
OPTIMISING TOURS FOR THE WEIGHTED TRAVELING
SALESPERSON PROBLEM AND THE TRAVELING THIEF

PROBLEM: A STRUCTURAL COMPARISON OF SOLUTIONS

Jakob Bossek
Optimisation and Logistics
The University of Adelaide

Adelaide, Australia
jakob.bossek@adelaide.edu.au

Aneta Neumann
Optimisation and Logistics
The University of Adelaide

Adelaide, Australia
aneta.neumann@adelaide.edu.au

Frank Neumann
Optimisation and Logistics
The University of Adelaide

Adelaide, Australia
frank.neumann@adelaide.edu.au

ABSTRACT

The Traveling Salesperson Problem (TSP) is one of the best-known combinatorial optimisation prob-
lems. However, many real-world problems are composed of several interacting components. The
Traveling Thief Problem (TTP) addresses such interactions by combining two combinatorial op-
timisation problems, namely the TSP and the Knapsack Problem (KP). Recently, a new problem
called the node weight dependent Traveling Salesperson Problem (W-TSP) has been introduced
where nodes have weights that influence the cost of the tour. In this paper, we compare W-TSP
and TTP. We investigate the structure of the optimised tours for W-TSP and TTP and the impact of
using each others fitness function. Our experimental results suggest (1) that the W-TSP often can be
solved better using the TTP fitness function and (2) final W-TSP and TTP solutions show different
distributions when compared with optimal TSP or weighted greedy solutions.

Keywords Evolutionary algorithms · traveling thief problem · node weight dependent TSP

1 Introduction

The Traveling Salesperson Problem (TSP) is one of the most prominent combinatorial optimisation problems and has
been widely studied in the literature. It also serves as a basis for many more complex vehicle routing problems. Often
real-world optimisation problems involve multiple interacting components that have to be optimised simultaneously.
Moreover, due to the interactions the different silo problems can not be optimised separately in order to come up with
an overall good solution [4].

The Traveling Thief Problem introduced in [3] is a multi-component problem that has recently gained significant
attention in the evolutionary computation literature [7, 6, 19, 17, 18, 16, 9, 15]. It combines the TSP and the classical
Knapsack Problem by assigning items with profits and weights to the cities. The goal is to maximise the difference
of profits of the collected items and the costs of a tour where the weights of items collected while visiting the cities
increase the cost of moving from one city to the next one. More precisely, the weights of the items collected so far
reduce the speed of the vehicle in a linear fashion and the cost of moving from city i to city j is determined by the
current speed and the distance d(i, j) of i and j. A wider range of benchmark instances have been introduced [11] and
various competitions have been carried out at evolutionary computation conferences.

Understanding the interactions within the TTP is difficult. If the given tour is fixed and only the remaining (still
NP-hard) packing problem has to be solved, then this can be done by dynamic programming and also approximation
algorithms are available [10]. However, optimising the tour for the TTP when the packing part is fixed seems to be
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significantly more difficult. In order to gain a better understanding on how node weights that influence the cost of a
tour impact the optimisation, the node weight dependent Traveling Salesperson Problem (W-TSP) has been introduced
recently [5]. Here each node has a weight and the cost of going from city i to city j is their distance d(i, j) times the
weight of the nodes visited so far. For special cases approximation algorithms have been designed in [5] that establish
a relation to the minimum latency problem [2]. Furthermore, experimental investigations have been carried out to
examine the impact of the node weights on the optimised salesperson tour.

