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Abstract. Since many NP-complete graph problems have been shown
polynomial-time solvable when restricted to claw-free graphs, we study
the problem of determining the distance of a given graph to a claw-free
graph, considering vertex elimination as measure. Claw-free Vertex
Deletion (CFVD) consists of determining the minimum number of
vertices to be removed from a graph such that the resulting graph is
claw-free. Although CFVD is NP-complete in general and recognizing
claw-free graphs is still a challenge, where the current best algorithm for
a graph G has the same running time of the best algorithm for matrix
multiplication, we present linear-time algorithms for CFVD on weighted
block graphs and weighted graphs with bounded treewidth. Furthermore,
we show that this problem can be solved in linear time by a simpler
algorithm on forests, and we determine the exact values for full k-ary
trees. On the other hand, we show that Claw-free Vertex Deletion
is NP-complete even when the input graph is a split graph. We also
show that the problem is hard to approximate within any constant factor
better than 2, assuming the Unique Games Conjecture.

Keywords: Claw-free graph · Vertex deletion · Weighted vertex dele-
tion.

1 Introduction

In 1968, Beineke [1] introduced claw-free graphs as a generalization of line graphs.
Besides that generalization, the interest in studying the class of claw-free graphs
also emerged due to the results showing that some NP-complete problems are
polynomial time solvable in that class of graphs. For example, the maximum
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independent set problem is polynomially solvable for claw-free graphs, even on
its weighted version [11].

A considerable amount of literature has been published on claw-free graphs.
For instance, Chudnovsky and Seymour provide a series of seven papers describ-
ing a general structure theorem for that class of graphs, which are sketched in [5].
Some results on domination, Hamiltonian properties, and matchings are found
in [16], [19], and [29], respectively. In the context of parameterized complexity,
Cygan et al. [10] show that finding a minimum dominating set in a claw-free
graph is fixed-parameter tractable. For more on claw-free graphs, we refer to a
survey by Faudree, Flandrin and Ryjáček [12] and references therein.

The aim of our work is to obtain a claw-free graph by a minimum number of
vertex deletions. Given a graph G and a property Π , Lewis and Yannakakis [25]
define a family of vertex deletion problems (Π-Vertex Deletion) whose goal
is finding the minimum number of vertices which must be deleted from G so that
the resulting graph satisfies Π . Throughout this paper we consider the property
Π as belonging to the class of claw-free graphs. For a set S ⊆ V (G), we say that
S is a claw-deletion set of G if G \ S is a claw-free graph.

We say that a class of graphs C is hereditary if, for every graph G ∈ C, every
induced subgraph of G belongs to C. If either the number of graphs in C or
the number of graphs not in C is finite, then C is trivial. A celebrated result of
Lewis and Yannakakis [25] shows that for any hereditary and nontrivial graph
class C, Π-Vertex Deletion is NP-hard for Π being the property of belonging
to C. Therefore, Π-Vertex Deletion is NP-hard when Π is the property of
belonging to the class C of claw-free graphs. Cao et al. [4] obtain several results
when Π is the property of belonging to some particular subclasses of chordal
graphs. They show that transforming a split graph into a unit interval graph with
the minimum number of vertex deletions can be solved in polynomial time. In
contrast, they show that deciding whether a split graph can be transformed into
an interval graph with at most k vertex deletions is NP-complete. Motivated by
the works of Lewis and Yannakakis [25] and Cao et al. [4], since claw-free graphs
is a natural superclass of unit interval graphs, we study vertex deletion problems
associated with eliminating claws. The problems are formally stated below.

Problem 1. Claw-free Vertex Deletion (CFVD)
Instance: A graph G, and k ∈ Z

+.
Question: Does there exist a claw-deletion set S of G with |S| ≤ k?

Problem 2. Weighted Claw-free Vertex Deletion (WCFVD)
Instance: A graph G, a weight function w : V (G) → Z

+, and k ∈ Z
+.

Question: Does there exist a claw-deletion set S of G with
∑

v∈S w(v) ≤ k?

By Roberts’ characterization of unit interval graphs [27], Claw-free Ver-
tex Deletion on interval graphs is equivalent to the vertex deletion problem
where the input is restricted to the class of interval graphs and the target class
is the class of unit interval graphs, a long standing open problem (see e.g. [4]).
Then, the results by Cao et al. [4] imply that Claw-free Vertex Deletion is
polynomial-time solvable when the input graph is in the class of interval ∩ split
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graphs. Moreover, their algorithm could be also generalized to the weighted
version. In this paper, we show that Claw-free Vertex Deletion is NP-
complete when the input graph is in the class of split graphs.

The results by Lund and Yannakakis [26] imply that Claw-free Vertex
Deletion is APX -hard and admits a 4-approximating greedy algorithm. Even
for the weighted case, a pricing primal-dual 4-approximating algorithm is known
for the more general problem of 4-Hitting Set [17]. The CFVD problem is
NP-complete on bipartite graphs [33], and a 3-approximating algorithm is pre-
sented by Kumar et al. in [23] for weighted bipartite graphs. We prove that the
unweighted problem is hard to approximate within any constant factor better
than 2, assuming the Unique Games Conjecture, even for split graphs.

Regarding to parameterized complexity, Claw-free Vertex Deletion
is a particular case of H-free Vertex Deletion, which can be solved in
|V (H)|knO(1) time using the bounded search tree technique. In addition, it can
also be observed that CFVD is a particular case of 4-Hitting Set thus, by
Sunflower lemma, it admits a kernel of size O(k4), and the complexity can be
slightly improved [13]. With respect to width parameterizations, it is well-known
that every optimization problem expressible in LinEMSOL1 can be solved in lin-
ear time on graphs with bounded cliquewidth [6]. Since claws are induced sub-
graphs with constant size, it is easy to see that finding the minimum weighted
S such that G \ S is claw-free is LinEMSOL1-expressible. Therefore, WCFVD
can be solved in linear time on graphs with bounded cliquewidth, which includes
trees, block graphs and bounded treewidth graphs. However, the linear-time al-
gorithms based on the MSOL model-checking framework [7] typically do not
provide useful algorithms in practice since the dependence on the cliquewidth
involves huge multiplicative constants, even when the clique-width is bounded
by two (see [14]). In this work, we provide explicit discrete algorithms to effec-
tively solve WCFVD in linear time in practice on block graphs and bounded
treewidth graphs. Even though forests are particular cases of bounded treewidth
graphs and block graphs, we describe a specialized simpler linear-time algo-
rithm for CFVD on forests. This allows us to determine the exact values of
CFVD for a full k-ary tree T with n vertices. If k = 2, we show that a min-
imum claw-deletion set of T has cardinality (n + 1 − 2(log2(n+1)mod 3))/7, and
(nk − n+ 1− k(logk(nk−n+1)mod 2))/(k2 − 1), otherwise.

