Skip to main content

Network Representation Learning Based on Topological Structure and Vertex Attributes

  • Conference paper
  • First Online:
  • 2168 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12269))

Abstract

Network Representation Learning (NRL) is an essential task in the field of network data analysis, which tries to learn the distributed representation of each vertex in the network for downstream vector-based data mining tasks. NRL is helpful in solving the computationally expensive or intractable problems of large-scale network analysis. Most related NRL methods only focus on encoding the network topology information into vertex representation. However, vertices may contain rich attributes that directly impact the network formation and measure the attribute-level similarity between vertices. Additionally, encoding the vertex attributes information into the representation vector may improve the performance of the representation. This paper proposes a general NRL framework TAFNE that can effectively retain both network topology and vertex attributes information. For complex types of vertex attributes, we design two different information fusion methods that take both training efficiency and generality into account. The proposed TAFNE framework is extensively evaluated through various data analysis tasks, including clustering, visualization and node classification, and achieves superior performance compared with baseline methods.

Supported by National Key R&D Program of China grant (NO. 2017YFC0907505).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, pp. 585–591 (2002)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  3. Estévez, P.A., Tesmer, M., Perez, C.A., Zurada, J.M.: Normalized mutual information feature selection. IEEE Trans. Neural Netw. 20(2), 189–201 (2009)

    Article  Google Scholar 

  4. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)

  5. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  6. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MathSciNet  Google Scholar 

  7. Henderson, K., et al.: RolX: structural role extraction & mining in large graphs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1231–1239 (2012)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Krause, B., Kahembwe, E., Murray, I., Renals, S.: Dynamic evaluation of transformer language models. arXiv preprint arXiv:1904.08378 (2019)

  10. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  11. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  12. Malliaros, F.D., Vazirgiannis, M.: Clustering and community detection in directed networks: a survey. Phys. Rep. 533(4), 95–142 (2013)

    Article  MathSciNet  Google Scholar 

  13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  14. Natarajan, N., Dhillon, I.S.: Inductive matrix completion for predicting gene-disease associations. Bioinformatics 30(12), i60–i68 (2014)

    Article  Google Scholar 

  15. Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  16. Ng, A., et al.: Sparse autoencoder. CS294A Lecture notes 72(2011), 1–19 (2011)

    Google Scholar 

  17. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  18. Rae, J.W., Potapenko, A., Jayakumar, S.M., Lillicrap, T.P.: Compressive transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507 (2019)

  19. Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 385–394 (2017)

    Google Scholar 

  20. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding (2019)

    Google Scholar 

  21. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Article  Google Scholar 

  22. Sun, X., Song, Z., Dong, J., Yu, Y., Plant, C., Böhm, C.: Network structure and transfer behaviors embedding via deep prediction model. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5041–5048 (2019)

    Google Scholar 

  23. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)

    Google Scholar 

  24. Tang, L., Liu, H.: Relational learning via latent social dimensions. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 817–826 (2009)

    Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  26. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234 (2016)

    Google Scholar 

  27. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174 (2019)

    Google Scholar 

  28. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.: Network representation learning with rich text information. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  29. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. IEEE Trans. Big Data 6(1), 3–28 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bofeng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, S., Zhang, B., Lv, Y., Chang, F., Zhou, Z. (2020). Network Representation Learning Based on Topological Structure and Vertex Attributes. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58112-1_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58111-4

  • Online ISBN: 978-3-030-58112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics