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Abstract: In evolutionary computation, different reproduction operators have various search
dynamics. To strike a well balance between exploration and exploitation, it is attractive to have
an adaptive operator selection (AOS) mechanism that automatically chooses the most appropriate
operator on the fly according to the current status. This paper proposes a new AOS mechanism
for multi-objective evolutionary algorithm based on decomposition (MOEA/D). More specifically,
the AOS is formulated as a multi-armed bandit problem where the dynamic Thompson sampling
(DYTS) is applied to adapt the bandit learning model, originally proposed with an assumption of a
fixed award distribution, to a non-stationary setup. In particular, each arm of our bandit learning
model represents a reproduction operator and is assigned with a prior reward distribution. The
parameters of these reward distributions will be progressively updated according to the performance
of its performance collected from the evolutionary process. When generating an offspring, an operator
is chosen by sampling from those reward distribution according to the DYTS. Experimental results
fully demonstrate the effectiveness and competitiveness of our proposed AOS mechanism compared
with other four state-of-the-art MOEA/D variants.

1 Introduction

Multi-objective optimisation problems (MOPs) are ubiquitous in various scientific [1] and engineering
domains [2]. Due to the conflicting nature of different objectives, there does not exist a global optimum
that optimises all objectives simultaneously. Instead, multi-objective optimisation aims to find a set
of trade-off alternatives, an improvement at one objective of which can lead to a degradation of at
least one other objective, that approximate the Pareto-optimal front (PF).

Due to the population-based characteristics, evolutionary algorithm (EA) has been recognised as
the major approach for multi-objective optimisation. Over the past three decades and beyond, a
significant amount of efforts have been devoted to the development of evolutionary multi-objective
optimisation (EMO) algorithms [3–24], e.g., fast non-dominated sorting genetic algorithm II (NSGA-
II) [25], indicator-based EA (IBEA) [26] and multi-objective EA based on decomposition (MOEA/D)
[27]. It is widely appreciated that the search behaviour of an EA largely depends on its reproduction
operator(s). In particular, some operators are exploration-oriented and are good at exploring unknown
regions in the search space; whilst the others are exploitation-oriented and mainly focus on exploiting
the current superior regions. How to strike a balance between exploration and exploitation is a long
standing topic in order to achieve an efficient and effective evolutionary search process.

Adaptive operator selection (AOS) is an emerging paradigm that aims to autonomously select the
most appropriate reproduction operator according to the latest search dynamics. Generally speak-
ing, an AOS paradigm consists of two major steps [28, 29]. One is credit assignment that gives an
operator a reward according to its up to date performance; the other is decision-making that selects
the ‘appropriate’ operator for the next stage according to the accumulated awards. A fundamental
issue behind the AOS is an exploration versus exploitation (EvE) dilemma. One hopes to give more
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chances to operators with decent track records (exploitation), but also wants to explore poor operators
in the future search (exploration), since an operator might perform significantly differently at different
search stages. It is worth noting that credit assignment under a multi-objective setting is even more
challenging due to the conflicting characteristics of different objectives. To address the EvE dilemma,
Li et al. [30] initially transformed the AOS problem into a multi-armed bandits (MAB) problem and
applied the classic upper confidence bound (UCB) algorithm [31] to implement an AOS paradigm
in EMO. As for the difficulty of credit assignment in multi-objective optimisation, MOEA/D is used
as the baseline given that it decomposes the original MOP into several single objective subproblems
which facilitate the fitness evaluation.

However, one of the major concerns of using bandit learning for AOS is its stationary environment
assumption used in the traditional MAB model. In other words, the probability distribution of the
reward for pulling an arm is fixed a priori whereas the evolutionary search process is highly non-
stationary. Bearing this consideration in mind, this paper proposes to use the dynamic Thompson
sampling strategy [32] to address the EvE dilemma under a non-stationary environment. More specif-
ically, in our AOS paradigm, each reproduction operator is regarded as an arm in a bandit game and
is assigned with a prior reward distribution. During the evolutionary search process, the credit of each
operator is updated according to the fitness improvement achieved by using the corresponding oper-
ator along with the parameters associated with its reward distribution. During the decision-making
step, a reproduction operator is selected by sampling from those reward distributions. To facilitate
the fitness evaluation under a multi-objective setting, we carry on with the MOEA/D as the baseline
and the end algorithm is denoted as MOEA/D-DYTS. From our experiments, we have witnessed the
superior performance of MOEA/D-DYTS over other four state-of-the-art MOEA/D variants on 19
benchmark test problems.

