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Abstract. Secret sharing provides a means to distribute shares of a secret such that any authorized

subset of shares, specified by an access structure, can be pooled together to recompute the

secret. The standard secret sharing model requires public access structures, which violates privacy

and facilitates the adversary by revealing high-value targets. In this paper, we address this

shortcoming by introducing hidden access structures, which remain secret until some authorized

subset of parties collaborate. The central piece of this work is the construction of a set-system

H with strictly greater than exp

(

c
1.5(log h)2

log log h

)

subsets of a set of h elements. Our set-system

H is defined over Zm, where m is a non-prime-power, such that the size of each set in H is

divisible by m but the sizes of their pairwise intersections are not divisible by m, unless one set is

a subset of another. We derive a vector family V from H such that superset-subset relationships

in H are represented by inner products in V. We use V to “encode” the access structures and

thereby develop the first access structure hiding secret sharing scheme. For a setting with ℓ

parties, our scheme supports 2( ℓ
ℓ/2+1) out of the 22ℓ−O(log ℓ)

total monotone access structures,

and its maximum share size for any access structures is (1 + o(1))
2ℓ+1

√

πℓ/2
. The scheme assumes

semi-honest polynomial-time parties, and its security relies on the Generalized Diffie-Hellman

assumption.
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1 Introduction

A secret sharing scheme [58, 8, 36] is a method by which a dealer, holding a secret string, distributes strings,

called shares, to parties such that authorized subsets of parties, specified by a public access structure, can

reconstruct the secret. Secret sharing is the foundation of multiple cryptographic tools (in addition to its

obvious use in secure storage), including threhsold cryptography [23], (secure) multiparty computation [48],

attribute-based encryption [32], generalized oblivious transfer [63], perfectly secure message transmission [25],

anonymous communications [57], e-voting [56, 39] and e-auctions [35, 11]. The extensive survey by Beimel [5]

gives a review of the notable results in the area.

The maximum share size in the original secret sharing schemes for general/arbitrary access structures [36]

is 2ℓ−1, where ℓ is the total number of parties. While for specific access structures, the share size of the later

schemes [12, 38, 59] is less than the share size for the scheme from [36], the share size of all schemes for general

access structures remained 2ℓ−o(ℓ) until 2018. In 2018, Liu and Vaikuntanathan [45] (using results from [47])

constructed a secret sharing scheme for general access structures with share size 20.944ℓ. Applebaum et al. [2]

(using results of [1, 47]) improved those results, and constructed a secret sharing scheme for general access

structures with share size 20.637ℓ+o(ℓ). Whether the share size can be improved to 2o(ℓ) (or even smaller)

remains an important open problem. On the other hand, multiple works [9, 14, 19, 20, 66] have proved

various lower bounds for secret sharing with the best being Ω(ℓ2/ log ℓ) from Csirmaz [19].

1.1 Motivation

Existing secret sharing model requires the access structure to be known to the parties. Since secret recon-

struction requires shares of any authorized subset, from the access structure, having a public access structure

reveals the high-value targets, which can lead to compromised security in the presence of malicious parties.

Having a public access structure also implies that some parties must publicly consent to the fact that they

themselves are not trusted.

Need for Hidden Access Structures: Consider a scenario where Alice dictates her will/testament and instructs

her lawyer that each of her 15 family members should receive a valid “share” of the will. In addition, the

shares should be indistinguishable from each other in terms of size and entropy. She also insists that in order

to reconstruct her will, {Bob, Tom, Catherine} or {Bob, Cristine, Keri, Roger} or {Rob, Eve} must be part

of the collaborating set. But, Alice does not want to be in the bad books of her other, less trusted family

members. So, she demands that the shares of her will and the procedure to reconstruct it back from the shares

must not reveal her “trust structures”, until after the will is successfully reconstructed. This problem can be

generalized to secret sharing, but with hidden access structures, which remain secret until some authorized

subset of parties collaborate.

