
ar
X

iv
:2

00
6.

11
44

4v
1 

 [
cs

.N
E

] 
 2

0 
Ju

n 
20

20

Optimising Monotone Chance-Constrained

Submodular Functions Using Evolutionary

Multi-Objective Algorithms

Aneta Neumann and Frank Neumann

Optimisation and Logistics, School of Computer Science,
The University of Adelaide, Adelaide, SA, Australia

Abstract. Many real-world optimisation problems can be stated in terms
of submodular functions. A lot of evolutionary multi-objective algorithms
have recently been analyzed and applied to submodular problems with
different types of constraints. We present a first runtime analysis of evo-
lutionary multi-objective algorithms for chance-constrained submodular
functions. Here, the constraint involves stochastic components and the
constraint can only be violated with a small probability of α. We show
that the GSEMO algorithm obtains the same worst case performance
guarantees as recently analyzed greedy algorithms. Furthermore, we in-
vestigate the behavior of evolutionary multi-objective algorithms such
as GSEMO and NSGA-II on different submodular chance constrained
network problems. Our experimental results show that this leads to sig-
nificant performance improvements compared to the greedy algorithm.

1 Introduction

Evolutionary algorithms have been widely applied to solve complex optimisa-
tion problems. They are well suited for broad classes of problems and often
achieve good results within a reasonable amount of time. The theory of evolu-
tionary computation aims to explain such good behaviours and also point out
the limitations of evolutionary computing techniques. A wide range of tools and
techniques have been developed in the last 25 years and we point the reader to
[7,27,2,14] for comprehensive presentations.

Stochastic components play a crucial role in many real-world applications
and chance constraints allow to model constraints that can only be violated with
a small probability. A chance constraint involves random components and it is
required that the constraint is violated with a small probability of at most α. We
consider chance constraints where the weight W (S) of a possible solution S can
violate a given constraint bound C with probability at most α, i.e. Pr[W (S) >
C] ≤ α holds.

Evolutionary algorithms have only recently been considered for chance con-
strained problems and we are pushing forward this area of research by providing
a first runtime analysis for submodular functions. In terms of the theoretical
understanding and the applicability of evolutionary algorithms, it is desirable
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to be able to analyse them on a broad class of problems and design appro-
priate evolutionary techniques for such classes. Submodular functions model a
wide range of problems where the benefit of adding solution components dimin-
ishes with the addition of elements. They have extensively been studied in the
literature [24,25,33,18,3,21,9,13] and allow to model a variety of real-word ap-
plications [19,20,12,22]. In recent years, the design and analysis of evolutionary
algorithms for submodular optimisation problems has gained increasing atten-
tion. We refer to the recent book of Zhou et al. [37] for an overview. Such
studies usually study evolutionary algorithms in terms of their runtime and ap-
proximation behaviour and evaluate the performance of the designed algorithms
on classical submodular combinatorial optimisation problems.

To our knowledge, there is so far no runtime analysis of evolutionary algo-
rithms for submodular optimisation with chance constraints and the runtime
analysis of evolutionary algorithms for chance constrained problems has only
started recently for very special cases of chance-constrained knapsack prob-
lem [26]. Chance constraints are in general hard to evaluate exactly, but well-
known tail inequalities such as Chernoff bounds and Chebyshev’s inequality may
be used to estimate the probability of a constraint violation. We provide a first
runtime analysis by analysing GSEMO together with multi-objective formula-
tions that use a second objective taking the chance constraint into account.
These formulations based on tail inequalities are motivated by some recent ex-
perimental studies of evolutionary algorithms for the knapsack problem with
chance constraints [34,35,1]. The GSEMO algorithm has already been widely
studied in the area of runtime analysis in the field of evolutionary computa-
tion [10] and more broadly in the area of artificial intelligence where the focus
has been on submodular functions and Pareto optimisation [31,30,29,32]. We
analyse this algorithm in the chance constrained submodular optimisation set-
ting investigated in [6] in the context of greedy algorithms. Our analyses show
that GSEMO is able to achieve the same approximation guarantee in expected
polynomial time for uniform IID weights and the same approximation quality in
expected pseudo-polynomial time for independent uniform weights having the
same dispersion.