The remainder of this paper is organised as follows. Section 2 provides some preliminary knowl-
edge. Section 3 delineates the technical details of our proposed MOEA/D-DYTS step by step. The
performance of MOEA/D-DYTS is validated in Section 4. At the end, Section 5 concludes this paper
and shed some lights on future directions.

2 Preliminaries

In this section, we provide the preliminary knowledge, including some definitions related to multi-
objective optimisation and the baseline algorithm, required in this paper.

2.1 Multiobejctive Optimization Problems

Without loss of generality, the MOP considered in this paper is defined as:

minimize F(x) = (f1(x), · · · , fm(x))

subject to x ∈ Ω
, (1)

where x = (x1, · · · , xn) ∈ Ω is a decision variable vector, Ω = Πn
i=1[li, ui] ∈ Rn is the decision space

where li and ui are the lower and upper bounds of the i-th dimension. F : Ω → Rm consists of m
conflicting objective functions. Given two decision vectors x1 and x2 ∈ Ω, x1 is said to dominate
x2, denoted as x1 � x2, if and only if fi(x1) ≤ fi(x2) for all i ∈ {1, · · · ,m} and F(x1) 6= F(x2). A
solution x∗ ∈ Ω is said to be Pareto-optimal when no other solution x ∈ Ω can dominate x∗. The
set of all Pareto-optimal solutions is called Pareto-optimal set (PS) whilst its image in the objective
space is called the PF.

2.2 Baseline Algorithm

In this paper, we use the MOEA/D as the baseline EMO framework. The basic idea of MOEA/D is
to decompose the original MOP into several subproblems, each of which is either as an aggregated
scalarising function or simplified MOP. Thereafter, MOEA/D uses a population-based meta-heuristic
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to solve these subproblems in a collaborative manner. In particular, the widely used Tchebychff
function is used to form the subproblem in this paper and it is defined as:

min
x∈Ω

gtch (x|w, z∗) = max
1≤i≤m

{|fi(x)− z∗i | /wi} , (2)

where w = (w1, · · · , wm) is a weight vector, evenly sampled from a canonical simplex, with wi ≥ 0,
i ∈ {1, · · · ,m}, and

∑m
i=1wi = 1. z∗ = (z1, · · · , zm) is the ideal objective where zi = minx∈PS fi(x),

i ∈ {1, · · · ,m}. From the above description, we can see that the quality of a solution x ∈ Ω can
be evaluated by a subproblem gtch (x|w, z∗) which facilitates the credit assignment under a multi-
objective setting.

Note that instead of using the vanilla MOEA/D, here we use its variant with a dynamic resource
allocation scheme, dubbed as MOEA/D-DRA [33], as the baseline algorithm given its outstanding per-
formance in CEC 2009 MOEA competition. Different from the vanilla MOEA/D where all subprob-
lems are allocated with the same amount of the computational resources, MOEA/D-DRA dynamically
selects some most promising subproblems to evolve according to their utilities defined as:

πi =

{
1 if ∆i > 0.001(

0.95 + 0.05× ∆i

0.001

)
× πi otherwise

, (3)

where ∆i is the fitness improvement rates (FIR) of the objective function value in subproblem i, which
is defined as:

∆i =
gtch (xit−∆t|wi, z∗)− gtch

(
xit|wi, z∗

)
gtch

(
xit−∆t|wi, z∗

) , (4)

where t is the current generation, and ∆t is the updating period. Interested readers are referred to [33]
for more details of MOEA/D-DRA.

3 Proposed Algorithm

In this section, we delineate the implementation our proposed MOEA/D-DYTS. Specifically, we will
start with the classical Bernoulli MAB problem and the vanilla Thompson sampling. Thereafter, we
develop the definition of the dynamic Thompson sampling strategy which is the main crux of our AOS
paradigm. At the end, we give the algorithmic implementation of MOEA/D-DYTS.