With this paper, we continue this line of research and further bridge the gap in understanding the impact of node
weights on salesperson tours. We examine and compare TTP and W-TSP in a systematic study. We consider a variant
to TTP where the packing plan – and in consequence the total profit – is fixed and the goal is to minimise the cost of the
weighted TTP tour length. We call this problem W-TTP. In our experimental investigations, we investigate instances
where each item of a given TTP benchmark is present with probability p. Our study suggests, that with increasing p,
i.e. increasing average number of nodes with strictly positive node weight, for the simple randomised search heuristic
considered in this paper, it is advantageous to use the W-TTP objective as a driver for the search process instead
of the W-TSP objective in order to find good solutions for the W-TSP. Furthermore, we consider the difference in
terms of the structure of solutions obtained using the different problem formulation. In terms of structural similarity
of W-TTP and W-TSP solutions produced by our simple heuristic, good W-TSP on average show higher similarity
with the solutions obtained by a naive weighted greedy approach (WGR) then this is the case for W-TTP solutions
with respect to a similarity measure based on the inversion number. In contrast, good W-TTP solutions on average
share more edges with optimal TSP solutions. We hope that in future such findings can be leveraged to develop more
sophisticated heuristic search algorithms for both the W-TSP and the Traveling Thief Problem.

The paper is structured as follows. We introduce the problems examined in this paper in Section 2, and we carry
out our experimental investigations in Section 3. Afterwards, in Section 4, we investigate the relation of solutions
among the two problems in terms of objective value ratios. In Section 5 we perform a structural similarity analysis
of solutions with optimal TSP tours and weighted greedy solutions. We finish with some concluding remarks and
avenues for future research.

2 Problem Formulation

The classical Traveling Salesperson problem is one of the most studiedNP-hard combinatorial optimisation problems.
Given a set of n cities V = {1, . . . , n} and distances d(i, j) between them, the goal is to find a permutation π which
minimizes the tour length given by

TSP(π) = d(πn, π1) +

n−1∑
i=1

d(πi, πi+1).

Motivated by the TTP, we study variants of this problem where node weights influence the cost of a tour.

2.1 The Traveling Thief Problem

The Travelling Thief Problem (TTP) was first introduced in [3]. Given is a set of n cities V = {1, . . . , n}with pairwise
distances d(i, j) between them and a set Ei = {ei1, . . . , eimi} of mi = |Ei| items at city i, 1 ≤ i ≤ n. We denote by
E = ∪Ei the overall set of items. There is a profit p : E → R+ and weight function w : E → R+ on the items and
knapsack capacity C which limits the total weight of a selection of items.

The goal in the TTP is to find a tour π = (π1, . . . , πn) and a packing plan x = (x11, . . . , xnmn) such that their
combination π and x maximises the sum of the profits minus the travel cost associated with π and x. Note that in the
classical TTP, there is usually no item available at city 1.

We indicate by a bitstring x = (x11, . . . , xnmn)) ∈ {0, 1}m, where m =
∑n
i=1mi, the items present in a problem

instance. Item eij is present iff xij = 1 holds.

We denote by

w(πi, x) =

mπi∑
k=1

w(eπik)xπik

the weight of the items taken in city πi with packing plan x. The number of present items at city πi is

η(πi) =

mπi∑
k=1

xπik.
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In our experiments, we consider the case where all cities have the same number of items and use the notion IPN for
items per node.

Let ω(i) =
∑i
j=1 w(πj , x) be the sum of the weights of the cities in permutation π up to the ith city. The cost of a

tour is given by the time the vehicle takes to complete the tour. Here the weight of the items present when going from
city i to city j depends on the distance d(i, j) and the speed υ ∈ [υmin, υmax], where υmin is the minimum speed and
υmax is the maximum speed of the vehicle. The tour has to start and city 1 and therefore π1 = 1 is required.

The goal in the standard formulation of TTP is to maximize

TTP(π, x) =
∑
e∈E

p(e)xe −R

(
d(πn, π1)

υmax − νω(n)
+

n−1∑
i=1

d(πi, πi+1)

υmax − νω(i)

)
where

∑
e∈E p(e) is the sum over all packed items profits, ν = (υmax − υmin) /C is a constant value defined by the

input and R is a constant called the renting rate.

We assume that the packing plan is fixed x for a given instance. If x is fixed then the profits and the weights at the
cities are completely determined. We ignore the profit part and the renting rate as both are constant and do not have
any impact on the order of solutions with respect to the fitness function TTP. In our study, we investigate the following
cost function which depends on the weights of the items determined by x and the chosen permutation π:

W-TTP(π, x) =

(
d(πn, π1)

υmax − νω(n)
+

n−1∑
i=1

d(πi, πi+1)

υmax − νω(i)

)
We call the problem of finding a tour which minimizes this goal function the weighted TTP-problem (W-TTP).