Superpolynomial Size Set-Systems and Efficient Cryptography: In this paper, we demonstrate that set-systems

with specific intersections can be used to enhance existing cryptographic protocols, particularly the ones
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meant for distributed security. In order to minimize the computational cost of cryptographic protocols, it is

desirable that parameters such as exponents, moduli and dimensions do not grow too big. For a set-system

whose size is superpolynomial in the number of elements over which it is defined, achieving a large enough size

requires smaller modulus and fewer number of elements, which translates into smaller dimensions, exponents

and moduli for its cryptographic applications.

1.2 Related Work

A limited number of attempts have been made to introduce privacy-preserving features to secret sharing. The

first solution that focused on bolstering privacy in secret sharing was called anonymous secret sharing [62],

wherein the secret can be reconstructed without the knowledge of which participants hold which shares. In

such schemes, secret reconstruction can be carried out by giving the shares to a black box that does not know

the identities of the participants holding those shares. However, anonymous secret sharing completely discards

parties’ identities, which limits its applicability as an extension of secret sharing. Another issue is that the

known anonymous secret sharing schemes [62, 51, 10, 40, 53] operate in very restricted settings (e.g. n-out-of-n

threshold, 2-out-of-n threshold) or use hard to generate underlying primitives. For instance, the constructions

from [62, 10] use resolvable Steiner systems [60]. However, in design theory, resolvable Steiner systems are non-

trivial to achieve with a few known results in restricted settings [13, 64, 15, 22, 43, 49, 52, 54, 29, 41, 68, 69].

There are also known impossibility results concerning existence of certain desirable Steiner systems [50].

Other attempts made to realize anonymous secret sharing avoided the hard to generate primitives and

instead employed combinatorics [40]. But, they also lead to very restricted and specific thresholds.

Remark 1. Steiner systems have strong connections to a wide range of topics, including statistics, finite

group theory, finite geometry, combinatorial design, experimental design, storage systems design, wireless

communication, low-density parity-check code design, distributed storage, batch codes, and low-redundancy

private information retrieval. For an introduction to the subject, we refer the interested reader to [17, 16].

1.3 Our Contributions

We bolster the privacy guarantees of secret sharing by introducing hidden access structures, which remain

unknown until some authorized subset of parties collaborate. We develop the first access structure hiding

(computational) secret sharing scheme. As the basis of our scheme, we construct a novel set-system, which

is defined by the following theorem.

Theorem 1. Let {αi}
r
i=1 be r > 1 positive integers and m =

∏r
i=1 p

αi
i be a positive integer with r different

prime divisors: p1, . . . , pr. Then there exists c = c(m) > 0, such that for every integer h > 0, there exists

an explicitly constructible non-uniform¶ set-system H over a universe of h elements such that the following

conditions hold:
¶ all member sets do not have equal size
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1. |H| > exp

(

c
1.5(log h)r

(log log h)r−1

)

,

2. ∀H ∈ H : |H| = 0 mod m,

3. ∀G,H ∈ H, where G 6= H : if H ⊂ G or G ⊂ H, then |G ∩H| = 0 mod m, else |G ∩H| 6= 0 mod m,

4. ∀G,H ∈ H, where G 6= H and ∀i ∈ {1, . . . , r} : |G ∩H| ∈ {0, 1} mod pαi
i .

(Recall that a mod m denotes the smallest non-negative b = a mod m.) In secret sharing, the family of

minimal authorized subsets Γ0 ∈ Γ , corresponding to an access structure Γ , is defined as the collection of the

minimal sets in Γ . Therefore, Γ0 forms the basis of Γ . Note that Conditions 2 and 3 of Theorem 1 define the

superset-subset relations in the set-system H. We derive a family of vectors V ∈ (Zm)h from our set-system

H, that captures the superset-subset relations in H as (vector) inner products in V. This capability allows

us to capture “information” about any minimal authorized subset A ∈ Γ0 in the form of an inner product,

enabling efficient testing of whether a given subset of parties B is a superset of A or not. Since Γ is monotone,

B ⊇ A, for some A ∈ Γ0, implies that B ∈ Γ , i.e., B is an authorized subset of parties. Similarly, B 6⊇ A, for

all A ∈ Γ0, implies that B /∈ Γ , i.e., B is not an authorized subset of parties. We use our novel set-system

and vector family to construct the first access structure hiding (computational) secret sharing scheme. We

assume semi-honest polynomial-time parties, and reduce the security and privacy guarantees of our scheme

to the Generalized Diffie-Hellman assumption [61]. For a setting with ℓ parties, our scheme supports 2( ℓ
ℓ/2+1)

out of the 22ℓ−O(log ℓ)
total monotone access structures, and its maximum share size for any of those 2( ℓ

ℓ/2+1)

monotone access structures is (1 + o(1))
2ℓ+1

√

πℓ/2
. Hence, the maximum share size for our access structure

hiding secret sharing scheme is greater than the current upper bound of 20.637ℓ+o(ℓ) [2] on the share size for

secret sharing schemes for general access structures.

1.4 Organization

The rest of this paper is organized as follows: we recall the pertinent background and results in Section 2.

Section 3 formally defines access structure hiding computational secret sharing. We present the construction

of our set-systems and vector families in Section 4, and use them to develop the first access structure hiding

computational secret sharing scheme in Section 5. We conclude by describing two open problems.

2 Preliminaries

We begin by recalling an informal definition of the Generalized Diffie-Hellman (GDH) assumption [61]. For

a formal definition, see [7]. For a positive integer n, we define [n] := {1, . . . , n}.

Definition 1 (GDH Assumption: Informal). Let {a1, a2, . . . , an} be a set of n different integers. Given

a group G and an element g ∈ G, it is hard to compute g
∏

i∈[n]
ai for an algorithm that can query g

∏

i∈I
ai

for any proper subset I ( [n].
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Definition 2 (Dirichlet’s Theorem [24]). For all coprime integers a and q, there are infinitely many

primes, p, of the form p = a mod q.

Definition 3 (Euler’s Theorem). Let y be a positive integer and Z∗
y denote the multiplicative group

mod y. Then for every integer c that is coprime to y, it holds that: cϕ(y) = 1 mod y, where ϕ(y) = |Z∗
y|

denotes Euler’s totient function.

Definition 4 (Hadamard/Schur product). Hadamard/Schur product of two vectors u,v ∈ Rn, denoted

by u ◦ v, is a vector in the same linear space whose i-th element is defined as: (u ◦ v)[i] = u[i] · v[i], for all

i ∈ [n].

Definition 5 (Negligible Function). For security parameter ω, a function ǫ(ω) is called negligible if for

all c > 0 there exists a ω0 such that ǫ(ω) < 1/ωc for all ω > ω0.

Definition 6 (Computational Indistinguishability [31]). Let X = {Xω}ω∈N and Y = {Yω}ω∈N be

ensembles, where Xω’s and Yω’s are probability distributions over {0, 1}κ(ω) for some polynomial κ(ω). We

say that {Xω}ω∈N and {Yω}ω∈N are polynomially/computationally indistinguishable if the following holds

for every (probabilistic) polynomial-time algorithm D and all ω ∈ N:

∣

∣

∣Pr[t← Xω : D(t) = 1]− Pr[t← Yω : D(t) = 1]
∣

∣

∣ ≤ ǫ(ω),

where ǫ is a negligible function.

Definition 7 (Access Structure). Let P = {P1, . . . , Pℓ} be a set of parties. A collection Γ ⊆ 2P is

monotone if A ∈ Γ and A ⊆ B imply that B ∈ Γ . An access structure Γ ⊆ 2P is a monotone collection of

non-empty subsets of P. Sets in Γ are called authorized, and sets not in Γ are called unauthorized.

If Γ consists of all subsets of P with size greater than or equal to a fixed threshold t (1 ≤ t ≤ ℓ), then Γ

is called a t-threshold access structure.

Definition 8 (Minimal Authorized Subset). For an access structure Γ , a family of minimal authorized

subsets Γ0 ∈ Γ is defined as:

Γ0 = {A ∈ Γ : B 6⊂ A for all B ∈ Γ \ {A}}.

