Fieldsend, J.E., Chugh, T., Allmendinger, R., Miettinen, K.: A feature rich distance-based many-objective visualisable test problem generator. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2019, pp. 541–549. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3321707.3321727

  9. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  10. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017)

    Article  Google Scholar 

  11. Liao, X., Li, Q., Yang, X., Zhang, W., Li, W.: Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Struct. Multi. Optim. 35, 561–569 (2008). https://doi.org/10.1007/s00158-007-0163-x10.1007/s00158-007-0163-x

    Article  Google Scholar 

  12. Lygoe, R.J., Cary, M., Fleming, P.J.: A real-world application of a many-objective optimisation complexity reduction process. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 641–655. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37140-0_48

    Chapter  Google Scholar 

  13. Narukawa, K., Rodemann, T.: Examining the performance of evolutionary many-objective optimization algorithms on a real-world application. In: 2012 Sixth International Conference on Genetic and Evolutionary Computing, pp. 316–319 (2012)

    Google Scholar 

  14. Sun, Y., Yen, G.G., Yi, Z.: IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 23(2), 173–187 (2019)

    Article  Google Scholar 

  15. Tanabe, R., Ishibuchi, H.: An easy-to-use real-world multi-objective optimization problem suite. Appl. Soft Comput. 89, 106078 (2020)

    Article  Google Scholar 

  16. Vaidyanathan, R., Tucker, P.K., Papila, N., Shyy, W.: Computational-fluid-dynamics-based design optimization for single-element rocket injector. J. Propul. Power 20(4), 705–717 (2004)

    Article  Google Scholar 

  17. Van Veldhuizen, D.A.: Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Ph.D. thesis, USA (1999)

    Google Scholar 

  18. Wang, Z., Ong, Y., Ishibuchi, H.: On scalable multiobjective test problems with hardly dominated boundaries. IEEE Trans. Evol. Comput. 23(2), 217–231 (2019)

    Article  Google Scholar 

  19. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  20. Zhang, Q., Zhou, A., Jin, Y.: RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Trans. Evol. Comput. 12(1), 41–63 (2008)

    Article  Google Scholar 

  21. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61876075), the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X386), Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531), the Science and Technology Innovation Committee Foundation of Shenzhen (Grant No. ZDSYS2017-03031748284), the Program for University Key Laboratory of Guangdong Province (Grant No. 2017KSYS008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Ishibuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, W., Ishibuchi, H., Shang, K. (2020). Proposal of a Realistic Many-Objective Test Suite. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58112-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58111-4

  • Online ISBN: 978-3-030-58112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics