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Abstract. Computational drug design based on artificial intelligence is
an emerging research area. At the time of writing this paper, the world
suffers from an outbreak of the coronavirus SARS-CoV-2. A promising
way to stop the virus replication is via protease inhibition. We propose an
evolutionary multi-objective algorithm (EMOA) to design potential pro-
tease inhibitors for SARS-CoV-2’s main protease. Based on the SELFIES
representation the EMOA maximizes the binding of candidate ligands to
the protein using the docking tool QuickVina 2, while at the same time
taking into account further objectives like drug-likeliness or the fulfillment
of filter constraints. The experimental part analyzes the evolutionary
process and discusses the inhibitor candidates.
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1 Introduction

At the time of writing this paper, researchers around the globe are searching for a
vaccine or an effective treatment against the 2019 novel coronavirus (SARS-CoV-2).
One strategy to limit virus replication is protease inhibition. A biomolecule called
ligand binds to a virus protease enzyme and inhibits its functional properties.
For SARS-CoV-2 the crystal structure of its main protease Mpro has been solved,
e.g. by Jin et al. [17]. The search for a valid protease inhibitor can be expressed
as optimization problem. As not only the binding of the ligand is an important
objective, but also further properties like drug-likeliness or filter properties, we
comprise the molecule search problem as multi-objective optimization problem,
which we aim to solve with evolutionary algorithms.

This paper is structured as follows. In Section 2 we shortly repeat the basics of
protease inhibition and the connection to the novel coronavirus. Section 3 gives an
overview of related work on evolutionary molecule design.In Section 4 we introduce
molecule metrics, which we aim to optimize with the EMOA that is presented in
Section 5. The experimental part in Section 6 presents our experimental results
and discusses the evolved molecules. Conclusions are drawn in Section 7, where
also prospective future research directions are presented.
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2 Virus Protease Inhibition

As of late 2019, a novel respiratory disease named COVID-19 spread worldwide.
COVID-19 is caused by SARS-CoV-2, which belongs to the coronavirus family
like the well-known severe acute respiratory syndrome coronavirus (SARS-CoV).
As RNA virus SARS-CoV-2’s replication mechanism hijacks the cell mechanisms
for replication. An essential part of the virus replication process is a cleavage
process, in which the virus protease enzyme cuts long precursor polyproteins into
mature non-structural proteins, see Fig. 1. If a ligand biomolecule binds to the
protease it can prevent and inhibit this cleavage process. A ligand binds to the
target protein in a so-called pocket based on various non-covalent interactions
like hydrophobic interactions, hydrogen bonding, π-stacking, salt bridges, and
amide stacking [15]. With the proper ligand, the protease cleavage process is
inhibited, in practice measured by the half maximal inhibitory concentration
IC50 corresponding to the inhibitory substance quantity needed to inhibit 50%
of the protease process. The protease inhibitor is the target of the drug design
process, which we aim to find with evolutionary search.

Computational modeling of protein-ligand binding is a complex process de-
pending on protein-ligand geometry, chemical interactions as well as various
constraints and properties like hydration and quantum effects. Complex molecu-
lar dynamics computations are often too expensive in computational drug design.
Instead, docking tools like AutoDock [25], see Section 4, are supposed to be
sufficient for a coarse binding affinity estimation based on a simplification of the
physical reality.

virus main
protease Mpro

protease
inhibitor

cleavage

precursor 
polyproteins

cut proteins

uncut and
inactive

Fig. 1: Illustration of (left) protease enzyme with uncut precursor polyproteins,
(middle) the cleavage progress, and (right) protease inhibition preventing the
cleavage.

For SARS-CoV-2 the crystal structure of its main protease Mpro is known,
e.g. [8,17,36]. Various attempts to design inhibitors have been made recently,
e.g., based on known protease inhibitors for other viruses [7,19], based on virtual
screening [14], and computational drug design [24].