Definition 9 (Computational Secret Sharing [42]). A computational secret sharing scheme with re-

spect to an access structure Γ , security parameter ω, a set of ℓ polynomial-time parties P = {P1, . . . , Pℓ},

and a set of secrets K, consists of a pair of polynomial-time algorithms, (Share,Recon), where:

– Share is a randomized algorithm that gets a secret k ∈ K and access structure Γ as inputs, and outputs

ℓ shares, {Π
(k)
1 , . . . ,Π

(k)
ℓ }, of k,
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– Recon is a deterministic algorithm that gets as input the shares of a subset A ⊆ P, denoted by {Π
(k)
i }i∈A,

and outputs a string in K,

such that, the following two requirements are satisfied:

1. Perfect Correctness: for all secrets k ∈ K and every authorized subset A ∈ Γ , it holds that:

Pr[Recon({Π
(k)
i }i∈A,A) = k] = 1,

2. Computational Secrecy: for every unauthorized subset B /∈ Γ and all different secrets k1, k2 ∈ K, it holds

that the distributions {Π
(k1)
i }i∈B and {Π

(k2)
i }i∈B are computationally indistinguishable (with respect to

ω).

Remark 2 (Perfect Secrecy). If ∀k1, k2 ∈ K with k1 6= k2, the distributions {Π
(k1)
i }i∈B and {Π

(k2)
i }i∈B are

identical, then the scheme is called a perfect secret sharing scheme.

2.1 Set Systems with Restricted Intersections

The problem of constructing set systems under certain intersection restrictions and bounding their size has

a central place in Extremal Set Theory. We shall not give a full account of such problems, but only touch

upon the results that are particularly relevant to our set-system and its construction. For a broader account,

we refer the interested reader to the survey by Frankl and Tokushige [30].

Lemma 1 ( [34]). Let m =
∏r

i=1 p
αi
i be a positive integer with r > 1 different prime divisors. Then there

exists an explicitly constructible polynomial Q with n variables and degree O(n1/r), which is equal to 0 on

z = (1, 1, . . . , 1) ∈ {0, 1}n but is nonzero mod m on all other z ∈ {0, 1}n. Furthermore, ∀z ∈ {0, 1}n and

∀i ∈ {1, . . . , r}, it holds that: Q(z) ∈ {0, 1} mod pαi
i .

Theorem 2 ( [34]). Let m be a positive integer, and suppose that m has r > 1 different prime divisors:

m =
∏r

i=1 p
αi
i . Then there exists c = c(m) > 0, such that for every integer h > 0, there exists an explicitly

constructible uniform set-system H over a universe of h elements such that:

1. |H| ≥ exp

(

c
(log h)r

(log log h)r−1

)

,

2. ∀H ∈ H : |H| = 0 mod m,

3. ∀G,H ∈ H, G 6= H : |G ∩H| 6= 0 mod m.

Matching Vectors. A matching vector family is a combinatorial object that is defined as:

Definition 10 ( [26]). Let S ⊆ Zm\{0}, and 〈·, ·〉 denote the inner product. We say that subsets U = {ui}
N
i=1

and V = {vi}
N
i=1 of vectors in (Zm)h form an S-matching family if the following two conditions are satisfied:

– ∀i ∈ [N ], it holds that: 〈ui,vi〉 = 0 mod m,
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– ∀i, j ∈ [N ] such that i 6= j, it holds that: 〈ui,vj〉 mod m ∈ S.

The question of bounding the size of matching vector families is closely related to the well-known Extremal

Set Theory problem of constructing set systems with restricted modular intersections. Matching vectors have

found applications in the context of private information retrieval [6, 4, 27, 26, 28, 67, 46], conditional disclosure

of secrets [46], secret sharing [47] and coding theory [26]. The first super-polynomial size matching vector

family follows directly from the set-system constructed by Grolmusz [34]. If each set H in the set-system

H defined by Theorem 2 is represented by a vector u ∈ (Zm)h, then it leads to the following family of

S-matching vectors:

Corollary 1 ( [26] to Theorem 2). Let h,m > 0, and suppose that m =
∏r

i=1 p
αi
i has r > 1 different prime

divisors. Then, there exists a set S of size 2r−1 and a family of S-matching vectors {u}Ni=1, ui ∈ (Zm)h, such

that, N ≥ exp

(

c
(log h)r

(log log h)r−1

)

.