2.2 The Node Weight Dependent TSP

We also consider the node weight dependent TSP problem (W-TSP) recently introduced in [5]. In addition to the input
of the TSP, we have a set of possible items Ei available at each city i. Following the notation for W-TTP, we indicate
by a bitstring x ∈ {0, 1}m whether an item eij is present.

Given a set of n cities V = {1, . . . , n} with distances d(i, j) between the cities and a weight function w : E → R+

on the set of items, the goal is to find a permutation π that minimizes the weighted TSP cost. The tour has to start and
city 1 and therefore π1 = 1 is required. We denote by

w(πi, x) =

mπi∑
k=1

w(eπik)xπik

the weight of the items presents at city πi. The fitness of a given tour π and a given set of present items indicated by x
is given as

W-TSP(π, x) = d(πn, π1)

 n∑
j=1

w(πj , x)

+

n−1∑
i=1

d(πi, πi+1)

 i∑
j=1

w(πj , x)

 .

Note, that the standard TSP is the special case where w(π1) = 1 and w(πi) = 0, 2 ≤ i ≤ n.

Our fitness function definitions for W-TTP and W-TSP work with a set of present items which can also be defined in
terms of the input items without using the bitstring x. We use the notation of present items indicated by x as we will
use TTP benchmarks where different subsets of items of a given TTP instance have to be collected in the computed
tour.

2.3 Problem Comparison

The TSP, W-TTP, and W-TSP place different emphasize on the weight of nodes. The TSP can be considered as the
special case of W-TSP where only the first node receives a weight of 1. Furthermore, TSP is a special case of the
tour optimisation variant of TTP where no item is collected, and the vehicle always travels at maximum speed vmax.
W-TSP allows for a very drastic and high weightening of distance costs as the weights are collected during the route
and each distance is multiplied with the weight of the cities visited. TTP in more limited in terms of the impact of
the weightening as the weight of the items reduces the speed from vmax to vmin in a linear fashion. Using the interval
[vmin, vmax] for the speed also ensures that the weighted distance for going from city i to j is always in the interval
[d(i, j)/vmax, d(i, j)/vmin] where as in the case of W-TSP this can be in the range [0,W ·d(i, j)] where W is the total
weight amount all cities.
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Figure 1: Distribution of objective value ratios of final tours. Ratios are calculated by the following rule: if W-TSP
is to be minimised we divided the W-TSP tour-length obtained by optimising with the actual W-TSP driver with the
W-TSP tour-length of the solution calculated when the algorithm is run with the W-TTP driver instead. Ratios for
W-TTP optimisation are calculated analogously. Ratios below zero indicate a benefit for the actual objective function.

3 Experimental Setup

The focus of this paper is on understanding interactions between solutions for the W-TTP and the recently introduced
W-TSP. To study these effects, we consider a subset of instances from the TTP 2017 CEC Competition1 for our
experiments [11]. We choose all instances which are based on the following classical TSPlib [12] instances: a280,
berlin52, ch130, ch150, eil101, eil51, eil76, kroA100, kroC100, kroD100, lin105, pcb442, pr1002, pr2392, pr76,
rd100, st70. Therein, all three weight/profit classes are covered: bounded strongly correlated (bsc), uniform similar
weights (usw) and uncorrelated (u). Furthermore, the number of items per node (IPN) is either one or five. In total
our benchmark set contains 102 instances. The subset is a cross-section of the TTP benchmark set with instances of
few nodes up to instances with several thousand nodes. In addition, optimal tours for the classical TSP are known
for these instances. This will be of essential for structural similarity analysis in Section 5. Recall that in our setup
the packing plan is initially fixed and so are the weights at the nodes; no changes to the packing are made in the
course of optimisation. To account for the stochasticity in the packing and the influence of the fraction of active items,
for each instance and each p ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0} we generated 31 random packings from a
Bin(m, p)-distribution where m is the number of items of the TTP instance at hand, i.e. each items is packed with
probability p and not packed with inverse probability (1 − p). In order to make all generated packings feasible, we
set the knapsack capacity C to the sum of all item weights (not just the packed ones).2 Note that this choice for the
knapsack capacity allows us to explore different degrees of filling of the vehicle. In consequence a transition from the
classical TSP (p close to zero) and the TTP with a fully loaded vehicle (p close to one) is possible.