Furthermore, we study GSEMO experimentally on the influence maximiza-
tion problem in social networks and the maximum coverage problem. Our results
show that GSEMO significantly outperforms the greedy approach [6] for the con-
sidered chance constrained submodular optimisation problems. Furthermore, we
use the multi-objective problem formulation in a standard setting of NSGA-II.
We observe that NSGA-II is outperformed by GSEMO in most of our experi-
mental settings, but usually achieves better results than the greedy algorithm.

The paper is structured as follows. In Section 2, we introduce the problem of
optimising submodular functions with chance constraints, the GSEMO algorithm
and tail inequalities for evaluating chance constraints. In Section 3, we provide a
runtime analysis for submodular functions where the weights of the constraints
are either identically uniformly distributed or are uniformly distributed and have
the same dispersion. We carry out experimental investigations that compare the
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performance of greedy algorithms, GSEMO, and NSGA-II in Section 4 and finish
with some concluding remarks.

2 Preliminaries

Given a set V = {v1, . . . , vn}, we consider the optimization of a monotone sub-
modular function f : 2V → R≥0. We call a function monotone iff for every
S, T ⊆ V with S ⊆ T , f(S) ≤ f(T ) holds. We call a function f submodular
iff for every S, T ⊆ V with S ⊆ T and x 6∈ T we have

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ).

Here, we consider the optimization of a monotone submodular function f
subject to a chance constraint where each element s ∈ V takes on a random
weight W (s). Precisely, we examine constraints of the type

Pr[W (S) > C] ≤ α.

where W (S) =
∑

s∈S w(s) is the sum of the random weights of the elements and
C is the given constraint bound. The parameter α specifies the probability of
exceeding the bound C that can be tolerated for a feasible solution S.

The two settings, we investigate in this paper assume that the weight of
an element s ∈ V is w(s) ∈ [a(s) − δ, a(s) + δ], δ ≤ mins∈V a(s), is chosen
uniformly at random. Here a(s) denotes the expected weight of items s. For our
investigations, we assume that each item has the same dispersion δ. We call a
feasible solution S a γ-approximation, 0 ≤ γ ≤ 1, iff f(S) ≥ γ · f(OPT ) where
OPT is an optimal solution for the given problem.

2.1 Chance Constraint Evaluation based on Tail Inequalities

As the probability (Pr(W (X) > C) used in the objective functions is usually
computational expensive to evaluate exactly, we use the approach taken in [34]
and compute an upper bound on this probability using tail inequalities [23]. We
assume that w(s) ∈ [a(s)− δ, a(s) + δ] holds for each s ∈ V which allows to use
Chebyshev’s inequality and Chernoff bounds.

The approach based on (one-sided) Chebyshev’s inequality used in [34] upper
bounds the probability of a constraint violation by

P̂r(W (X) > C) ≤ δ2|X |
δ2|X |+ 3(C − EW (X))2

(1)

The approach based on Chernoff bounds used in [34] upper bounds the prob-
ability of a constraint violation by

P̂r[W (X) > C] ≤









e
C−EW (X)

δ|X|

(

δ|X|+C−EW (X)
δ|X|

)

δ|X|+C−EW (X)

δ|X|









1
2 |X|

(2)
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We use P̂r(W (X) > C) instead of Pr(W (X) > C) for our investigations usng
multi-objective models of the problem.

2.2 Multi-Objective Formulation

Following the approach of Yue et al. [34] for the chance constrained knapsack
problem, we evaluate a set X by the multi-objective fitness function g(X) =
(g1(X), g2(X)) where g1 measures the tightness in terms of the constraint and
g2 measures the quality of X in terms of the given submodular function f .

We define

g1(X) =







EW (X)− C if (C − EW (X))/(δ · |X |) ≥ 1

P̂ r(W (X) > C) if (EW (X) < C) ∧ (C − EW (X))/(δ|X | < 1)
1 + (EW (X)− C) if EW (X) ≥ C

(3)
and

g2(X) =

{

f(X) if g1(X) ≤ α

−1 if P̂ r(W (X) > C) > α
(4)

where EW (X) =
∑

s∈X a(s) denotes the expected weight of the solution. The
term (C − EW (X))/(δ · |X |) ≥ 1 in g1 implies that a set X of cardinality |X |
has probability 0 of violating the chance constraint due to the upper bound on
the intervals.

We say a solution Y dominates a solution X (denoted by Y < X) iff g1(Y ) ≤
g1(X) ∧ g2(Y ) ≥ g2(X). We say that Y strongly dominates X (denoted by
Y ≻ X) iff Y < X and g(Y ) 6= g(X) The dominance relation also translates to
the corresponding search points used in GSEMO. Comparing two solutions, the
objective function guarantees that a feasible solution strongly dominates every
infeasible solution. The objective function g1 ensures that the search process is
guided towards feasible solutions and that trade-offs in terms of the probability
of a constraint violation and the function value of the submodular function f
are computed for feasible solutions.

2.3 Global SEMO

Our multi-objective approach is based on a simple multi-objective evolution-
ary algorithm called Global Simple Evolutionary Multi-Objective Optimizer
(GSEMO, see Algorithm 1) [11]. The algorithm encodes sets as bitstrings of
length n and the set X corresponding to a search point x is given as X = {vi |
xi = 1}. We use x when referring to the search point in the algorithm and X
when referring to the set of selected elements and use applicable fitness measure
for both notations in an interchangeable way. GSEMO starts with a random
search point x ∈ {0, 1}n. In each iteration, an individual x ∈ P is chosen uni-
formly at random from the current population P In the mutation step, it flips
each bit with a probability 1/n to produce an offspring y. y is added to the
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Algorithm 1: Global SEMO

1 Choose x ∈ {0, 1}n uniformly at random;
2 P ← {x};
3 repeat
4 Choose x ∈ P uniformly at random;
5 Create y by flipping each bit xi of x with probability 1

n
;

6 if 6 ∃w ∈ P : w ≻ y then
7 S ← (P ∪ {y})\{z ∈ P | y < z};

8 until stop;

population if it is not strongly dominated by any other search point in P . If y
is added to the population, all search points dominated by y are removed from
the population P .

We analyze GSEMO in terms of its runtime behaviour to obtain a good
approximation. The expected time of the algorithm required to achieve a given
goal is measured in terms of the number of iterations of the repeat loop until a
feasible solution with the desired approximation quality has been produced for
the first time.

3 Runtime Analysis

In this section, we provide a runtime analysis of GSEMO which shows that the
algorithm is able to obtain a good approximation for important settings where
the weights of the constraint are chosen according to a uniform distribution with
the same dispersion.

3.1 Uniform IID Weights

We first investigate the case of uniform identically distributed (IID) weights.
Here each weight is chosen uniformly at random in the interval [a − δ, a + δ],
δ ≤ a. The parameter δ is called the dispersion and models the uncertainty of
the weight of the items.

Theorem 1. Let k = min{n+ 1, ⌊C/a⌋} and assume ⌊C/a⌋ = ω(1). Then the

expected time until GSEMO has computed a (1−o(1))(1−1/e)-approximation for

a given monotone submodular function under a chance constraint with uniform

iid weights is O(nk(k + logn)).