This paper is organized as follows. Section 2 is dedicated to show the hard-
ness and inapproximability results. Sections 3, 4, and 5 present results on forests,
block graphs, and bounded treewidth graphs, respectively. Due to space con-
straints, proofs of statements marked with ‘♣’ are deferred to the appendix, as
well as some additional results and well known definitions.

Preliminaries. We consider simple and undirected graphs, and we use standard
terminology and notation.

Let T be a tree rooted at r ∈ V (T ) and v ∈ V (T ). We denote by Tv the
subtree of T rooted at v, and by CT (v) the set of children of v in T . For v 6= r,
denote by pT (v) the parent of v in T , and by T+

v the subgraph of T induced by
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V (Tv)∪{pT (v)}. Let T+
r = T and pT (r) = ∅. When T is clear from the context,

we simply write p(v) and C(v).
The block-cutpoint-graph of a graph G is the bipartite graph whose vertex

set consists of the set of cutpoints of G and the set of blocks of G. A cutpoint
is adjacent to a block whenever the cutpoint belongs to the block in G. The
block-cutpoint-graph of a connected graph is a tree and can be computed in
O(|V (G)|+ |E(G)|) time [30].

Let G and H be two graphs. We say that G is H-free if G does not contain a
graph isomorphic to H as an induced subgraph. A claw is the complete bipartite
graph K1,3. The class of linear forests is equivalent to that of claw-free forests.
A vertex v in a claw C is a center if dC(v) = 3. The cardinality cdn(G) of a min-
imum claw-deletion set in G is the claw-deletion number of G. For our proofs, it
is enough to consider connected graphs, since a minimum (weight) claw-deletion
set of a graph is the union of minimum (weight) claw-deletion sets of its con-
nected components. Williams et al. [32] show that induced claws in an n-vertex
graph G can be detected in O(nω) time, where ω is the matrix multiplication
exponent. As far as we know, the best upper bound is ω < 2.3728639 [24].

2 Complexity and Approximability Results

The result of Lewis and Yannakakis [25] implies that Claw-free Vertex
Deletion is NP-complete. In this section, we show that the same problem is NP-
complete even when restricted to split graphs, a well known subclass of chordal
graphs. Before the proof, let us recall that the Vertex Cover (VC) problem
consists of, given a graph G and a positive integer k as input, deciding whether
there exists X ⊆ V (G), with |X | ≤ k, such that every edge of G is incident to a
vertex in X .

Theorem 1. Claw-free Vertex Deletion on split graphs is NP-complete.

Proof. Claw-free Vertex Deletion is clearly in NP since claw-free graphs
can be recognized in polynomial time [32]. To show NP-hardness, we employ a
reduction from Vertex Cover on general graphs [15].

Let (G, k) be an instance of vertex cover, where V (G) = {v1, . . . , vn}, and
E(G) = {e1, . . . , em}. Construct a split graph G′ = (C ∪ I, E′) as follows. The
independent set is I = {v′1, . . . , v

′
n}. The clique C is partitioned into sets Ci,

1 ≤ i ≤ m + 1, each on 2n vertices. Given an enumeration e1, . . . , em of E(G),
if ei = vjvℓ, make v′j and v′ℓ adjacent to every vertex in Ci.

We prove that G has a vertex cover of size at most k if and only if G′ has a
claw-deletion set of size at most k. We present Claim 2 first.

Claim 2 Every claw in G′ contains exactly two vertices from I.

Proof. Let C′ be a claw in G′. Since C′ ∩ C is a clique, |C′ ∩ C| ≤ 2, thus
|C′ ∩ I| ≥ 2 and the center of the claw must be in C. On the other hand, by
construction, dI(u) = 2 for every u ∈

⋃m
i=1 Ci. This implies |C′ ∩ I| ≤ 2. ♦
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Suppose that X is a vertex cover of size at most k in G. Then, every edge
of G is incident to a vertex in X . Let ei ∈ E(G) and X ′ = {v′ : v ∈ X}.
By construction, every vertex in Ci is adjacent to a vertex in X ′, therefore
|NG′\X′(Ci) ∩ I| ≤ 1. It follows by Claim 2 that G′ \X ′ is claw-free.

Now, suppose that S′ is a claw-deletion set of G′ of size at most k. Recall
that |Ci| = 2n, for every 1 ≤ i ≤ m+1. Since |S′| ≤ k, it follows that there exist
wi ∈ Ci \ S′, for every 1 ≤ i ≤ m + 1. Let 1 ≤ i ≤ m and NI(wi) = {u′, v′}.
Note that {u′, v′, wi, wm+1} induces a claw in G′. Since S′ is a claw-deletion set
of G′, we have that S′ ∩ {u′, v′} 6= ∅. Let S = {v : v′ ∈ S′ ∩ I}. By construction,
every uv ∈ E(G) is incident to a vertex in S, thus S is a vertex cover of G. ⊓⊔

Theorem 3 provides a lower bound for the approximation factor of CFVD.
For terminology not defined here, we refer to Crescenzi [8].

Theorem 3. Claw-free Vertex Deletion cannot be approximated with 2−
ε ratio for any ε > 0, even on split graphs, unless Unique Games Conjecture
fails.

Proof. The Unique Games Conjecture was introduced by Khot [20] in 2002.
Some hardness results have been proved assuming that conjecture, for instance,
see [21]. Given that Vertex Cover is hard to approximate to within 2 − ε
ratio for any ε > 0 assuming the Unique Games Conjecture [20], we perform an
approximation-preserving reduction from Vertex Cover. Let G be an instance
of Vertex Cover. Let f(G) = G′ where G′ is the instance of Claw-free
Vertex Deletion constructed fromG according to the reduction of Theorem 1.
From Theorem 1 we know that G has a vertex cover of size at most k if and only
if G′ has a claw-deletion set of size at most k. Recall that k ≤ n = |V (G)|. Then,
for every instance G of Vertex Cover it holds that optCFVD(G

′) = optVC(G).
Now, suppose that S′ is a (2− ε)-approximate solution of G′ for CFVD. Recall
that |Ci| = 2n, for every 1 ≤ i ≤ m + 1. Since optCFVD(G

′) = optVC(G) ≤ n,
it follows that |S′| < 2n, thus, there exists x ∈ Cm+1 \ S′, and w ∈ Ci \ S′, for
every 1 ≤ i ≤ m. Again, let NI(w) = {u′, v′}. Note that {u′, v′, w, x} induces a
claw in G′. Since S′ is a claw-deletion set of G′, we have that S′ ∩ {u′, v′} 6= ∅.
Let S = {v : v′ ∈ S′ ∩ I}. By construction, every uv ∈ E(G) is incident to a
vertex in S, and therefore S is a vertex cover of G. Since |S| ≤ |S′| and S′ is a
(2 − ε)-approximate solution of G′, then |S| ≤ |S′| ≤ (2 − ε) · optCFVD(G

′) =
(2− ε) · optVC(G). Therefore, if CFVD admits a (2− ε)-approximate algorithm
then Vertex Cover also admits a (2−ε)-approximate algorithm, which implies
that the Unique Games Conjecture fails [20]. ⊓⊔

3 Forests

We propose Algorithm 1 to compute a minimum claw-deletion set S of a rooted
tree T . The correctness of such algorithm follows in Theorem 8.
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Algorithm 1: Claw-Deletion-Set(T , v, p)

Input: A rooted tree T , a vertex v of T , and the parent p of v in T .
Output: A minimum claw-deletion set S of T+

v , such that: if
cdn(T+

v ) = 1 + cdn(Tv) then p ∈ S; if cdn(T+
v ) = cdn(Tv) and

cdn(Tv) = 1 + cdn(Tv \ {v}) then v ∈ S.