3.1 Thompson Sampling

In probability theory and machine learning, the MAB problem considers optimally allocating a fixed
set of limited resources among competing actions A = {a1, · · · , ak} that finally maximises the expected
return (or gain). In this paper, we consider a traditional Bernoulli MAB problem where the reward
of conducting an action ai is ri ∈ {0, 1}, i ∈ {1, · · · , k}. At the time step t, the probability of
obtaining a reward of one by conducting the action ai is P(ri = 1|ai, θ) = θi. On the other hand,
P(ri = 0|ai, θ) = 1−θi when obtaining a reward of none. In particular, θi is defined as the mean reward
of action ai, i ∈ {1, · · · , k}. Under the MAB setting, the mean rewards for all actions θ = (θ1, · · · , θk)
are fixed over time but are unknown beforehand. The ultimate goal of this Bernoulli MAB problem
is to maximise the cumulative rewards over a period of T time steps.

Thompson sampling [34] is an efficient algorithm for solving the Bernoulli MAB problem. It takes
advantage of Bayesian estimation for online decision problems where actions are applied in a sequential
manner. In Thompson sampling, each arm is assigned with an independent prior reward distribution
of θi, i ∈ {1, · · · , k}. In particular, we use the Beta distribution with parameters α = (α1, . . . , αk) and
β = (β1, . . . , βk) to represent this prior distribution:

PBeta (θi) =
Γ (αi + βi)

Γ (αi) Γ (βi)
θαi−1
i (1− θi)βi−1 , (5)

where αi and βi are the parameters associated with the i-th arm, i ∈ {1, · · · , k} and Γ(·) is the gamma
function. The parameters of this distribution are updated according to the Bayes’ rule after receiving
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the up to date rewards. Due to the conjugate properties between Beta distribution and Bernoulli
distribution, the posterior distribution of each action is still a Beta distribution. For a given action
ai, i ∈ {1, · · · , k}, if the reward of its application is ri = 1, then αi and βi are updated as:

αi = αi + 1, βi = βi. (6)

Otherwise, if ri = 0 then we have:
αi = αi, βi = βi + 1, (7)

whilst the other parameters are kept unchanged. In the decision-making stage, the arm having the
largest sampling value from the distribution is chosen for the next step. This is the underlying mecha-
nism of Thompson sampling for balancing exploration and exploitation. In practice, each component
of α and β is initialised to be 1 whilst PBeta(θi) is set to be a uniform distribution over [0, 1]. The Beta
distribution has a mean αi/(αi + βi) and its distribution become more concentrated at its mean as
αi+βi grows. For example, as shown in Fig. 1, the probability density function of (α2, β2) = (200, 100)
is the most concentrated one whilst that of (α1, β1) = (1, 1) is a flat line. In order to apply Thompson
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Figure 1: Illustration of Beta distribution with different (α, β) settings.

sampling for AOS in an EA, we consider each reproduction operator as a bandit arm with a Bernoulli
distribution. In particular, an operator receives a reward of one in case its application improves the
evolutionary population towards optimum, otherwise its reward is none.

3.2 Dynamic Thompson Sampling

Since the reward distribution used in the aforementioned vanilla Thompson sampling is fixed a priori, it
does not fit the non-stationary nature of EAs. In other words, the reward distribution of a reproduction
operator is highly likely to change with the progress of the evolution. To address this issue, this paper
considers using a dynamic Thompson sampling [32] strategy (DYTS) to serve as the foundation of our
AOS paradigm. In particular, DYTS mainly uses a threshold C to control the two different parameter
update rules. If αi + βi < C, the parameters of the Beta distribution are updated as the vanilla
Thompson sampling introduced in Section 3.1. On the other hand, if αi + βi ≥ C, the corresponding
update rule aims to tweak the parameters so that we have αi + βi = C after this update. The
pseudocode of the parameter update strategy of DYTS is given in Algorithm 1.

There are two characteristics of this parameter update rule.