Proof. Every item has expected weight a and uncertainty δ. This implies g1(X) =
g1(Y ) iff |X | = |Y | and EW (X) = EW (Y ) < C. As GSEMO only stores for each
fixed g1-value one single solution, the number of solutions with expected weight
less than C is at most k = min{n+ 1, C/a}. Furthermore, there is at most one
individual X in the population g2(X) = −1. Hence, the maximum population
that GSEMO encounters during the run of the algorithm is at most k + 1.
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We first consider the time until GSEMO has produced the bitstring 0n. This
is the best individual with respect to g1 and once included will always stay in
the population. The function g1 is strictly monotone decreasing with the size of
the solution. Hence, selecting the individual in the population with the smallest
number of elements and removing one of them least to a solution with less
elements and therefore with a smaller g1-value. Let ℓ = |x|1 be the number of
elements of the solution x with the smallest number of elements in P . Then
flipping one of the 1-bits corresponding these elements reduces k by one and
happens with probability at least ℓ/(en) once x is selected for mutation. The
probability of selecting x is at least 1/(k+1) as there are at most k+1 individuals
in the population. Using the methods of fitness-based partitions, the expected
time to obtain the solution 0n is at most

n
∑

ℓ=1

(

ℓ

e(k + 1)n

)−1

= O(nk logn).

Let kopt = ⌊C/a⌋, the maximal number of elements that can be included in
the deterministic version of the problem.

The function g1 is strictly monotonically increasing with the number of ele-
ments and each solution with same number of elements has the same g1-value.

We consider the solution X with the largest k for which

f(X) ≥ (1− (1− 1/kopt)
k) · f(OPT )

holds in the population and the mutation which adds an element with the
largest marginal increase g2(X ∪ {x}) − g2(X) to X . The probability for such
a step picking X and carrying the mutation with the largest marginal gain is
Ω(1/kn) and its waiting time is O(kn).

This leads to a solution Y for which

f(X) ≥ (1 − (1− 1/kopt)
k+1) · f(OPT )

holds. The maximal number of times such a step is required after having
included the search point 0n into the population is k which gives the runtime
bound of O(k2n).

For the statement on the approximation quality, we make use of the lower
bound on the maximal number of elements that can be included using the Cher-
noff bound and Chebyshev’s inequality given in [6].

Using Chebyshev’s inequality (Equation 1) at least

k∗1 = max

{

k | k +

√

(1− α)kδ2√
3αa

≤ kopt

}

elements can be included and when using Chernoff bound (Equation 2), at least

k∗2 = max

{

k

∣

∣

∣

∣

∣

k +

√

3δk ln(1/α)

a
≤ kopt

}
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elements can be included.
Including k∗ elements in this way least to a solution X∗ with

f(X∗) ≥ (1− (1− 1/kopt)
k∗

) · f(OPT ).

As shown in [6], both values of k∗1 and k∗2 yield (1 − o(1))(1 − 1/e) · f(OPT ) if
⌊C/a⌋ = ω(1) which completes the proof. �

3.2 Uniform Weights with the Same Dispersion

We now assume that the expected weights do not have to be the same, but still
require the same dispersion for all elements, i.e. w(s) ∈ [a(s)− δ, a(s) + δ] holds
for all s ∈ V .

We consider the (to be minimized) objective function ĝ1(X) = EW (X) (in-
stead of g1) together with the previously defined objective function g2 and eval-
uate a set X by ĝ(X) = (ĝ1(X), g2(X)). We have Y � X iff ĝ1(Y ) ≤ ĝ1(X) and
g2(Y ) ≥ g2(X)

Let amax = maxs∈V a(s) and amin = mins∈V a(s), and δ ≤ amin. The fol-
lowing theorem shows that GSEMO is able to obtain a (1/2 − o(1))(1 − 1/e)-
approximation if ω(1) elements can be included in a solution.

Theorem 2. If C/amax = ω(1) then GSEMO obtains a (1/2− o(1))(1 − 1/e)-
approximation for a given monotone submodular function under a chance con-

straint with uniform weights having the same dispersion in expected time O(Pmax·
n(C/amin + logn+ log(amax/amin))).