1 if C(v) = ∅ then

2 return ∅
3 else

4 S := ∅
5 foreach u ∈ C(v) do
6 S := S ∪ Claw-Deletion-Set(T, u, v)

7 c := |C(v) \ S|
8 if c ≥ 3 then

9 S := S ∪ {v}
10 else if c = 2 and p 6= ∅ and v /∈ S then

11 S := S ∪ {p}

12 return S

Theorem 4. (♣) Algorithm 1 is correct. Thus, given a forest F , and a positive
integer k, the problem of deciding whether F can be transformed into a linear
forest with at most k vertex deletions can be solved in linear time.

Moreover, based on the algorithm, we have the following results.

Corollary 1. (♣) Let T be a full binary tree with n vertices, and t = log2(n+
1)mod 3. Then cdn(T ) = (n+ 1− 2t)/7.

Corollary 2. (♣) Let T be a full k-ary tree with n vertices, for k ≥ 3, and
t = logk(nk − n+ 1)mod 2. Then cdn(T ) = (nk − n+ 1− kt)/(k2 − 1).

4 Block Graphs

We describe a dynamic programming algorithm to compute the minimum weight
of a claw-deletion set in a weighted connected block graph G. The algorithm to
be presented can be easily modified to compute also a set realizing the minimum.

If the block graph G has no cutpoint, the problem is trivial as G is already
claw-free. Otherwise, let T be the block-cutpoint-tree of the block graph G.
Consider T rooted at some cutpoint r of G, and let v ∈ V (T ). Let Gv the
subgraph of G induced by the blocks in Tv. For v 6= r, let G+

v be the subgraph
of G induced by the blocks in T+

v . If b is a block, let G−
b = Gb \ {pT (b)} (notice

that pT (b) is a cutpoint of G, and it is always defined because r is not a block),
and let s(b) be the sum of weights of the vertices of b that are not cutpoints of
G (s(b) = 0 if there is no such vertex).

We consider three functions to be computed for a vertex v of T that is a
cutpoint of G:
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– f1(v): the minimum weight of a claw-deletion set of Gv containing v.
– f2(v): the minimum weight of a claw-deletion set of Gv not containing v.
– For v 6= r, f3(v): the minimum weight of a claw-deletion set of G+

v containing
neither v nor all the vertices of pT (v) \ {v} (notice that pT (v) is a block).

The parameter that solves the whole problem is f(r) = min{f1(r), f2(r)}.
We define also three functions to be computed for a vertex b of T that is a

block of G:

– f1(b): the minimum weight of a claw-deletion set ofG−
b containing b\{pT (b)}.

– f2(b): the minimum weight of a claw-deletion set of G−
b .

– f3(b): the minimum weight of a claw-deletion set of Gb not containing pT (b).

We compute the functions in a bottom-up order as follows, where v (resp. b)
denotes a vertex of T that is a cutpoint (resp. block) of G. Notice that the leaves
of T are blocks of G.

If C(b) = ∅, then f1(b) = s(b), f2(b) = 0, and f3(b) = 0. Otherwise,

– f1(v) = w(v) +
∑

b∈C(v) f2(b); f1(b) = s(b) +
∑

v∈C(b) f1(v);

– if |C(v)| ≤ 2, then f2(v) =
∑

b∈C(v) f3(b); if |C(v)| ≥ 3, then f2(v) =

minb1,b2∈C(v)(
∑

b∈{b1,b2}
f3(b) +

∑

b∈C(v)\{b1,b2}
f1(b));

– f2(b) = min{
∑

v∈C(v)min{f1(v), f3(v)}, minv1∈C(v)(s(b) + f2(v1)

+
∑

v∈C(v)\{v1}
f1(v))};

– f3(b) =
∑

v∈C(b)min{f1(v), f3(v)};

– if C(v) = {b}, then f3(v) = f3(b);
if |C(v)| ≥ 2, then f3(v) = minb1∈C(v)(f3(b1) +

∑

b∈C(v)\{b1}
f1(b)).

The explanation of the correctness of these formulas follows in Theorem 5.

Theorem 5. (♣) Let G be a weighted connected block graph which is not com-
plete. Let T be the block-cutpoint-tree of G, rooted at a cutpoint r. The previous
function f(r) computes correctly the minimum weight of a claw-deletion set of G.

We obtain this result as a corollary.

Corollary 3. (♣) Let G be a weighted block graph with n vertices and m edges.
The minimum weight of a claw-deletion set of G can be determined in O(n+m)
time.

5 Graphs of Bounded Treewidth

Next, we present an algorithm able of solving Weighted Claw-free Vertex
Deletion in linear time on graphs with bounded treewidth, which also implies
that we can recognize claw-free graphs in linear time when the input graph has
treewidth bounded by a constant. For definitions of tree decompositions and
treewidth, we refer the reader to [9,22,28].
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Graphs of treewidth at most k are called partial k-trees. Some graph classes
with bounded treewidth include: forests (treewidth 1); pseudoforests, cacti, out-
erplanar graphs, and series-parallel graphs (treewidth at most 2); Halin graphs
and Apollonian networks (treewidth at most 3) [2]. In addition, control flow
graphs arising in the compilation of structured programs also have bounded
treewidth (at most 6) [31].

Based on the following results we can assume that we are given a nice tree
decomposition of the input graph G.

Theorem 6. [3] There exists an algorithm that, given a n-vertex graph G and
an integer k, runs in time 2O(k) · n and either outputs that the treewidth of G is
larger than k, or constructs a tree decomposition of G of width at most 5k + 4.

Lemma 1. [22] Given a tree decomposition (T, {Xt}t∈V (T )) of G of width at
most k, one can compute in time O(k2 · max{|V (T )|, |V (G)|}) a nice tree de-
composition of G of width at most k that has at most O(k · |V (G)|) nodes.

Now we are ready to use a nice tree decomposition in order to obtain a linear-
time algorithm for Weighted Claw-free Vertex Deletion on graphs with
bounded treewidth.

Theorem 7. Weighted Claw-free Vertex Deletion can be solved in lin-
ear time on graphs with bounded treewidth. More precisely, there is a 2O(k2) · n-
time algorithm to solve Weighted Claw-free Vertex Deletion on n-vertex
graphs G with treewidth at most k.