• It ensures that αi + βi ≤ C. More specifically, if αi + βi = C, we have

α′i + β′i = (αi + βi + 1)
C

C + 1

= (C + 1)
C

C + 1

= C

, (8)

where α′i and β′i represent the updated αi and βi. In this case, we are able to avoid concentration
of samples coming out of the DYTS strategy. Henceforth, it enables the DYTS a certain level
of exploration ability.
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Algorithm 1: ParameterUpdate(αi, βi, r, C): parameter update rule of the DYTS strategy
Input: Parameters of the i-th operator αi, βi, its up to date reward reward and threshold C
Output: Updated (αi, βi)

1 if αi + βi < C then
2 αi = αi + r;
3 βi = βi + 1− r;
4 else

5 αi = (αi + r) C
C+1

;

6 βi = (βi + 1− r) C
C+1

;

7 return (αi, βi);

• It gives larger weights to those recent awards thus help track the up to date reward distribution.
More specifically, let us denote the reward received by the i-th reproduction operator at the t-th
update as rti , the corresponding parameter αti can be derived as:

αti = (αt−1
i + rti)

C

C + 1

= ((αt−2
i + rt−1

i )
C

C + 1
+ rti)

C

C + 1

= αt−2
i (

C

C + 1
)2 + rt−1

i (
C

C + 1
)2 + rti(

C

C + 1
).

(9)

Analogously, we can have the same derivation of βti . According to this derivation, we can see that
the latest reward is assigned with the largest decay ratio. By this means, the DYTS strategy
enables the Thompson sampling to a non-stationary environment.

3.3 Operator Pool

From our preliminary experiments, this paper considers using the following five reproduction operator
to constitute our operator pool. In particular, four of them are differential evolution (DE) variants
directly derived from our previous paper [30] whilst the other one is the uniform mutation (UM) [35].

• DE/rand/1: xc = xi + F ∗ (xr1 − xr2),

• DE/rand/2: xc = xi + F ∗ (xr1 − xr2) + F ∗ (xr3 − xr4),

• DE/current-to-rand/1: xc = xi +K ∗
(
xi − xr1

)
+ F ∗ (xr2 − xr3),

• DE/current-to-rand/2: xc = xi+K ∗
(
xi − xr1

)
+F ∗ (xr2 − xr3)+F ∗ (xr4 − xr5),

• UM: xc = xi + uniform(0, 1) ∗ (u− l),

where uniform(0,1) represents a uniform distribution within the range [0,1], u = (u1, · · · , un) and
l = (l1, · · · , ln) indicate the upper and lower bounds of decision space.

3.4 Credit Assignment

It is worth noting that the reward considered in the Bernoulli distribution is a binary value thus is not
directly applicable in an EA. To address this issue, this paper uses the fitness improvement (FI) as
the measure to evaluate the credit of an application of the reproduction operator chosen by the AOS.
Formally, FI is defined as:

FI = max
xi∈P
{gtch (xi|wi, z∗)− gtch

(
xc|wi, z∗

)
}, (10)

where wi is the weight vector associated with the subproblem of a solution xi ∈ P, i ∈ {1, · · · , N} and
xc is the offspring solution generated by using the selected operator. If FI > 0, it indicates that the
application of the selected operator is successful thus the corresponding reward is one. Otherwise, the
reward is set to be none instead.
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Algorithm 2: AOS(α, β): adaptive operator selection based on DYTS
Input: Parameters of the Beta distributions α = (α1, · · · , αk) and β = (β1, · · · , βk)
Output: Index of the selected reproduction operator

1 for i← 1 to k do

2 Sample the estimated mean reward θ̂i from Beta distribution PBeta(αi, βi).

3 a = argmaxi∈{1,··· ,k}θ̂i;

4 return a;

Algorithm 3: MOEA/D-DYTS
Input: Algorithm parameters
Output: Approximated solution set P

1 Initialise the population P = {x1, · · · ,xN}, the weight vectors {w1, · · · ,wN}, parameters of the Beta distribution α, β
and the ideal point z∗;

2 gen← 0, neval← 0;
3 for i← 1 to N do
4 B(i)← {i1, · · · , iT } where wi1 , · · · ,wiT are the T closest weight vectors to wi and set πi ← 1;