3 Related Work

Methods for de novo drug design can be categorized in different ways [10,5].
Some works construct molecules directly from atoms [11,28], while others use
chemical fragments as their smallest building block [29]. The goal also varies
among publications and is sometimes to find drugs that bind to a specific protein
binding site like in our work or [29,35], and other times the goal is to generate
any drug-like molecules as in [11,30].

ADAPT [29] is a fragment-based method that optimizes for molecule to bind to
a specific binding site using a genetic algorithm on an acyclic graph-representation
consisting of chemical fragments. The fitness of a resulting compound is evaluated
through a docking simulation with a target protein binding site and common
drug-likeness indicators.

On the other hand, Douguet et al. [11] use the SMILIES representation and
as such work on the level of atoms instead of fragments. In contrast to our work
their genetic algorithm optimizes for drug-likeness only instead of binding to a
specific ligand. Furthermore, the algorithm is single-objective and simply weighs
the different properties in a fitness function using constant coefficients.

Similarly, Nigam et al. [28] present a genetic algorithm on the SMILIES
representation for general molecule design. The method increases diversity by
using a deep neural network as an adaptive fitness function to penalize long-
surviving molecules. In contrast to methods like ours that try to stay inside the
distribution of drug-like molecules, the genetic algorithm is free to explore the
chemical space in its entirety.

Finally, LigBuilder [35] is a software tool for drug design that is based on
a genetic algorithm. It allows optimizing for the interesting quality of binding
to multiple targets, which enables tackling more complex diseases with a single
drug without the risk of drug-drug interactions that comes with combination
drugs (treatment with multiple compounds).

Brown et al. [6] have utilized an approach for multi-objective optimization of
molecules applying a graph-based representation of molecules. The multi-objective
evolutionary algorithm applies a Pareto ranking scheme for the optimization
process.

Wagner et al. [33] have developed a tool which identifies potential CNS drugs
by means of a multi-objective optimization. The molecules have been optimized
for six physical properties. In contrast to the approach presented here, this tool
is not based on evolutionary algorithms but on medical knowledge.

A short review, which focuses on the multi-objective optimization of drugs,
is given in [27]. In this context, different problem definitions and various Multi-
objective optimization methods are summarized.

Since there are many competing approaches to drug and molecule design,
benchmarking platforms like MOSES [30] or GuacaMol [5] have emerged. These
propose fixed datasets and metrics to measure and compare the generative
abilities of different algorithms. Among the benchmarked algorithms are random
sampling, variational autoencoders, generative adversarial networks, Monte-Carlo
tree search, and others.



4 Molecule Design Metrics

In computational drug design, molecule metrics define the optimization objectives.
This section introduces the five metrics our optimization approach is based on.

4.1 Binding Affinity Scores

The major objective in protease inhibitor search is the protein-ligand binding
affinity. A widespread tool for this metric is the automated docking tool AutoDock
[25], which will also be used by the OpenPandamics1 activities to fight COVID-19.
AutoDock performs very fast calculations of the binding energy by using grid-
based look-up tables. For this purpose, the protein is embedded in a grid. The
binding energy of all individual atoms of the ligand is calculated at all positions
of the grid using semi-empirical force field methods. Using a Lamarckian genetic
algorithm, the best binding position and binding energy of the complete ligand
can be determined with the help of the look-up tables.

Through various improvements, the accuracy and especially the performance
of AutoDock has been significantly improved. In AutoDock Vina [32] a hybrid
scoring function based on empirical and knowledge-based data is used instead of
the force field method. QuickVina [32] and QuickVina 2 [1] mainly improve the
search algorithm by performing the most complex part of the optimization only
for very promising ligand positions. We use QuickVina 2 for the calculation of
the binding energies of our proposed ligands, as it provides very good results at
high performance. For the sake of simplicity we will use binding affinity score
and docking score synonymously.

The informative value of QuickVina 2 binding scores may be limited due to a
simplification of various physical properties, such as the neglect of water molecules
and the changing electrical properties of ligand and protein when they interact
with each other. However, it has been shown by Gaillard [16] that AutoDock
Vina binding scores outperform various computational docking methods and
Quickvina 2 achieves very comparable results with Autodock Vina [1].