Proof. Let G be a weighted n-vertex graph with tw(G) ≤ k. Given a nice tree
decomposition T = (T, {Xt}t∈V (T )) of G, we describe a procedure that com-
putes the minimum weight of a claw-deletion set of G (cdnw(G)) using dynamic
programming. For a node t of T , let Vt =

⋃

t′∈Tt
Xt′ . First, we will describe what

should be stored in order to index the table. Given a claw-deletion set Ŝ of G,
for any bag Xt there is a partition of Xt into St, At, Bt and Ct where

– St is the set of vertices of Xt that are going to be removed (St = Ŝ ∩Xt);
– At = {v ∈ Xt \ Ŝ : |NVt\Xt

(v) \ Ŝ| = 0} is the set of non-removed vertices of

Xt that are going to have no neighbor in Vt \Xt after the removal of Ŝ;
– Bt = {v ∈ Xt \ Ŝ : NVt\Xt

(v) \ Ŝ induces a non-empty clique} is the set of

non-removed vertices of Xt that, after the removal of Ŝ, are going to have
neighbors in Vt \Xt, but no pair of non-adjacent neighbors;

– Ct = {v ∈ Xt \ Ŝ : there exist u, u′ ∈ NVt\Xt
(v)\ Ŝ with uu′ /∈ E(G)} is the

set of non-removed vertices of Xt that, after the removal of Ŝ, are going to
have a pair of non-adjacent neighbors in Vt \Xt.

In addition, the claw-deletion set Ŝ also provides the set Zt = {(x, y) ∈
(Xt \ Ŝ) × (Xt \ Ŝ) : ∃ w ∈ Vt \ (Xt ∪ Ŝ) with xy, wy ∈ E(G) and wx /∈ E(G)}
which consists of ordered pairs of vertices x, y of Xt that, after the removal of
Ŝ, are going to induce a P3 = x, y, w with some w ∈ Vt \Xt.
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Therefore, the recurrence relation of our dynamic programming has the sig-
nature cdnw[t, S, A,B,C, Z], representing the minimum weight of a vertex set
whose removal from G[Vt] leaves a claw-free graph, such that S,A,B,C form a
partition of Xt as previously described, and Z is as previously described too.
The generated table has size 2O(k2) · n.

Function cdnw is computed for every node t ∈ V (T ), for every partition
S ∪ A ∪ B ∪ C of Xt, and for every Z ⊆ Xt × Xt. The algorithm performs
the computations in a bottom-up manner. Let T rooted at r ∈ V (T ). Notice
that Vr = V (G), then cdnw[r, ∅, ∅, ∅, ∅, ∅] is the weight of a minimum weight
claw-deletion set of Gr = G, which solves the whole problem.

We present additional terminology. Let t be a node in T with children t′ and
t′′, and X ⊆ Xt. To specify the sets S,A,B,C and Z on t′ and t′′, we employ
the notation S′, A′, B′, C′, Z ′ and S′′, A′′, B′′, C′′, Z ′′, respectively.

Now, we describe the recurrence formulas for the function cdnw defined,
based on the types of nodes in T .

– Leaf node. If t is a leaf node in T , then cdnw[t, ∅, ∅, ∅, ∅, ∅] = 0. (1)

– Introduce node. Let t be an introduce node with child t′ such that Xt =
Xt′ ∪ {v} for some vertex v /∈ Xt′ . Let S ∪ A ∪ B ∪ C be a partition of Xt,
and Z ⊆ Xt ×Xt. The recurrence is given by the following formulas.

• If v ∈ S, then
cdnw[t, S, A,B,C, Z] = cdnw[t

′, S \ {v}, A,B,C, Z] + w(v). (2.1)

• If v ∈ A, then cdnw[t, S, A,B,C, Z] = cdnw[t
′, S, A \ {v}, B, C, Z ′], (2.2)

if NXt\S(v) does not induce a K3, for every (x, y) ∈ Z, vx ∈ E(G) or
vy /∈ E(G), NXt

(v) ∩C = ∅, there is Z ′ such that Z = Z ′ ∪ {(v, y) : y ∈
B ∪ C and vy ∈ E(G)}.
Otherwise, cdnw[t, S, A,B,C, Z] = ∞.

• If v ∈ B ∪C, then cdnw[t, S, A,B,C, Z] = ∞. (2.3)

– Forget node. Consider t a forget node with child t′ such that Xt = Xt′ \{v}
for some vertex v ∈ Xt′ . Let S ∪ A ∪ B ∪ C be a partition of Xt, and
Z ⊆ Xt ×Xt.
If NA(v) 6= ∅, then cdnw[t, S, A,B,C, Z] = cdnw[t

′, S∪{v}, A,B,C, Z]. (3.1)
Otherwise, cdnw[t, S, A,B,C, Z] =
min

{

cdnw[t
′, S ∪ {v}, A,B,C, Z], cdnw[t

′, S, A′, B′, C′, Z ′]
}

, (3.2)
among every (S,A′, B′, C′, Z ′) such that:
Z = (Z ′ \ {(x, y) : x = v or y = v}) ∪ {(x, y) ∈ Xt × Xt : xy, vy ∈
E(G) and vx /∈ E(G)},
A = A′ \NG[v], B = ((B′ \ {b ∈ B′ : (v, b) ∈ Z ′}) ∪ (A′ ∩NG(v))) \ {v},
C = (C′ ∪ {b ∈ B′ : (v, b) ∈ Z ′}) \ {v}.

– Join node. Consider t a join node with children t′, t′′ such that Xt = Xt′ =
Xt′′ . Let S∪A∪B ∪C be a partition of Xt, and Z ⊆ Xt×Xt. The recursive
formula is given by
cdnw[t, S, A,B,C, Z] =
min

{

cdnw[t
′, S′, A′, B′, C′, Z ′] + cdnw[t

′′, S′′, A′′, B′′, C′′, Z ′′]
}

− w(S), (4)
among every (S′, A′, B′, C′, Z ′) and (S′′, A′′, B′′, C′′, Z ′′) such that: S =
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S′ = S′′; A = A′ ∩A′′; B = (A′ ∩B′′)∪ (A′′ ∩B′); C = C′ ∪C′′ ∪ (B′ ∩B′′);
Z = Z ′ ∪ Z ′′.

We explain the correctness of these formulas. The base case is when t is a
leaf node. In this case Xt = ∅, then all the sets S,A,B,C, Z are empty. The set
Xt = ∅ also implies that G[Vt] is the empty graph, which is claw-free. Hence,
cdnw(G[Vt]) = 0 and Formula (1) holds.

Let t be an introduce node with child t′, and v the vertex introduced at t.
First, suppose that v ∈ S. We assume by inductive hypothesis that G[Vt′ \ Ŝ]
is claw-free. Since v ∈ S ⊆ Ŝ, we obtain that G[Vt \ (Ŝ ∪ {v})] is claw-free.
Then, the weight of a minimum weight claw-deletion set of G[Vt] is increased
by w(v) from the one of G[Vt′ ], stored at cdnw[t

′, S′, A′, B′, C′, Z ′]. Since v ∈ S,
then v /∈ S′ and the sets A′, B′, C′, Z ′ in node t′ are the same A,B,C, Z of t.
Consequently Formula (2.1) holds.