We consider the classical (1 + 1)-EA with inversion mutation on permutations. Preliminary benchmarking with swap
and insertion mutation showed its superiority; this confirms the experimental results in [5] on the W-TSP. We urge the
reader to carefully read the following sentences as they convey a crucial aspect of our study: we run (1 + 1)-EA with
either the W-TTP or the W-TSP for driving the evolutionary search process (EA driver). In addition, the best so far
solution in every iteration and in particular the final best solution is evaluated with both W-TTP and W-TSP resulting
in four different relevant combinations.

(1 + 1)-EA is applied each one time on each instance and each of the 31 associated packings plans. Note, that we
do not perform additional independent runs for each fixed packing plan. Instead, the 31 runs already account for the
stochasticity. Our implementation and data is available in a public GitHub repository.3

4 Comparison in Terms of Solution Quality

We first approach the following research question: is it beneficial to use each others fitness function for optimisation
purposes? More precisely, if we aim to optimise the W-TTP (W-TSP), should we use the actual objective function as

1 https://cs.adelaide.edu.au/~optlog/TTP2017Comp/.
2Note that this step is relevant for the W-TTP only; the W-TSP objective function does not cope with a knapsack limit.
3GitHub repository: http://github.com/jakobbossek/ttp
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Figure 2: More fine-grained objective ratios for three representative instances (rows) and different item counts
(columns).

EA driver or is it of benefit to use the W-TSP (W-TTP) objective function instead? One might argue that it certainly
makes no sense to use another fitness function as a surrogate. However, our results prove this assumption wrong
in many cases. Figure 1 show the distribution of objective value ratios across all runs on all considered instances
separated by the instance property IPN and the packing probability p. The ratios are to be interpreted as follows: when
the objective is W-TSP we divide the W-TSP objective value of the final solution determined with the W-TSP-driver
by the W-TSP objective value of the final solution obtained by optimising with the W-TTP-driver and vice versa.
Since both objectives are to be minimised a ratio below 1.0 indicates that it is advantageous to use the actual objective
function to guide the EA; the result one would expect. Returning to Figure 1 we actually see that this assumption
does not always hold true; at least in one direction. The data shows that it is consistently advisable to use the W-TTP
objective function to optimise the W-TTP. However, a closer look shows that the W-TTP-related box-plots show a
characteristic U-shape with peaks in the area of p ≈ 0.5. In contrast, with W-TSP being in the focus of optimisation
we observe a very different pattern. Here, with p → 1, the median ratio increases. The median surpasses 1.0 for the
first time at a level of p = 0.4 with one item per node and p = 0.1 for IPN = 5. Our assumption is that for IPN = 1
and given p ∈ [0, 1] in expectation np nodes have a strictly positive weight. In contrast, if there are multiple items per
node, due to independence of the item activation in the packing plan generation, in each node mip are expected to be
active. Hence, in expectation, there will be more nodes with strictly positive weight assigned in this setting. Either
case it seems as with increasing p oftentimes the W-TTP-driver leads to better W-TSP tours. The results suggest that
using the W-TSP objective produces large basins of attraction for qualitatively bad local optima. Figure 2 shows a less
aggregated view. Here, the ratios are shown for three representative instances from the benchmark set (still aggregated
across weight/profit types bsc, usw and u since the type does not reveal any different patterns). Here, in particular the
largest pr2392-based instances with n = 2392 nodes stands out from the crowd: here the aforementioned U-shape
observed for the W-TTP is inverse for the W-TSP at least for IPN = 5. For this particular instance the difference
between median ratios is highest and using the W-TTP EA-driver for moderate p leads to median quality gains of
≥ 1.5 which is massive.
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Figure 3: Exemplary trajectories for instance berlin52 (two top rows) and eil101 (two bottom rows) with bounded
strongly correlated weights and 5 items per node. The EA was run with both W-TSP and W-TTP as driver (indicated
by color and line type). Likewise, incumbent solutions were evaluated with both objective functions (W-TSP in top
and W-TTP in bottom row).
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Figure 3 visualises the trajectories / development of incumbent solutions for two representative instances. In particular
for p = 0.3 (second column) we see that for these particular runs in fact the final W-TSP objective is better when
the EA driver is W-TTP. Moreover, occasional decrease in fitness values can be observed even though the general
optimisation goal is still purchased.