5 while neval < maxEvaluations do
6 Let all the indices of the subproblems whose objectives are MOP individual objectives fi form the initial I. By using

10-tournament selection based on πi, select other bN/5c −m indices and add them to I;
7 for each i ∈ I do
8 op← AOS(α, β);
9 if uniform(0, 1) < δ then

10 P ← B(i);
11 else
12 P ← the entire population ;

13 Randomly select a required number of parent solutions from P ;
14 Generate an offspring xc by the op-th operator over the selected solutions;
15 Use polynomial mutation to further mutate xc;
16 Update the ideal point z∗ according to xc;

17 FI ← maxxi∈P {gtch (xi|wi, z∗)− gtch
(
xc|wi, z∗

)
};

18 if FI > 0 then
19 reward← 1;

20 Replace the xi associated with FI by xc;

21 else
22 reward← 0;

23 (αop, βop)← ParameterUpdate(αop, βop, reward, C);
24 neval← neval + 1;

25 gen← gen+ 1;
26 if modulo(gen, 50) == 0 then
27 Update the utility πi of each subproblem i, i ∈ {1, · · · , N};

28 return P ;

3.5 AOS Based on DYTS Strategy

The idea of our proposed AOS paradigm based on the DYTS strategy is simple and intuitive. As shown
in Algorithm 2, the operator having the largest sampling value from the up to date Beta distribution
is chosen as the target operator for the next iteration.

3.6 Framework of MOEA/D-DYTS

Our proposed AOS based on DYTS can be applied to MOEA/D-DRA (dubbed MOEA/D-DYTS)
in a plug-in manner without any significant modification. In particular, we only need to maintain
an operator pool and keep a record of the FI achieved by the application of an operator. As the
pseudocode of MOEA/D-DYTS given in Algorithm 3, we can see that most parts are the same as the
original MOEA/D-DRA. The only difference lies in the offspring reproduction where the AOS based
on DYTS strategy is applied to select the most appropriate operator in practice (line 8 of Algorithm 3).
In addition, after the generation of an offspring, the corresponding FI is calculated followed by an
update of the reward (lines 17 to 22 of Algorithm 3). Thereafter, the collected reward is used to
update the parameters of the Beta distribution (line 23 of Algorithm 3).
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4 Experimental Studies

In this section, we will use a set of experiments to validate the effectiveness of our proposed MOEA/D-
DYTS. The experimental settings used in this paper are briefly overviewed in Section 4.1 including
the benchmark test problems, parameter settings and the peer algorithms used in our experiments.

4.1 Experimental Settings

In our experimental studies, 19 unconstrained test problems are used to constitute the benchmark suite
including UF1 to UF10 from the CEC 2009 MOEA competition [36] and WFG1 to WFG9 chosen from
the Walking Fish Group test problem set [37]. In particular, the number of decision variables of UF
problem is 30 whilst it is set to 38 (18 are position related and 20 are distance related) for the WFG
problems [38–40]. Four state-of-the-art MOEA/D variants i.e., MOEA/D-FRRMAB [30], MOEA/D-
GRA [41], MOEA/D-IRA [42] and MOEA/D-DE [43] are used as the peer algorithms in comparison.
The parameters associated with these peer algorithms are set the same as recommended in their
original paper. Those of our proposed MOEA/D-DYTS are set as follows:

• The population size N is set to 300 for the two-objective UF instances and 600 for the three-
objective UF instances. As for WFG instances, we set N = 100.

• Each algorithm is run 31 times on each test problem instance. The maximum number of function
evaluations is set to 300, 000 for the UF instances and 25, 000 for the WFG instances.

• The neighbourhood size is fixed to 20. Probability δ with regard to selecting P is set to 0.8 as
suggested in [42].

• The update threshold of our DYTS strategy is set as C = 100.