Now, suppose that v ∈ A ∪ B ∪ C. By definition of tree decomposition,
v /∈ NVt\Xt

(Xt). Then, if v ∈ B∪C, the partition S∪A∪B∪C is not defined as
required, and this justifies Formula (2.3). Thus, let v ∈ A. We have three cases in
which G[Vt \ Ŝ] contains an induced claw: (i) NXt

(v) induces a K3, or (ii) there
exists (x, y) ∈ Z, such that vx /∈ E(G) and vy ∈ E(G), or (iii) there exists c ∈ C
such that cv ∈ E(G). A set Z according to definition of cdnw is obtained by Z ′

together with the pairs (x, y) such that x = v, xy ∈ E(G) and y has at least one
neighbor in Vt\(Xt∪Ŝ). (Note that v = y is never achieved, since v is an introduce
node and v /∈ NVt\Xt

(Xt)). Then, Z = Z ′ ∪ {(v, y) : y ∈ B ∪C and vy ∈ E(G)}.
Hence, Formula (2.2) is justified by the negation of each of cases (i), (ii), (iii).

Next, let t be a forget node with child t′. Let v be the vertex forgotten at t.
We consider NA(v) 6= ∅ or not. Notice that if NG(v) ∩ A 6= ∅ and v /∈ Ŝ, then
we have a contradiction to the definition of A, because some a ∈ A is going to
have a neighbor in Vt \ (Xt ∪ Ŝ). Therefore, if NA(v) 6= ∅, v indeed must belong
to Ŝ, then Formula (3.1) holds.

Otherwise, consider thatNA(v) = ∅. In this case, either v ∈ Ŝ or v /∈ Ŝ. Then,
we choose the minimum between these two possibilities. If v ∈ Ŝ we obtain the
value stored at cdnw[t

′, S∪{v}, A,B,C, Z]. Otherwise, let v /∈ Ŝ. It follows that,
for some a ∈ A, if va ∈ E(G), then a must now belong to B. Consequently,
A must be A′ \ NG[v]. Let B = {b ∈ B′ : (v, b) ∈ Z ′}. Since v /∈ Ŝ, for every
x ∈ B, x must belong to C. Thus, the set B is given by B′ \ B together with the
vertices from A′ that now belong to B. Recall that v /∈ Xt, then v /∈ B. Hence,
B = ((B′ \B)∪ (A′ ∩NG(v))) \ {v}. Finally, C = (C′ ∪B) \ {v}. Hence, Formula
(3.2) holds.

To conclude, let t be a join node with children t′ and t′′. Note that the
graphs induced by Vt′ and by Vt′′ can be distinct. Then, we must sum the values
of cdnw in t′ and in t′′ to obtain cdnw in t, and choose the minimum of all of
these possible sums. Finally, we subtract w(S) from the previous result, since
w(S) is counted twice.

By definition of join node, Xt = Xt′ = Xt′′ , then S = S′ = S′′. Let x ∈ Xt.
We have that x ∈ A if and only if |NVt′\Xt′

(x) \ Ŝ| = |NVt′′\Xt′′
(x) \ Ŝ| = 0.

Then, A = A′ ∩ A′′.
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Notice that x ∈ B if and only if (|NVt′\Xt′
(v)\Ŝ| = 0 and |NVt′′\Xt′′

(v)\Ŝ| >

1) or (|NVt′′\Xt′′
(v) \ Ŝ| = 0 and |NVt′\Xt′

(v) \ Ŝ| > 1). Consequently x ∈ B if
and only if x ∈ (A′∩B′′)∪(A′′∩B′). This implies that B = (A′∩B′′)∪(A′′∩B′).

Now, x ∈ C if and only if x ∈ C′ or x ∈ C′′ or (x ∈ B′ and x ∈ B′′).
(Note that by the definition of tree decomposition, the forgotten nodes in Gt′

and Gt′′ are distinct and therefore the condition x ∈ B′ and x ∈ B′′ is safe).
Consequently, C = C′ ∪ C′′ ∪ (B′ ∩B′′).

Finally, let x, y ∈ Xt. By definition of Z ′, if (x, y) ∈ Z ′, then there exists
w ∈ Vt′ \ (Xt′ ∪ Ŝ) with xy, wy ∈ E(G) and wx /∈ E(G). This implies that
w ∈ Vt \ (Xt ∪ Ŝ) and xy, wy ∈ E(G) and wx /∈ E(G). Hence, (x, y) ∈ Z. By a
similar argument, we conclude that if (x, y) ∈ Z ′′, then (x, y) ∈ Z. This gives
Z = Z ′ ∪ Z ′′, and completes Formula (4).

Since the time to compute each entry of the table is upper bounded by 2O(k2)

(see Appendix) and the table has size 2O(k2) ·n, the algorithm can be performed

in 2O(k2) · n time. This implies linear-time solvability for graphs with bounded
treewidth. ⊓⊔
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Appendix

Some Definitions. Let G be a graph. Given a vertex v ∈ V (G), its open
neighborhood consists of all adjacent vertices to v and is denoted by NG(v),
whereas its closed neighborhood is the set NG[v] = NG(v) ∪ {v}. For a set U ⊆
V (G), let NG(U) =

⋃

v∈U NG(v)\U , and NG[U ] = NG(U)∪U . When the graph
G is clear from the context, we denote NG(v) ∩ U by NU (v).

The degree of a vertex v ∈ V (G) on a set U ⊆ V (G), is dU (v) = |NG(u)∩U |.
If U = V (G), we simply write dG(u). We say that v ∈ V (G) is an isolated (resp.
a leaf ) vertex if dG(v) = 0 (resp. dG(v) = 1). A set U ⊆ V (G) is called a clique
if the vertices in U are pairwise adjacent.

For U ⊆ V (G), the subgraph of G induced by U , denoted by G[U ], is the
graph whose vertex set is U and whose edge set consists of all the edges in E(G)
that have both endpoints in U . If H is a subgraph of G, we write H ⊆ G. For
U ⊆ V (G), we denote by G \ U the graph G[V (G) \ U ].

A graph is connected is every pair of vertices is joined by a path. A maximal
connected subgraph of G is called a connected component of G. A graph G is
called k-connected if G \X is connected for every set X ⊆ V (G) with |X | ≤ k.
A block of a graph G is a maximal 2-connected subgraph of G. A vertex v of a
graph G is a cutpoint if G \ {v} has more connected components than G.

A block graph is a graph in which every block is a clique. A forest is an acyclic
graph or, equivalently, a graph in which every block is an edge. A linear forest
is the disjoint union of induced paths. A tree is a connected forest.

A k-ary tree is a rooted tree T in which every node of T has at most k
children. In particular, for k = 2, and k = 3 we have the binary, and the ternary
tree, respectively. A strict k-ary tree is a rooted tree T in which every node of T
has either zero or k children. The depth of a vertex v ∈ V (T ) is the length of a
path from v to r in T . A full k-ary tree is a strict k-ary tree in which all leaves
have the same depth.