Proof. We first consider the time until the search point 0n is included in the
population. We always consider the individual x with the smallest ĝ1-value.
Flipping every 1-bit of x 6= 0n leads to an individual with a smaller ĝ1-value and
is therefore accepted. Furthermore, the total weight decrease of these 1-bit flips
is ĝ1(x) which also equals the total weight decrease of all single bit flip mutation
when taking into account that 0-bit flips give decrease of the ĝ1-value of zero. A
mutation carrying out a single bit flip happens each iteration with probability
at least 1/e. The expected decrease in ĝ1 is therefore at least by a factor of
(1 − 1/(Pmaxen)) and the expected minimal ĝ1-value in the next generation is
at most

(1 − 1/(Pmax · en)) · ĝ1(x).
We use drift analysis, to upper bound the expected time until the search point
0n is included in the population. As amin ≤ ĝ1(x) ≤ namax holds for any search
point x 6= 0n, the search point 0n is included in the population after an expected
number of O(Pmaxn(logn+ log(amax/amin))) steps.

After having include the search point 0n in the population, we follow the anal-
ysis of POMC for subset selection with general deterministic cost constraints [29]
and always consider the individual x with the largest ĝ1-value for which

g2(x) ≥
[

1−
n
∏

k=1

(

1− a(k)xk

C

)]

· f(OPT ).
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Note that the search point 0n meets this formula. Furthermore, we denote by
ĝ1

∗, the maximal ĝ1-value for which ĝ1(x) ≤ ĝ1
∗ and

g2(x) ≥
[

1−
(

1− ĝ1
∗

Cr

)r ]

· f(OPT ).

for some r, 0 ≤ r ≤ n−1, holds. We use ĝ1
∗ to track the progress of the algorithm

and it has been shown in [29] that ĝ1
∗ does not decrease during the optimisation

process of GSEMO.
Choosing x for mutation and flipping the 0-bit of x corresponding to the

largest marginal gain in terms of g2/ĝ1 gives a solution y for which

g2(y) ≥
[

1−
(

1− amin

C

)

·
(

1− ĝ1
∗

Cr

)r ]

· f(OPT )

≥
[

1−
(

1− ĝ1
∗ + amin

C(r + 1)

)r+1 ]

· f(OPT )

holds and ĝ1
∗ increases by at least amin. The ĝ1

∗-value for the considered so-
lution, can increase at most C/amin times and therefore, once having included
the search point 0n, the expected time until such improvements have occurred
is O(PmaxnC/amin).

Let x∗ be the feasible solution of maximal cost included in the population
after having increased the ĝ1

∗ at most C/amin times as described above. Fur-
thermore, let v∗ be the element with the largest g2-value not included in x∗ and
x̂ be the solution containing the single element with the largest g2-value. x̂ is
produced from the search point 0n in expected time O(Pmaxn).

Let r be the number of elements in a given solution. According to [6], the
maximal ĝ1

∗ deemed as feasible is at least

C∗
1 = C −

√

(1− α)rδ2

3α

when using Chebyshev’s inequality (Equation 1) and at least

C∗
2 = C −

√

3δr ln(1/α)

when using the Chernoff bound (Equation 2). For a fixed C∗-value, we have

[

1−
(

1− C∗

C(r + 1)

)r+1 ]

· f(OPT )

We have ĝ1(x
∗) + a(v∗) > C∗

1 when working with Chebyshev’s inequality
and ĝ1(x

∗) + a(v∗) > C∗
2 when using Chernoff bound. In addition, f(x̂) ≥ f(v∗)

holds. According to [6], x∗ or x̂ is therefore a (1/2−o(1))(1−1/e)-approximation
which completes the proof. �
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For the special case of uniform IID weights, we have a = amax = amin and
Pmax ≤ C/a+1. Furthermore, the solution x∗ already gives a (1−o(1))(1−1/e)-
approximation as the element with the largest f -value is included in construction
of x∗. This gives a bound on the expected runtime of O(nk(k+log n)) to obtain a
(1−o(1))(1−1/e)-approximation for the uniform IID case when working with the
function ĝ1 instead of g1. Note that this matches the result given in Theorem 1.