4.2 Quantitative Estimate of Drug-likeness (QED)

To estimate whether a molecule can be used as a drug, its similarity to other
existing drugs can be considered. This is based on the fact that many important
physiochemical properties of drugs follow a certain distribution. Lipinski’s rule of
five [22] which specifies ranges of values for different molecular properties such as
size, is frequently used. A major disadvantage, however, is that this rule is only a
rule of thumb and only checks whether its criteria are met or not. Among modern
drugs there are molecules that violate more than one of Lipinski’s rules. A modern
approach by Bickerton et al. [4] is based on multi-criteria optimization and the
principle of desirability. Instead of a fixed value range, all relevant molecular
properties are evaluated by an individual desirability function. A single score
(QED) is then determined by geometrically averaging all desirability functions.
1 https://www.ibm.org/OpenPandemics

https://www.ibm.org/OpenPandemics


4.3 Natural Product-likeness (NP)

In addition to the similarity to known drugs, the similarity to naturally occurring
biomolecules (natural products) is also an important metric. Natural products
have numerous bioactive structures that were created and validated by nature
in an evolutionary process. Ertl et al. [12] have studied the key differentiating
features of natural and synthetic molecules and developed a measure of similarity
to natural products. This score is based on structural characteristics of the
molecules, such as the number of aromatic rings and the distribution of nitrogen
and oxygen atoms.

4.4 Medical Chemical Filters

Medical chemical filters are used to exclude molecules that are toxic due to their
structural nature. Potentially unstable molecules whose metabolites may be toxic
are also not suitable as drugs. We use the MCFs and PAINS filters described by
Polykovskiy [30] as a Boolean indicator metric.

4.5 Synthetic Accessibility (SA)

For drug design it is not only important to find a molecule with the desired
properties, but also a synthesizable one. Ertl and Schuffenhauer [13] create a
method to estimate the synthetic accessibility of drug-like molecules and achieve
a high agreement with manual estimations by experts. Such a method can easily
be incorporated into a search process and we use it as one of our optimization
goals, too. A different approach to the synthesis problem is taken by Segler et
al. [31]. Instead of estimating synthetic accessibility, their symbolic AI driven
approach searches for actual synthesis routes of desired target molecules with a
combination of Monte Carlo tree search and neural networks encoding rules for
reaction centers.

4.6 Value Ranges

Table 1 shows the value ranges and the optima of the five used metrics. For our
experiments we unify these values to a range of [0, 1], where 0 is the optimum,
as we will describe under Section 5.2.

Table 1: Value ranges and optimum for used metrics
docking score [kcal/mol] SA QED NP filters

value range R [1, 10] [0, 1] [−5, 5] {0, 1}
optimum −∞ 1 1 5 1



5 Evolutionary Molecule Search

This section presents the evolutionary approach for the protease inhibitor design.
For searching in the design space of biomolecules we use evolutionary algorithms
(EAs), which are biologically inspired population-based search heuristics. We
employ the evolution strategy oriented (µ+ λ) population model [3].

A solution is defined by a string based on the self-referencing embedded
strings (SELFIES) representation [21], which is an advancement of the simplified
molecular-input line-entry system (SMILIES) [34] representation. Figure 2 pictures
an exemplary molecule with its structural formula and the corresponding SMILIES
and SELFIES representations. Each string consist of symbols, encoding the
occurring atoms, bindings, branches and ring sizes. SELFIES implements a formal
grammar, and the interpretation of a symbol depends on derivation rules and state
of derivation. In contrast to SMILIES, SELFIES strings are always syntactically
correct and therefore always yield valid molecules [21].

OH

F

SMILIES: Oc1ccccc1F

SELFIES: [O][c][c][c][c][c][c][Ring1][Branch1_1][F]

Fig. 2: Molecular structure formula, SMILIES, and SELFIES of 2-fluorophenol.