A graph G is a split graph if V (G) admits a partition V (G) = C ∪ I into a
clique C and an independent set I. A graph is chordal if every cycle of length
greater than three has a chord, i.e., an edge between two non-consecutive vertices
of the cycle. Forests, block graphs, and split graphs are all subclasses of chordal
graphs.

Definition 1. [28] A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )),
where T is a tree whose every node t is assigned a vertex subset Xt ⊆ V (G) called
bag, such that the following three conditions hold:

–
⋃

t∈V (T ) Xt = V (G).

– For every uv ∈ E(G), there exists a node t of T such that bag Xt contains
both u and v.

– For every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt} induces a connected
subgraph of T .

The width of a tree decomposition is maxt∈V (T )(|Xt| − 1). The treewidth
tw(G) of a graph G is the minimum possible width of a tree decomposition of
G.
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Definition 2. [22] A nice tree decomposition is a tree decomposition with one
special node r called root with Xr = ∅, and each node is one of the following
types:

– Leaf node: a leaf ℓ of T with Xℓ = ∅.
– Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪{v}

for some vertex v /∈ Xt′ ; we say that v is introduced at t.
– Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {v} for

some vertex v ∈ Xt′ ; we say that v is forgotten at t.
– Join node: a node t with two children t′, t′ such that Xt = Xt′ = Xt′ .

Proof of Theorem 4. We will first prove that Algorithm 1 is correct for trees
and that it runs in linear time. Then we will generalize the result to forests.

Theorem 8. Let T be a rooted tree of order n. A minimum claw-deletion set of
T can be found by Algorithm 1 in O(n) time.

Proof. Let T be a rooted tree. We will prove by induction that Algorithm 1 is
correct. The basis is the case when C(v) = ∅. Since T+

v consists either of a single
edge or of a single vertex (when p = ∅), clearly the empty set is a minimum
claw-deletion set of T+

v . Moreover, cdn(T+
v ) = cdn(Tv) = cdn(Tv \ {v}). Hence,

function Claw-Deletion-Set is correct when C(v) = ∅.
Suppose that C(v) 6= ∅ and let C(v) = {u1, . . . , uk}, for k ≥ 1. For the

inductive hypothesis, we assume that Si = Claw-Deletion-Set(T, ui, v) is a
minimum claw-deletion set of T+

ui
, for every 1 ≤ i ≤ k, such that: if cdn(T+

ui
) =

1 + cdn(Tui
) then v ∈ Si; if cdn(T

+
ui
) = cdn(Tui

) and cdn(Tui
) = 1 + cdn(Tui

\
{ui}) then ui ∈ Si.

Let S = S1 ∪ . . . ∪ Sk.
If v ∈ S, then the connected components of T+

v \S are {p} (when p 6= ∅) and
the connected components of T+

ui
\S, for 1 ≤ i ≤ k, which, by inductive hypoth-

esis, are induced paths. So S is a claw-deletion set of T+
v . Also, by minimality,

Si \{v} is a minimum claw-deletion set of Tui
, for every 1 ≤ i ≤ k. Let 1 ≤ j ≤ k

such that v ∈ Sj . Then cdn(T+
v ) ≥ cdn(Tv) ≥ cdn(T+

uj
)+

∑

1≤i≤k;i6=j cdn(Tui
) =

|S|. Thus, S is a minimum claw-deletion set of T+
v and cdn(T+

v ) = cdn(Tv). This
also implies that S satisfies the further conditions required to the output.

From now on, suppose that v 6∈ S. Then, by inductive hypothesis, cdn(T+
ui
) =

cdn(Tui
) and, moreover, Si is also a minimum claw-deletion set of Tui

, for every
1 ≤ i ≤ k. Let c = |C(v) \ S|. For each ui ∈ C(v) \ S, it also holds cdn(Tui

) =
cdn(Tui

\ {ui}) and Si is a minimum claw-deletion set of Tui
\ {ui}

Suppose first that c ≤ 1, i.e., C(v) \ S ⊆ {uj} for some 1 ≤ j ≤ k. Then,
the connected components of T+

v \ S are the connected components of Tui
\ S,

for 1 ≤ i ≤ k, i 6= j, plus the connected components of T+
uj

\ S which, by
inductive hypothesis, are induced paths, with the addition of vertex p (when
p 6= ∅) to the path containing v. It is easy to see that the resulting component
is still an induced path. So S is a claw-deletion set of T+

v . Since cdn(T+
v ) ≥

cdn(Tv) ≥
∑

1≤i≤k cdn(Tui
) = |S|, S is a minimum claw-deletion set of T+

v and



Linear-time Algorithms for Eliminating Claws in Graphs 15

cdn(T+
v ) = cdn(Tv) = cdn(Tv \{v}). This also implies that S satisfies the further

conditions required to the output.
Suppose now that c ≥ 3. Using the inductive hypothesis and similarly to the

case where v ∈ S, it is not difficult to see that S∪{v} is a claw-deletion set of T+
v .

Moreover, cdn(T+
v ) ≥ cdn(Tv) ≥ cdn(T [{v} ∪C(v) \ S]) +

∑

ui∈C(v)\S cdn(Tui
\

{ui}) +
∑

ui∈C(v)∩S cdn(Tui
) = 1 + |S|. This shows that S ∪ {v} is a minimum

claw-deletion set of T+
v and cdn(T+

v ) = cdn(Tv). So S∪{v} satisfies the required
conditions.

Finally, suppose that c = 2, i.e., C(v)\S = {uj, uj′} for some 1 ≤ j < j′ ≤ k.
The connected components of Tv \ S are the connected components of Tui

\ S,
for 1 ≤ i ≤ k, i 6= j, j′ plus the connected components of T+

uj
\ S and of T+

uj′
\ S

not containing v which, by inductive hypothesis, are induced paths, plus a path
having ujvuj′ as a subpath. So S is a claw-deletion set of Tv and S ∪ {p} is a
claw-deletion set of T+

v when p 6= ∅. Notice that, when p 6= ∅, T [{p, v, uj, uj′}]
is a claw, so cdn(T [{p, v, uj, uj′}]) = 1. When p = ∅, cdn(T [{p, v, uj, uj′}]) = 0.
Then cdn(T+

v ) ≥ cdn(T [{p, v, uj, uj′}]) + cdn(Tuj
\ {uj}) + cdn(Tuj′

\ {uj′}) +
∑

1≤i≤k;i6=j,j′ cdn(Tui
) = 1+ |S| when p 6= ∅, and |S| otherwise. This shows that

S ∪ {p} (resp. S) is a minimum claw-deletion set of T+
v when p 6= ∅ (resp. when

p = ∅). In the first case, by minimality, S is also a minimum claw-deletion set of
Tv, so cdn(T+

v ) = 1 + cdn(Tv), and S ∪ {p} satisfies the required conditions. In
the second case, cdn(Tv) = cdn(Tv \ {v}), so S satisfies the required conditions.