In order to make sense out the data we trained a simple decision tree to decide which EA-driver to use in order to solve
the W-TSP. Since the W-TTP is best solved by adopting the W-TTP driver (beside few outliers) we did not perform
this step for the other direction. Our goal was a simple binary classification task. I.e. the target is to decide which
EA-driver is preferable while predictor variables are the instance size n, the IPN value and the probability p. We used
10-fold cross-validation and the R-package rpart [13] interfaced by package mlr [1] to train the model and access its
performance. The cross-validation results report a mean miss-classification test error of 18.5% and thus an accuracy of
81.5% in predicting the best EA-driver. This is not overwhelming, though admittedly higher than tossing a coin. The
final decision tree is depicted in Figure 4. The splits used by the model, i.e. decisions made when we follow the nodes
from the root down to leaf level, very much reflect our previous observations where the W-TTP driver is advantageous
for larger p and IPN > 1.
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Figure 4: Decision tree for the machine learning task of determining which objective function should be used in order
to optimise the W-TSP. Within the splits p is the probability of items being active, n is the number of nodes and
IPN is the number of items per node. Values within the nodes indicate the majority decision (top), the fraction of data
processed by the left/right branch respectively (center) and the percentage of overall data points processed at that node.

5 Structural Similarity Analysis of Solutions

In the following we conduct a similarity analysis of solutions. To be more concise we investigate the similarity of final
W-TTP and W-TSP solutions calculated in our study with two types of permutations: (1) optimal TSP solutions for
the underlying TSP instance and (2) tours calculated by a greedy algorithm which favors visiting “heavy” nodes, i.e.
nodes of high weight, later in the tour. In a nutshell the algorithm termed weighted greedy (WGR) works as follows.
In a first step nodes are sorted in ascending order of their node weight. The second step is about tour construction.
Here, nodes are visited in ascending order of node weight. In case of ties, i.e. several nodes with the same node
weight, these nodes are visited following the nearest neighbor heuristic [8]. This construction method can be seen as
a naive approach to solve the W-TTP or W-TSP respectively where one might assume that nodes with a high weight
loading should be visited later on even if this requires to take some long distance edges beforehand. Note that the
optimal TSP tours and WGR tours pose two extremes: the TSP tour is focused on the distances only neglecting node
weights completely. In contrast, WGRs’ focus, though not able to guarantee optimality, is mainly on late heavy node
placement in the tour.

For the purpose of measuring similarity we use two metrics for the comparison of two tours (permutations) π1 and
π2. The first is termed common edges (CE) and is defined as the proportion of edges shared by both tours. The second
metric is based on the mathematical term of inversion which – in the classical sense – is a measure of the sortedness
of a sequence: for a permutation π, if 1 ≤ i < j ≤ n and πi > πj the pair (i, j) is called an inversion [14]. The
total count of inversions IN(π1, π2) is termed the inversion number which is at most n(n − 1)/2 with higher values
indicating stronger dissimilarity with respect to sortedness. In our setting though we are given two permutations π1, π2
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Figure 5: Distribution of similarity of all final W-TSP and W-TTP solutions calculated in our experimental study. We
calculate the similarity to the optimal tour for the classical TSP and the weighted greedy tours (WGR) respectively.

and we call (i, j) an inversion, if node i is visited before (after) node j in π1 and after (before) j in π2. In order to
obtain a normalised similarity version we define our second measure as follows:

INV(π1, π2) := 1−
(
2 · IN(π1, π2)

n(n− 1)

)
∈ [0, 1].