4 Experimental Investigations

In this section, we investigate the GSEMO and the NSGA-II algorithm on im-
portant submodular optimisation problems with chance constraints and compare
them to the greedy approach given in [6].

4.1 Experimental Setup

We examine GSEMO and NSGA-II for constraints with expected weights 1 and
compare them to the greedy algorithm (GA) given in [6]. Our goal is to study
different chance constraint settings in terms of the constraint bound C, the
dispersion δ, and the probability bound α. We consider different benchmarks
for chance constrained versions of the maximum influence problems and the
maximum coverage problem.

For each benchmark set, we study the performance of the GSEMO and the
NSGA-II algorithms for different budgets. We consider C = 20, 50, 100 for in-
fluence maximization and C = 10, 15, 20 for maximum coverage. We consider
all combinations of α = 0.1, 0.001, and δ = 0.5, 1.0 for the experimental investi-
gations of the algorithms and problems. Chebyshev’s inequality leads to better
results when α is relatively large and the Chernoff bounds gives better results
for small α (see [34,6]). Therefore, we use Equation 1 for α = 0.1 and Equa-
tion 2 for α = 0.001 when computing the upper bound on the probability of a
constraint violation. We allow 5 000 000 fitness evaluations for each evolutionary
algorithm run. We run NSGA-II with parent population size 20, offspring size
10, crossover probability 0.90 and standard bit mutation for 500 000 generations.
For each tested instance, we carry out 30 independent runs and report the mini-
mum, maximum, and average results. In order to test the statistical significance
of the results, we use the Kruskal-Wallis test with 95% confidence in order to
measure the statistical validity of our results. We apply the Bonferroni post-hoc
statistical procedure, that is used for multiple comparison of a control algorithm,
to two or more algorithms [5]. X(+) is equivalent to the statement that the al-
gorithm in the column outperformed algorithm X . X(−) is equivalent to the
statement that X outperformed the algorithm given in the column. If algorithm
X does not appear, then no significant difference was determined between the
algorithms.
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Table 1. Results for Influence Maximization with uniform chance constraints.

C α δ
GA (1) GSEMO (2) NSGA-II (3)

mean min max std stat mean min max std stat

20
0.1 0.5 51.51 55.75 54.44 56.85 0.5571 1(+) 55.66 54.06 56.47 0.5661 1(+)

0.1 1.0 46.80 50.65 49.53 51.68 0.5704 1(+) 50.54 49.61 52.01 0.6494 1(+)

50
0.1 0.5 90.55 94.54 93.41 95.61 0.5390 1(+), 3(+) 92.90 90.75 94.82 1.0445 1(+), 2(−)

0.1 1.0 85.71 88.63 86.66 90.68 0.9010 1(+), 3(+) 86.89 85.79 88.83 0.8479 1(+), 2(−)

100
0.1 0.5 144.16 147.28 145.94 149.33 0.8830 1(+), 3(+) 144.17 142.37 146.18 0.9902 2(−)

0.1 1.0 135.61 140.02 138.65 142.52 0.7362 1(+), 3(+) 136.58 134.80 138.21 0.9813 2(−)

20
0.001 0.5 48.19 50.64 49.10 51.74 0.6765 1(+) 50.33 49.16 51.25 0.5762 1(+)

0.001 1.0 39.50 44.53 43.63 45.55 0.4687 1(+) 44.06 42.18 45.39 0.7846 1(+)

50
0.001 0.5 75.71 80.65 78.92 82.19 0.7731 1(+) 80.58 79.29 81.63 0.6167 1(+)

0.001 1.0 64.49 69.79 68.89 71.74 0.6063 1(+) 69.96 68.90 71.05 0.6192 1(+)

100
0.001 0.5 116.05 130.19 128.59 131.51 0.7389 1(+), 3(+) 127.50 125.38 129.74 0.9257 1(+), 2(−)

0.001 1.0 96.18 108.95 107.26 109.93 0.6466 1(+), 3(+) 107.91 106.67 110.17 0.7928 1(+), 2(−)

4.2 The Influence Maximization Problem

The influence maximization problem (IM) (see [16,21,29,36] detailed descrip-
tions) is a key problem in the area of social influence analysis.