Therefore, Claw-Deletion-Set returns correctly a minimum claw-deletion
set of T+

v satisfying that if cdn(T+
v ) = 1+cdn(Tv) then p ∈ S, and if cdn(T+

v ) =
cdn(Tv) and cdn(Tv) = 1 + cdn(Tv \ {v}) then v ∈ S.

Next, we perform the runtime analysis of Algorithm 1.
First, we have that checking each conditional statement of Algorithm 1 re-

quires O(1) time if the tree is represented by lists of children. Initializing S = ∅
at the very beginning of the algorithm can be done in O(n) time by represent-
ing S by an array. In that case, adding a vertex to S can be done in constant
time. The assignment and union operations of Line 6 of the algorithm are not
necessary if all the recursive calls work on the same array representing the set S.
Line 7 computes the number of children of a vertex v which are not in S. Having
the list of children and S represented by an array, this step takes O(dT (v)) time.
Since function Claw-Deletion-Set is executed exactly one time for every ver-
tex v ∈ V (T ), we conclude that Algorithm 1 runs in O(n+m) = O(n) time. ⊓⊔

From Theorem 8, we obtain the following Corollary 4, and together imply
Theorem 4.

Corollary 4. Given a forest F , and a positive integer k, the problem of deciding
whether F can be transformed into a linear forest with at most k vertex deletions
can be solved in linear time.

Exact Values for Full k-ary Trees. We determine the claw-deletion number
of a k-ary tree T with height h, as a function of k and h. The cases k = 2 and
k ≥ 3 follow in Theorems 9 and 10, respectively.
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Theorem 9. Let T be a full binary tree of height h, and t = (h + 1)mod 3.
Then cdn(T ) = (2h+1 − 2t)/7.

Proof. Algorithm 1 chooses a claw-deletion S of T comprised by all the vertices
in depth h − 2. Subsequently, the same procedure chooses all the vertices in
depth h− 5, and so on, until the depth t = (h+ 1)mod 3. For every 1 ≤ i ≤ k,
the amount of vertices in depth i is 2i. Then

cdn(T ) = |S| = 2h−2 + 2h−5 + . . .+ 2t.

That leads to a geometric progression with ratio r = 2−3, and (h − t + 1)/3
terms, which results in cdn(T ) = (2h+1 − 2t)/7. ⊓⊔

The result of Theorem 9 can be rewritten as a function of the order of T .

Proof of Corollary 1. Let T be a full binary tree with n vertices, and t =

log2(n+ 1)mod 3. Then cdn(T ) =
n+ 1− 2t

7
.

Proof. We know that a full binary tree with n vertices has height h = log2(n+
1)− 1. By Theorem 9 with t = log2(n+ 1)mod 3, we obtain

cdn(T ) =
2h+1 − 2t

7
=

2log2(n+1) − 2t

7
=

n+ 1− 2t

7
.

⊓⊔

Next, we proceed to full k-ary trees with k ≥ 3 in Theorem 10.

Theorem 10. Let T be a full k-ary tree of height h, for k ≥ 3, and t = (h −
1)mod 2. Then cdn(T ) = (kh+1 − kt)/(k2 − 1).

Proof. Algorithm 1 chooses a claw-deletion S of T comprised by all the vertices
in depth h − 1, all the vertices in depth h − 3, and so on, until the depth
t = (h− 1)mod 2. Then,

cdn(T ) = |S| = kh−1 + kh−3 + . . .+ kt.

That leads to a geometric progression with ratio r = k−2, and (h − t + 1)/2
terms, which follows that cdn(T ) = (kh+1 − kt)/(k2 − 1). ⊓⊔

Theorem 10 rewritten as a function of the order of T follows below.

Proof of Corollary 2. Let T be a full k-ary tree with n vertices, for k ≥ 3,

and t = logk(nk − n+ 1)mod 2. Then cdn(T ) =
nk − n+ 1− kt

k2 − 1
.

Proof. We know that a full k-ary tree with n vertices has height h = logk(nk −
n+ 1)− 1. By Theorem 9 with t = logk(nk − n+ 1)mod 2, we obtain

cdn(T ) =
kh+1 − kt

k2 − 1
=

klogk(nk−n+1) − kt

k2 − 1
=

nk − n+ 1− kt

k2 − 1
.

⊓⊔
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We establish the proportion of vertices in V (T ) that belongs to a claw-
deletion set of T .

Corollary 5. Let T be a full k-ary tree of order n and height h. Let t = (h +
1)mod 3 and t′ = (h− 1)mod 2. It holds that

cdn(T )

n
=

{

2h+1−2t

7(2h+1−1)
, if k = 2;

kh+1−kt′

(k+1)(kh+1−1)
, if k ≥ 3.

In addition, t = t′ = 0 implies

cdn(T )

n
=

{

1/7, if k = 2;
1/(k + 1), if k ≥ 3.

Among full k-ary trees, k = 3 maximizes the proportion of vertices in a
claw-deletion set.

Proof of Theorem 5. Let G be a weighted connected block graph which is
not complete. Let T be the block-cutpoint-tree of G, rooted at a cutpoint r. The
previous function f(r) computes correctly the minimum weight of a claw-deletion
set of G.

Proof. We will prove by induction (bottom-up), that f1, f2, f3 on V (T ) correctly
compute the weight stated in their definition. In that case, being r a cutpoint
of G and Gr = G, it is clear that f(r) computes the minimum weight of a
claw-deletion set of G.

Let b be a leaf of T . Then b is a block of G, and Gb and G−
b are complete, so

any set is a claw-deletion set of Gb and G−
b . Moreover, every vertex of b\{pT (b)}

is simplicial in G, so the weight of b\ {pT (b)} is s(b). Thus, f1(b) = s(b), f2(b) =
f3(b) = 0 is correct.

Now, let v be a cutpoint of G and, by inductive hypothesis, assume that for
the children of v in T the values of f1, f2, and f3 are correct according to their
definition.

Consider first f1(v), i.e., the minimum weight of a claw-deletion set of Gv

containing v. The connected components of Gv \ {v} are {G−
b }b∈C(v). So, it is

enough to compute the minimum weight of a claw-deletion set of each of them,
and add to their sum the weight of v, so f1(v) = w(v) +

∑

b∈C(v) f2(b).

Consider next f2(v), i.e., the minimum weight of a claw-deletion set of Gv

not containing v. In this case, we have to avoid claws having v as a center
and the tree leaves in three distinct blocks of C(v), so all but at most two
of the blocks have to be completely contained in the set, except for vertex
v. For the remaining (at most two) blocks b, we need to compute the min-
imum weight of a claw-deletion set of Gb not containing v (which is pT (b)).
This justifies the formula f2(v) =

∑

b∈C(v) f3(b) for |C(v)| ≤ 2, and f2(v) =

minb1,b2∈C(v)(
∑

b∈{b1,b2}
f3(b) +

∑

b∈C(v)\{b1,b2}
f1(b)), otherwise.