To evaluate the performance of different algorithms, two widely used performance metrics, i.e., inverted
generational distance (IGD) [44] and Hypervolume (HV) [45], are used in our experiments. Both of
them are able to evaluate the convergence and diversity simultaneously. In order to calculate the IGD,
10,000 points were uniformly sampled from the true PF to constitute the reference set. The lower the
IGD is, the better the solution set for approximating the PF. As for the HV calculation, we set the
reference point as (2.0, 2.0) for two-objective UF instances and (2.0, 2.0, 2.0) for three-objective UF
instances. For the WFG instances, it is set as (3.0, 5.0). In contrast to the IGD, the larger the HV is,
the better quality of the solution set for approximating the PF.

Table 1: Comparative results of all the algorithms on the UF and WFG test problems regarding IGD.

MOEA/D-DE MOEA/D-FRRMAB MOEA/D-GRA MOEA/D-IRA MOEA/D-DYTS

UF1 1.97E-31.56E−4
− 2.50E-32.19E−4

− 1.90E-38.3E−5
∼ 1.92E-38.9E−5

∼ 1.89E-37.1E-5

UF2 7.12E-31.58E−3
− 5.64E-35.21E−4

− 3.92E-35.01E-4
∼ 4.16E-35.92E−4

∼ 4.09E-39.86E−4

UF3 1.20E-21.33E−2
− 6.97E-34.81E−3

− 4.24E-32.31E−3
∼ 5.27E-32.69E−3

− 4.04E-32.07E-3

UF4 6.27E-24.09E−3
− 5.26E-23.88E−3

− 5.48E-23.41E−3
− 5.36E-22.85E−3

− 3.04E-21.28E-3

UF5 3.12E-11.15E−1
− 2.90E-16.89E−2

− 2.41E-12.74E−2
− 2.35E-12.83E−2

− 1.26E-12.37E-2

UF6 1.85E-11.72E−1
− 2.07E-11.84E−2

− 7.43E-22.97E-2
+ 8.17E-25.06E−2

+ 1.23E-16.38E−2

UF7 4.07E-34.24E−3
− 2.64E-33.37E−4

− 2.05E-31.02E−4
− 2.04E-31.03E−4

− 1.91E-38.90E-5

UF8 7.82E-21.27E−2
− 6.96E-21.29E−2

∼ 8.11E-21.43E−2
− 8.12E-21.20E−2

− 6.86E-21.85E-2

UF9 8.82E-24.96E−2
− 7.97E-24.55E−2

− 3.82E-23.40E−2
+ 3.49E-22.79E-2

+ 4.24E-22.55E−2

UF10 5.14E-16.85E−2
− 7.56E-11.19E−1

− 1.32E+002.39E−1
− 1.53E+003.24E−1

− 4.06E-1 5.87E-2

WFG1 1.28E+008.03E−3
− 1.28E+004.06E−3

− 1.26E+008.36E−3
− 1.26E+006.45E−3

− 1.20E+006.08E-3

WFG2 4.06E-12.20E−1
− 2.54E-11.37E−1

∼ 2.91E-11.63E−1
− 2.59E-11.37E−1

− 2.33E-11.22E-1

WFG3 1.55E-24.42E−3
− 1.40E-22.74E−3

− 1.39E-22.43E−3
− 1.39E-22.57E−3

− 1.32E-21.00E-6

WFG4 2.89E-25.91E−3
− 2.81E-24.34E−3

− 1.87E-23.96E−3
− 2.07E-26.60E−3

− 1.72E-21.89E-3

WFG5 4.23E-21.19E−2
− 3.88E-21.14E−2

− 3.02E-26.50E−3
− 3.06E-26.72E−3

− 2.12E-21.78E-3

WFG6 5.97E-22.89E−2
− 3.80E-22.30E−2

− 3.30E-29.99E−3
− 3.78E-21.00E−2

− 2.44E-29.90E-3

WFG7 1.45E-24.89E−3
− 1.41E-23.76E−3

− 1.43E-24.41E−3
− 1.44E-24.36E−3

− 1.31E-22.00E-6

WFG8 1.60E-26.14E−3
− 1.42E-24.10E−3

− 1.36E-22.63E−3
∼ 1.37E-23.30E−3

∼ 1.31E-22.00E-6

WFG9 3.83E-25.54E−3
− 3.64E-25.11E−3

− 3.81E-27.61E−3
− 3.70E-24.96E−3

− 2.63E-22.85E-3

-/∼/+ 19/0/0 17/2/0 13/4/2 14/3/2

4.2 Experimental Results

In this section, we have compared MOEA/D-DYTS with four state-of-the-art MOEA/D variants,
namely, MOEA/D-DE, MOEA/D-FRRMAB, MOEA/D-GRA and MOEA/D-IRA on UF instances
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Figure 2: Non-dominated solutions obtained by five algorithms on UF4 with the best IGD value.