We want to stress that with a simple heuristic like the (1 + 1)-EA it is unlikely to get optimal solutions to our prob-
lems. In consequence, the following observations are based on sub-optimal approximations to the W-TTP and W-TSP
respectively. Nevertheless, we believe that that our insights are valuable first steps towards a better understanding of
tour composition.

Figure 5 shows the distribution of the similarity of W-TSP and W-TTP solutions with optimal TSP tours and WGR
tours by means of the two measures CE and INV throughout the whole benchmark set. For ease of reference, we denote
the similarity with CE[TSP], CE[WGR], INV[TSP] and INV[WGR]. Regarding CE[TSP]-similarity we observe a U-
shape with increasing probability p for W-TSP. The box-plots for W-TTP however show a clear downward trend,
i.e. the more items have to be collected by the thief, the less similar the tour gets to the TSP. Nevertheless, for both
W-TTP and W-TSP the median similarity is larger than 25% for all values of p and even above 50% for the W-
TTP. Compared with this for both considered optimisation problems the CE[WGR]-similarity strongly decreases with
increasing p. Here, median values close to 0% with low variance are reached if on average at least 60% of the items are
active. The CE-measure is plain simple and kind of binary in the sense that an edge is either shared or not. However,
even if the number of shared edges approaches zero the INV-similarity can show different patterns as it measures
the number of swaps needed to transform one tour into another. In fact, median INV[WGR]-values are > 50% for
all considered settings and both W-TSP and W-TTP. Moreover, with increasing p there is trend towards a narrowed
outlier distribution, i.e. outliers are less frequent indicating a lower total range of similarity values. In addition, for the
W-TSP we observe an inverted U-shape with its median peak at about p = 0.2. This suggests that for the W-TSP and
a relatively low number of active items it is in fact advisable to place these heavy nodes in the end of the permutation.
All observations made so far are valid for all considered instances and IPN values (see Figure 6 for a less aggregated
view for three representative instances). We clearly observe the same patterns even though the actual similarity values
can differ substantially (cf. the CE[TSP]-similarity in Figure 6). In particular pr2392-based instances stand out. This
is partly explained by its size (2 392 nodes) which is much bigger than the majority of our benchmark instances and
the fact that we use a very simple heuristic. Therefore, our W-TSP and W-TTP solutions for those instances are likely
far away from optimal.

Coming back to the actual measures: the only measure which shows strong variance throughout the instance set is
INV[TSP]. This observation can be visually derived from Figure 5 where we see many partly extreme outliers and is
backed up by the representative more fine-grained plots in Figure 6. The strong variance is even more pronounced for
the W-TTP solutions. To be honest, at this point we have no clear explanation to this phenomenon.

6 Conclusion

Multi-component problems appear frequently in real-world applications and the TTP (combining the TSP and KP)
has been introduced as a benchmark problem to study such problem in greater depth. Understanding the interaction of
the two components is still a challenging task and we focused in this paper on the weighted TSP part of the problem.
We have carried out a structural comparison of TSP variants called W-TTP and W-TSP where the weight on nodes
determined by a collection of items plays a crucial role in determining an optimal tour when the to be collected set of
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Figure 6: Distribution of similarity of all W-TSP and TTP solutions calculated for instances of type berlin52 (top row),
pr2392 (middle row) and pr75 (bottom row) to the respective optimal TSP tours and weighted greedy tours (WGR).

items is fixed. Our results show that W-TTP is closer to the TSP than the W-TSP and that using the fitness function of
W-TTP can surprisingly lead to better results when the goal is to optimise W-TSP.

Future work will investigate the similarity of high quality solutions of W-TTP and W-TSP. Furthermore, evolving
instances that show a significant performance difference for optimised tours of W-TTP and W-TSP and their charac-
terization in terms of problem features would help to push forward the understanding of the these problems.
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