Finally, consider f3(v), for v 6= r, i.e., the minimum weight of a claw-deletion
set of G+

v containing neither v nor all the vertices of pT (v) \ {v} (recall that
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pT (v) is a block). In this case, we have to avoid claws having v as a center, one
leaf in pT (v)\{v}, and two other leaves in two distinct blocks of C(v). So all but
at most one of the blocks have to be completely contained in the set, except for
vertex v. For the remaining block b, we need to compute the minimum weight
of a claw-deletion set of Gb not containing v (which is pT (b)). This justifies
the formula f3(v) = f3(b) when C(v) = {b}, and f3(v) = minb1∈C(v)(f3(b1) +
∑

b∈C(v)\{b1}
f1(b)), otherwise.

To conclude the proof, let b be a node which is a block of G and, by inductive
hypothesis, assume that for the children of b the values of f1, f2, and f3 are
correct according to their definition.

Consider first f1(b), i.e., the minimum weight of a claw-deletion set of G−
b

containing all the vertices of b \ {pT (b)}. All the claws containing vertices of b
are hit by the set by definition, so it is enough to compute for every v in C(b)
the minimum weight of a claw-deletion set of Gv containing v, and adding to
it the weight of all the simplicial vertices of b, that is, s(b). Then the formula
f1(b) = s(b) +

∑

v∈C(b) f1(v) is correct.

Consider next f3(b), the minimum weight of a claw-deletion set of Gb not
containing pT (b). For each v in C(b), either v belongs to the set, or v does
not belong to the set and there is another vertex of b that does not belong to
the set. So, we have to recursively compute f1(v) or f3(v), respectively, and
choose the minimum. In this case the simplicial vertices do not belong to the
minimum weight set, since the weights are positive. This justifies the formula
f3(b) =

∑

v∈C(b) min{f1(v), f3(v)}.

Finally, consider f2(b), i.e., the minimum weight of a claw-deletion set of
G−

b . For each v in C(b), there are three possibilities: either v belongs to the set,
or v does not belong to the set and there is another vertex of b \ pT (b) that
does not belong to the set, or v does not belong to the set but any other vertex
of b \ pT (b) belongs to the set. We have to consider the third possibility for
every v in C(b), adding f2(v) to the sum of f1(v

′) for every other v′ in C(b),
and in that case adding also s(b). For the first two possibilities, the situation is
similar to the one in the computation of f3(b). This justifies the formula f2(b) =
min{

∑

v∈C(v)min{f1(v), f3(v)},minv1∈C(v)(s(b)+f2(v1)+
∑

v∈C(v)\{v1}
f1(v))}.

⊓⊔

In Theorem 11 we analyze the time to compute f(r).

Theorem 11. Let G be a weighted connected block graph with n vertices. Given
a block-cutpoint-tree of G, the minimum weight of a claw-deletion set of G can
be determined in O(n) time.

Proof. If the graph G is complete, the weight is zero. Otherwise, we root the
given block-cutpoint-tree T of G at a cutpoint r of G. Notice that |V (T )| and
|E(T )| are O(n).

Then we compute bottom-up the functions f1, f2, f3. The computation for
a leaf b (recall that leaves of T are blocks of G) takes O(|b| − 1) time. Notice
that |C(b)| is also O(|b| − 1) for a block b of G which is not a leaf. Thus, the
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computation of f1(b) and f3(b) is also O(|b| − 1). We can compute (as a fourth
function) the difference f2(v) − f1(v) for every cutpoint v of G. So, for the
computation of minv1∈C(v)(s(b)+ f2(v1)+

∑

v∈C(v)\{v1}
f1(v)) we simply choose

as v1 the vertex v minimizing f2(v)− f1(v). Therefore the computation of f2(b)
can be also done in O(|b| − 1) time.

For the vertices v which are cutpoints of G, we can compute (as a fourth
function) the difference f3(b)− f1(b) for every block b of G. In this way, we can
compute each of f1(v), f2(v), and f3(v) in O(|C(v)|) time.

The whole complexity of the algorithm is then O(|V (T )|+ |V (G)|) = O(n).
⊓⊔

Recall that a block-cutpoint-tree of a connected graph G with n vertices and
m edges can be computed in O(n+m) time, as well as the connected components
of a graph. This implies

Corollary 3. Let G be a weighted block graph with n vertices and m edges. The
minimum weight of a claw-deletion set of G can be determined in O(n+m) time.

Proof of Running Time of Theorem 7. Weighted Claw-free Vertex
Deletion can be solved in linear time on graphs with bounded treewidth. More
precisely, there is a 2O(k2) · n-time algorithm to solve Weighted Claw-free
Vertex Deletion on n-vertex graphs G with treewidth at most k.

Proof. We analyze the time to compute cdnw[r, ∅, ∅, ∅, ∅, ∅]. Since tw(G) ≤ k,
then |Xt| = O(k), for every node t ∈ V (T ). For every leaf node t, function runs
in constant time.

Let t be an introduce node. Functions of Formulas (2.1) and (2.3) run in
constant time. Function (2.2) requires O(k2.3728639) time [18] for checking if
NXt\S(v) does not induce a K3,O(|Xt×Xt|) = O(k2) for checking for every (x, y) ∈
Z, if vx ∈ E(G) or vy /∈ E(G), O(|C|) = O(k) for checking if NXt

(v) ∩ C = ∅,
and O(|Xt × Xt|) = O(k2) for the final condition. Such steps are executed for
every partition S ∪A∪B ∪C of Xt, which has 4O(k) possibilities, and for every
Z ⊆ Xt ×Xt, which leads to 2O(k2) choices of Z. Since the first is dominated by
the latter, we obtain that computing cdnw for an introduce node requires 2O(k2)

time.

Let t be a forget node. Formula (3.1) runs in O(1). The minimum value
asked for Formula (3.2) is obtained by checking every (S,A′, B′, C′, Z ′), which

is bounded by the size of the power set of Xt × Xt, 2
O(k2). Since all steps are

executed for every partition S ∪ A ∪ B ∪ C of Xt and for every Z ⊆ Xt × Xt,
the time required for a forget node t is 2O(k2).

Finally, let t be a join node. Let S ∪ A ∪ B ∪ C be a partition of Xt,
and Z ⊆ Xt × Xt. The value asked for Formula (4) is obtained by the mini-
mum sum of cdnw in t′ and in t′′, among all possibilities of (A′, B′, C′, Z ′) and
(A′′, B′′, C′′, Z ′′), where the pair must satisfy (4). This leads to a running time

of 2O(k2) ·2O(k2) ·O(k). Those steps are executed for every partition S∪A∪B∪C
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of Xt and for every Z ⊆ Xt ×Xt. Hence, the total running time for computing
cdnw for a join node t is bounded by 2O(k2).

Since the time to compute each entry of the table is upper bounded by 2O(k2)

and the table has size 2O(k2) · n, the algorithm can be performed in 2O(k2) · n
time. This implies linear-time solvability for graphs with bounded treewidth. ⊓⊔
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