and WFG instances. Tables 1 and 2 present the result of the IGD and HV metric values obtained
from 31 independent runs. The best mean result for each problem is highlighted in boldface with grey
background. Wilcoxons rank sum test with a 5% significance level was also conducted to provide a
statistically conclusion. Where “-”, “+” and “∼” denote that the results obtained by corresponding
algorithm are worse than, better than or similar to those of MOEA/D-DYTS.

Table 2: Comparative results of all the algorithms on the UF and WFG test problems regarding HV.

MOEA/D-DE MOEA/D-FRRMAB MOEA/D-GRA MOEA/D-IRA MOEA/D-DYTS

UF1 3.658741.54E−3
− 3.656731.85E−3

− 3.659921.13E−3
− 3.659731.08E−3

− 3.66314 3.08E-4

UF2 3.639091.59E−2
− 3.648647.83E−3

− 3.651078.39E−3
− 3.652918.85E−3

∼ 3.65313 1.10E-2

UF3 3.626016.92E−2
− 3.647531.74E−2

− 3.657655.71E−3
∼ 3.651621.51E−2

− 3.65836 5.60E-3

UF4 3.147651.59E−2
− 3.181291.19E−2

− 3.175971.03E−2
− 3.177251.27E−2

− 3.26432 4.40E-3

UF5 2.565532.35E−1
− 2.711022.07E−1

− 2.906469.60E−2
− 2.920761.01E−1

− 3.07248 1.62E-1

UF6 2.908573.27E−1
− 2.849994.43E−1

− 3.17650 6.75E-2
+ 3.141631.53E−1

+ 3.022912.11E−1

UF7 3.469334.88E−2
− 3.490452.29E−3

− 3.492742.55E−3
− 3.492322.01E−3

− 3.49626 2.46E-4

UF8 7.188892.24E−2
− 7.176813.06E−2

− 7.195192.28E−2
− 7.193032.26E−2

− 7.27682 3.68E-2

UF9 7.066344.78E−1
− 7.280913.52E−1

− 7.558891.51E−1
− 7.538022.51E−1

− 7.59815 1.15E-1

UF10 3.499813.94E−1
− 2.429764.40E−1

− 0.896705.48E−1
− 0.562215.53E−1

− 4.49922 5.35E-1

WFG1 5.093201.42E−1
− 5.164286.33E−2

− 5.190939.00E−2
− 5.177299.63E−2

− 5.58013 2.70E-2

WFG2 10.020396.70E−1
− 10.508754.29E−1

− 10.375594.91E−1
− 10.462724.22E−1

− 10.58567 3.96E-1

WFG3 10.892201.19E−1
− 10.923978.95E−2

− 10.930988.32E−2
∼ 10.930778.34E−2

∼ 10.95286 2.00E-6

WFG4 8.406205.17E−2
− 8.411613.88E−2

− 8.513774.25E−2
− 8.493856.52E−2

− 8.53702 2.97E-2

WFG5 8.062331.18E−1
− 8.096961.20E−1

− 8.191638.07E−2
− 8.186018.67E−2

− 8.35099 4.20E-2

WFG6 8.221101.52E−1
− 8.399152.09E−1

− 8.377011.10E−1
− 8.347671.01E−1

− 8.49870 1.45E-1

WFG7 8.637001.25E−1
− 8.652839.48E−2

− 8.641901.24E−1
∼ 8.638661.25E−1

∼ 8.67611 3.00E-6

WFG8 8.592881.77E−1
− 8.644521.20E−1

− 8.661647.84E−2
∼ 8.659359.16E−2

∼ 8.67610 9.00E-6

WFG9 8.178685.21E−2
− 8.197784.88E−2

− 8.182577.02E−2
− 8.190774.86E−2

− 8.30853 3.39E-2

-/∼/+ 19/0/0 19/0/0 14/4/1 14/4/1

From Tables 1 and 2 we clearly see that MOEA/D-DYTS is the best algorithm. With respect to
the IGD values, MOEA/D-DYTS performs best on UF1, UF3 to UF5, UF7, UF8, UF10 and all WFG
test instances. Considering the HV values, Table 2 gives the similar result to Table 1. In total, it has
obtained better results in 16 out of 19 performance comparisons for IGD and 18 out of 19 for HV. In
the following paragraphs, we will give a gentle discussion over these results.

UF1 to UF3 and UF7 are relatively simple test problems among UF benchmark problems, on
which all the algorithms do not have too much difficulty to converge to the global PFs as shown in
Figs. 1 to 3 and Fig. 7 in the supplementary document1. However, it is interesting to observe that
MOEA/D-GRA achieves better convergency on the tail of the PF of UF2 on which our proposed
algorithm takes a fall. On UF4 only MOEA/D-DYTS can find some solutions on the PF whereas the