The EA’s initial population consists of individuals with randomly generated
strings representation of a fixed length. Since multiple SELFIES strings can be
translated to the same SMILIES string, the resulting SMILIES string is compared
to a global list of all previously generated individuals. Individuals with a repre-
sentation that already occurred are discarded and a new individual is generated.
This process is repeated until the population consist of unique individuals and
also applies for the generation of offspring individuals.

5.1 Mutation

Since every SELFIES string corresponds to a valid molecule and every molecule
can be expressed in SELFIES representation, the design space can be explored by
applying random mutations to the strings – more precisely the SELFIES symbols
of which the string is composed. Offspring solutions are created by choosing a
random individual from the parental population. Each child is mutated with the
following mutation operations with defined probabilities:

Replacement is applied independently for every symbol with a probability of
pr. The symbol is replaced by a random SELFIES symbol.

Insertion is applied with probability pi. A random symbol is inserted at a
random position in the individual’s representation.

Deletion is applied with probability pd and deletes a randomly chosen symbol
of the individual’s representation.



The new symbols are drawn from a set of symbols inspired by [21]. This set has
been extended with benzene as a separate, composed symbol, to increase the
likelihood of its occurrence and ease the generation of complex molecules. Addi-
tionally, each symbol is assigned a weighting parameter to adjust the probability
with which the is is randomly selected. This weighting can be used to increase
the likelihood of more common symbols (e.g. [C]) in contrast to more complex
ones (e.g. branches and ring structures).

5.2 Fitness Evaluation

For the selection operator the fitness f(x) of each solution candidate is evaluated
based on the molecule metrics binding affinity score, QED, filters, NP, and SA
introduced in Section 4. To increase the comparability, each metric is scaled
to the range between 0 (best possible score) and 1 (worst possible score). The
binding affinities are scaled with regard to the experimentally chosen minimum
of −15 kcal/mol and maximum of 1 kcal/mol and clipped to the range between 0
and 1 with soft clipping [20].

For the single-objective baseline experiments each individual is assigned a
single composed fitness value. We use a weighted sum fitness of the n introduced
metrics:

f(x) =

n∑
i=1

wifi(x) (1)

with weights w = (0.4, 0.15, 0.15, 0.15, 0.15) with i corresponding to 1: docking, 2:
SA, 3: QED, 4: NP, and 5: filters. The choice of weights is based on preliminary
experiment with the objective of putting the highest attention on the docking
score, while at the same time considering the other properties.

Individuals are evaluated in parallel. Therefore, the respective SELFIES strings
are converted to the SMILIES representation. MOSES is then used for the cal-
culation of QED, NP, and SA as well as for the application of the PAINS and
MCF filters. The docking score for each compound is determined by QuickVina 2.
Therefore, RDKit2 and MGLTools3 are used to generate PDB and PDBQT files
for the respective SMILIES representation. The binding energy is calculated in
regards to the COVID-19 Mpro (PDB ID: 6LU7 [23])4 with the search grid being
centered around the native ligand position and sized to 22 × 24 × 22 Å3. The
exhaustiveness is maintained at its default value of 8.

5.3 NSGA-II

The objectives presented in Section 4 may be contradictory. For example, in
preliminary experiments, we discovered that molecules with high AutoDock
binding scores suffer from low QED scores. As the choice of predefined weights for
2 https://www.rdkit.org
3 http://mgltools.scripps.edu
4 PDB: protein data base, https://www.rcsb.org

https://www.rdkit.org
http://mgltools.scripps.edu
https://www.rcsb.org


objectives is difficult in advance, a multi-objective approach may be preferable
in practice. In our multi-objective optimization setting in molecule space M
with fitness functions f1, . . . , fn to minimize we seek for a Pareto set {x∗ | @x ∈
M : x ≺ x∗} of non-dominated solutions, where x ≺ x∗ means x dominates
x∗, i.e., ∀i ∈ {1, . . . , n} : fi(x) ≤ fi(x

∗), while ∃i ∈ {1, . . . , n} : fi(x) < fi(x
∗).