IM aims to find the set of the most influential users in a large-scale social
network. The primary goal of IM is to maximize the spread of influence through a
given social network i.e. a graph of interactions and relationships within a group
of users [4,15]. However, the problem of influence maximization has been studied
subject to a deterministic constraint which limits the cost of selection [29].

The social network is modeled as a directed graph G = (V,E) where each
node represents a user, and each edge (u, v) ∈ E has been assigned an edge
probability pu,v that user u influences user v. The aim of the IM problem is to
find a subset X ⊆ V such that the expected number of activated nodes E[I(X)]
of X is maximized. Given a cost function c : V → R

+ and a budget C ≥ 0,
the corresponding submodular optimization problem under chance constraints
is given as

argmax
X⊆V

E[I(X)] s.t. Pr[c(X) > C] ≤ α.

For influence maximization, we consider uniform cost constraints where each
node has expected cost 1. The expected cost of a solution is therefore EW (X) =
|X |.

In order to evaluate the algorithms on the chance constrained influence
maximization problem, we use a synthetic data set with 400 nodes and 1 594
edges [29].

Table 1 shows the results obtained by GA, GSEMO, and NSGA-II for the
combinations of α and δ. The results show that GSEMO obtains the highest
mean values compared to the results obtained by GA and NSGA-II. Furthermore,
the statistical tests show that for most of the combinations of α and δ GSEMO
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and NSGA-II significantly outperform GA. The solutions obtained by GSEMO
have significantly better performance than NSGA-II in the case of a high budget
i.e. for C = 100. A possible explanation for this is that the relatively small
population size of NSGA-II does not allow one to construct solutions in a greedy
fashion, as is possible for GA and GSEMO.

4.3 The Maximum Coverage Problem

The maximum coverage problem [17,8] is an important NP-hard submodular op-
timisation problem. We consider the chance constrained version of the problem.
Given a set U of elements, a collection V = {S1, S2, . . . , Sn} of subsets of U , a
cost function c: 2V → R

+, and a budget C, the goal is to find

argmax
X⊆V

{f(X) = | ∪Si∈X Si| s.t. Pr(c(X) > C) ≤ α}.

We consider linear cost functions. For the uniform case each set Si has an ex-
pected cost of 1 and we have EW (X) = |{i | Si ∈ X}|.

For our experiments, we investigate maximum coverage instances based on
graphs. The U elements consist of the vertices of the graph and for each vertex,
we generate a set which contains the vertex itself and its adjacent vertices. For
the chance constrained maximum coverage problem, we use the graphs frb30-
15-01 (450 nodes, 17 827 edges) and frb35-17-01 (595 nodes and 27 856 edges)
from [28].

The experimental results are shown in Table 2. It can be observed that
GSEMO obtains the highest mean value for each setting. Furthermore, GSEMO
statistically outperforms GA for most of the settings. For the other settings, there
is no statistically significant difference in terms of the results for GSEMO and
GA. NSGA-II is outperforming GA for most of the examined settings and the
majority of the results are statistically significant. However, NSGA-II performs
worse than GA for frb35-17-01 when C = 20 and α = 0.1.

5 Conclusions

Chance constraints involve stochastic components and require a constraint only
to be violated with a small probability. We carried out a first runtime analysis
of evolutionary algorithms for the optimisation of submodular functions with
chance constraints. Our results show that GSEMO using a multi-objective for-
mulation of the problem based on tail inequalities is able to achieve the same
approximation guarantee as recently studied greedy approaches. Furthermore,
our experimental results show that GSEMO computes significantly better solu-
tions than the greedy approach and often outperforms NSGA-II.