solutions found by other four algorithms are away from the PF. The PF of UF5 consists of 21 points
which is challenging for EAs to converge. As shown in Fig. 3, the solutions obtained by MOEA/D-
DYTS are much closer to the PF than the other algorithms on UF5. The similar results can also
be observed on UF10. For other two three-objective UF test problems, all the algorithms can find
most of the solutions of PF on UF8. Note that MOEA/D-DYTS is beaten by MOEA/D-GRA and
MOEA/D-IRA on UF9 test problem which has two disconnected parts of PS. This may imply that

1https://cola-laboratory.github.io/supplementary/dyts-supp.pdf
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Figure 3: Non-dominated solutions obtained by five algorithms on UF5 with the best IGD value.
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Figure 4: Non-dominated solutions obtained by five algorithms on WFG2 with the best IGD value.

MOEA/D-DYTS do not have enough search ability in decision space.
For WFG test problems, MOEA/D-DYTS has completely won all the 9 test instances. As observed

from Tables 1 and 2, MOEA/D-DYTS perform significantly better than other four algorithms on
WFG1. Regarding WFG2, it is a discontinuous problem whose PF is five disconnected segments. As
shown in Fig. 4, no algorithm can find solutions on the last segment on WFG2 except for MOEA/D-
DYTS. For WFG3 to WFG9, all the compared algorithms can converge to the true PFs. The Wilcoxon
rank sum test shows that MOEA/D-DYTS is similar to MOEA/D-GRA and MOEA/D-IRA on WFG3,
WFG7 and WFG8 according to the results of HV values. It is worth noting that our proposed algorithm
MOEA/D-DYTS has best mean values on WFG3, WFG7 and WFG8 from 31 independent runs.
This implies that MOEA/D-DYTS can achieve better stability than other algorithms in optimisation
process. As shown in Figs. 14 to 16 and 19 in the supplementary document, the better diversity of
solutions found by MOEA/D-DYTS on the head or the tail of the PF can be observed on WFG4
to WFG6 and WFG9. These results indicate that our proposed algorithm can be favourable among
other four state-of-the-art MOEA/D variants.

5 Conclusion

This paper proposes a new AOS paradigm for MOEA/D that is able to autonomously select the
appropriate reproduction operator for the next step. Specifically, the dynamic Thompson sampling is
served as the foundation for AOS. Different from the vanilla Thompson sampling and bandit learning
model, the dynamic Thompson sampling is able to track the search dynamics under a non-stationary
environment. From our empirical results, we have witnessed the superiority of our proposed MOEA/D-
DYTS over four state-of-the-art MOEA/D variants on 19 test problems.

AOS is an attractive paradigm to equip EAs with intelligence to autonomously adapt their search
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behaviour according to the current search landscapes. In addition to the bandit model considered in
this paper, it is also interesting to look into methods from reinforcement learning or automatic control
domain for new decision-making paradigm. Furthermore, the credit assignment of an application of an
operator is important to gear the AOS. More sophisticated methods are worthwhile being considered
in future.
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