NSGA-II [9] is known to be able of approximating a Pareto set with a broad
distribution of solutions in objective space, i.e., of the Pareto front. After non-
dominated sorting, µ non-dominated solutions maximizing the crowding distance,
which corresponds to the sum of Manhattan distances between the neighboring
solutions in objective space. For comparison of different multi-objective runs we
also employ the S-metric measuring the dominated hypervolume in objective
space with regards to a dominated reference point [2].

6 Experiments

In this section we experimentally analyze the single-objective and the NSGA-II
approaches for the protease inhibitor candidate search. For the experimental
analyses, the following settings are applied. A (10+100)-EA is used for the single-
objective run i.e., in each generation from 10 parents 100 offspring candidate
molecules are generated with the mutation operators introduced in Section 5.1
with mutation probabilities pr = 0.05, pi = 0.1, and pd = 0.1 applying plus
selection. For multi-objective runs the number of parents is increased to 20 to
achieve a broader distribution of solutions in objective space. No crossover is
applied. Individuals are limited to a length of 80 SELFIES tokens oriented to the
setting by Krenn et al. [21]. All runs are terminated after 200 generations and
are repeated 20 times.

6.1 Metric Development

Figure 3 shows the development of the previously explained normalized metrics in
single- and multi-objective runs. For the single-objective runs, the best individuals
according to fitness are chosen in each generation and their metrics are averaged
over all runs. The optimization process concentrates on improving docking
score, QED, and NP. As expected, an improvement of one metric may result
in a deterioration of another, e.g., as of generation 140, when QED and NP
deteriorate in favor of SA and docking score.

For multi-objective runs, the best individuals for each metric are chosen in
each generation and then averaged over all runs. A steady improvement with
regard to all objectives is achieved here, but has to be paid with regard to
deteriorations in other objectives that are not shown here.

Figure 4 shows three different two-dimensional slices of the Pareto front that
compare docking score to QED, NP, and SA. A Pareto front is shown for every
10th generation and their colors start at light blue for the first generation and
end at dark blue for the final generation. The plots illustrate NSGA-II’s ability
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Fig. 3: Development of all metrics during (left) single-objective and (right) multi-
objective NSGA-II optimization runs.
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Fig. 4: Visualization of typical Pareto fronts evolved with NSGA-II: (a) docking
score vs. QED, (b) docking score vs. NP, and (c) docking score vs. SA.

to generate solutions with different degrees of balance between docking score and
the plotted metric.

In the course of the optimization process the front of non-dominated solutions
has the expected tendency to move towards the lower left. This is also reflected
by the S-metric, which, in average over all runs improves from 0.10± 0.03 in the
first to 0.20 ± 0.05 in the last generation. In the slice plots deteriorations are
possible due to improvements in the remaining three objectives.

A comparison of final experimental results of the single-objective and NSGA-II
runs is presented in Table 2. For NSGA-II the best achieved values for each
objective are shown corresponding to the corner points of the Pareto front
approximation. For comparison, corresponding metric values are shown for N3
proposed as ligand in the PDB database as well as for Lopinavir, the HIV
main protease inhibitor [18]. Docking scores achieved by the single objective
optimization process show that the best values even overcome the scores of N3
and Lopinavir. Lopinavir and N3 bind similarly strong to Mpro. NSGA-II achieves
promising values for all metrics. The broad coverage of objective function values
offers the practitioner a huge variety of interesting candidates. However, some of



Table 2: Experimental results of weighted-sum single-objective approach, the
best values per objective for NSGA-II, the N3 ligand (from PDB 6LU7), and
Lopinavir (a prominent drug candidate). Statistical evaluation for the NSGA-II
method is calculated based on the best 20 individuals per objective. H marks a
minimization objective, while N marks a maximization objective.

single-objective NSGA-II N3 Lopinavir
objective best avg±std best avg±std value value

fitness H 0.30 0.32±0.01 0.31 0.39±0.06 0.43 0.41
docking score H −9.30 −7.68±0.90 −13.30 −10.63±1.18 −8.40 −8.40

SA H 3.04 2.63±0.59 1.00 1.00±0.00 4.29 3.90
QED N 0.66 0.76±0.10 0.94 0.92±0.01 0.12 0.20
NP N 0.33 0.20±0.54 4.27 3.82±0.24 −0.18 −0.04

filters N 1.00 1.00±0.00 1.00 1.00±0.00 1.00 1.00

the extreme metric values may sometimes be unpractical, e.g., the outstanding
docking score of the best NSGA-II molecule (docking score −13.3 kcal/mol) has
been achieved by a chemically unrealistic candidate.