For future work, it would be interesting to analyse other probability distri-
butions for chance constrained submodular functions. A next step would be to
examine uniform weights with a different dispersion and obtain results for uni-
form weights with the same dispersion when using the fitness function g instead
of ĝ.
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Table 2. Results for Maximum Coverage with uniform chance constraints for graphs
frb30-15-01 (rows 1-12) and frb35-17-01 dataset (rows 13-24).

C α δ
GA (1) GSEMO (2) NSGA-II (3)

mean min max std stat mean min max std stat

10
0.1 0.5 371.00 377.23 371.00 379.00 1.8323 1(+) 376.00 371.00 379.00 2.5596 1(+)

0.1 1.0 321.00 321.80 321.00 325.00 1.5625 1(+) 321.47 321.00 325.00 1.2521

15
0.1 0.5 431.00 439.60 435.00 442.00 1.7340 1(+), 3(+) 437.57 434.00 441.00 1.7555 1(+), 2(−)

0.1 1.0 403.00 411.57 408.00 414.00 1.7750 1(+) 410.67 404.00 414.00 2.5098 1(+)

20
0.1 0.5 446.00 450.07 448.00 451.00 0.8277 1(+), 3(+) 448.27 445.00 451.00 1.3113 1(+), 2(−)

0.1 1.0 437.00 443.87 441.00 446.00 1.2794 1(+), 3(+) 441.37 438.00 444.00 1.6914 1(+), 2(−)

10
0.001 0.5 348.00 352.17 348.00 355.00 2.4081 1(+) 350.80 348.00 355.00 2.8935 1(+)

0.001 1.0 321.00 321.67 321.00 325.00 1.5162 1(+) 321.33 321.00 325.00 1.0613

15
0.001 0.5 414.00 423.90 416.00 426.00 2.4824 1(+) 422.67 419.00 426.00 2.2489 1(+)

0.001 1.0 371.00 376.77 371.00 379.00 1.8134 1(+) 376.33 371.00 379.00 2.6824 1(+)

20
0.001 0.5 437.00 443.53 440.00 445.00 1.1958 1(+), 3(+) 440.23 437.00 443.00 1.6955 1(+), 2(−)

0.001 1.0 414.00 424.00 420.00 426.00 1.7221 1(+) 422.50 417.00 426.00 2.5291 1(+)

10
0.1 0.5 448.00 458.80 451.00 461.00 3.3156 1(+) 457.97 449.00 461.00 4.1480 1(+)

0.1 1.0 376.00 383.33 379.00 384.00 1.7555 1(+) 382.90 379.00 384.00 2.0060 1(+)

15
0.1 0.5 559.00 559.33 555.00 562.00 2.0057 3(+) 557.23 551.00 561.00 2.4309 1(−), 2(−)

0.1 1.0 503.00 507.80 503.00 509.00 1.1567 1(+) 507.23 502.00 509.00 1.8323 1(+)

20
0.1 0.5 587.00 587.20 585.00 589.00 1.2149 3(+) 583.90 580.00 588.00 1.9360 1(−), 2(−)

0.1 1.0 569.00 569.13 566.00 572.00 1.4559 3(+) 565.30 560.00 569.00 2.1520 1(−), 2(−)

10
0.001 0.5 413.00 423.67 418.00 425.00 1.8815 1(+) 422.27 416.00 425.00 2.6121 1(+)

0.001 1.0 376.00 383.70 379.00 384.00 1.1492 1(+) 381.73 377.00 384.00 2.6514 1(+)

15
0.001 0.5 526.00 527.97 525.00 532.00 2.1573 1(+) 527.30 520.00 532.00 2.7436

0.001 1.0 448.00 458.87 453.00 461.00 2.9564 1(+) 457.10 449.00 461.00 4.1469 1(+)

20
0.001 0.5 568.00 568.87 565.00 572.00 1.5025 3(+) 564.60 560.00 570.00 2.7618 1(−),2(−)

0.001 1.0 526.00 528.03 525.00 530.00 1.8843 1(+) 527.07 522.00 530.00 2.2427
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