SA

QED

NP

filters

docking

(a) single objective

SA

QED

NP

filters

docking

(b) NSGA-II

Fig. 5: Comparison of population of the last generation of typical single-objective
(10 molecules) and NGSA-II (20 molecules) runs. Each line represents a molecule
candidate.

From our observations we conclude that the SELFIES representation with our
mutation operators are able to robustly achieve molecules of a certain quality.
However, we expect the quality of the results to improve with mechanisms that
allow the development of larger molecules to overcome fitness plateaus and local
optima. Figure 5 compares the populations of the last generation of a typical
single-objective and NSGA-II run. The solutions in the single-objective population
are similar to each other, while the solutions in the last NSGA-II population
maintain a higher diversity of molecule properties.
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(e) PI-V, NSGA-II
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(f) PI-VI, NSGA-II

Fig. 6: Exemplary protease inhibitors with properties presented as radar plot,
structural formula, and chemical name, a-c: single-objective, d-f: NSGA-II results.

6.2 Candidate Comparison

In the following we present interesting protein inhibitor candidates evolved with
the single- and multi-objective approaches. In our experiments we made three
main observations. The molecules generated have a strong tendency to contain
aromatic ring structures. Candidates with good drug-likeliness are comparatively
short. Candidates with high docking scores often have unrealistic geometries.

In Figure 6 we present a list of six promising protease inhibitors (PI) candidates
with properties as radar plots, structural formulas, and chemical names. PI-I (a)
to PI-III (c) are results from single-objective runs, while PI-IV (c) to PI-VI (f)
show candidates generated by NSGA-II. Points near the border of the radar plot
represent better values, e.g., a zero value lies at the corner of a plot. All candidates
fulfill the filter condition. PI-1 achieves a high SA value with a reasonable docking



score. PI-II achieves an excellent docking score with −9.7 kcal/mol. PI-III, PI-IV,
and PI-VI achieve excellent drug-likeliness QED with good docking results around
−7.0 kcal/mol. An interesting candidate balancing all objectives is PI-V with
docking score −7.7 kcal/mol and QED value of 0.75.

Last, we visualize how the ligand candidates are located in the Mpro protein
pocket optimized by QuickVina 2. Figure 7 shows candidates (a) PI-I and (b)
PI-V in their Mpro pockets.

(a) PI-I in Mpro pocket (b) PI-V in Mpro pocket

Fig. 7: Visualization of PI-I and PI-V docked to the pocket of SARS-CoV-2’s Mpro

using NGLview [26].

7 Conclusion

In this paper we introduced an evolutionary multi-objective approach to evolve
protein inhibitor candidates for the Mpro of SARS-CoV-2, which could be a starting
point for drug design attempts, aiming at optimizing the QuickVina 2-based
protein-ligand binding scores and further important objectives like QED drug-
likeliness and filter properties. In the experimental part we have shown that the
evolutionary processes are able to evolve interesting inhibitor candidates. Many of
them achieve promising metrics with ordinary structures, but also unconventional
candidates have been evolved that may be worth for a deeper analysis. As the
informative value of QuickVina 2 binding scores and also the further metrics
may be limited in practice, we understand our approach as AI-assisted virtual
screening of the chemical biomolecule space.

Future research will focus on the improvement of protein-ligand models for
more detailed and more efficient binding affinity models. Further, we see potential
to improve the SELFIES representation in terms of bloated strings that represent
comparatively small molecules and mechanisms to guarantee their validity.
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