3 Access Structure Hiding Computational Secret Sharing: Definition

In this section, we give a formal definition of an access structure hiding computational secret sharing scheme.

Definition 11. An access structure hiding computational secret sharing scheme with respect to an access

structure Γ , a set of ℓ polynomial-time parties P = {P1, . . . , Pℓ}, a set of secrets K and a security parameter ω,

consists of two pairs of polynomial-time algorithms, (HsGen, HsVer) and (Share, Recon), where (Share,

Recon) are the same as defined in the definition of computational secret sharing (see Definition 9), and

(HsGen, HsVer) are defined as:

– HsGen is a randomized algorithm that gets P and Γ as inputs, and outputs ℓ access structure tokens

{℧
(Γ )
1 , . . . ,℧

(Γ )
ℓ },

– HsVer is a deterministic algorithm that gets as input the access structure tokens of a subset A ⊆ P,

denoted by {℧
(Γ )
i }i∈A, and outputs b ∈ {0, 1},

such that, the following three requirements are satisfied:

1. Perfect Completeness: every authorized subset of parties A ∈ Γ can identify itself to be a member of the

access structure Γ , i.e., formally, it holds that: Pr[HsVer({℧
(Γ )
i }i∈A) = 1] = 1,

2. Perfect Soundness: every unauthorized subset of parties B /∈ Γ can identify itself to be outside of the

access structure Γ , i.e., formally, it holds that: Pr[HsVer({℧
(Γ )
i }i∈B) = 0] = 1,

3. Computational Hiding: for all access structures Γ, Γ ′ ⊆ 2P , where Γ 6= Γ ′, and each subset of parties

B /∈ Γ, Γ ′ that is unauthorized in both Γ and Γ ′, it holds that:
∣

∣

∣Pr[Γ | {℧
(Γ )
i }i∈B, {Π

(k)
i }i∈B]− Pr[Γ ′ | {℧

(Γ )
i }i∈B, {Π

(k)
i }i∈B]

∣

∣

∣ ≤ ǫ(ω),

where ǫ is a negligible function and {Π
(k)
i }i∈B denotes the subset of shares of a secret k, that belong to

the parties in B, and are generated by Share with respect to the access structure Γ .
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4 Novel Set-Systems and Vector Families

In this section, we construct our novel set-systems and vector families. The following notations are frequently

used throughout this section.

– We denote the coefficient of xk in the power series for f(x) by [xk] : f(x),

– Let L be an ordered list of a finite number of different symbols, and u ∈ Le be a string comprised of

e ∈ N different symbols from L. We define ⊲ to represent string membership, i.e., j ⊲ u denotes that the

string u contains the jth symbol from the ordered list L.

4.1 Set System Construction

In this section, we provide the proof for Theorem 1 by giving an explicit construction of the set-system H

defined in it. Our construction is inspired by that of Grolmusz [34].

Proof (Theorem 1). We use the polynomial Q defined in Lemma 1 to construct our set-system. We begin by

recalling the following property of Q:

Q(z) = 0 mod m⇐⇒ z1 = z2 = · · · = zn = 1, (4.1)

where z = (z1, z2, . . . zn) ∈ {0, 1}n. We know from Lemma 1 that Q has degree d = O(n1/r), and can be

written as:

Q(z1, z2, . . . , zn) =
∑

i1,i2,...,il

ai1,i2,...,il
zi1zi2 . . . zil

,

where 0 ≤ l ≤ d, and ai1,i2,...,il
∈ Z with 1 ≤ i1 < i2 < · · · < il ≤ n. Reducing that modulo m, we get:

Q̃(z1, z2, . . . , zn) =
∑

i1,i2,...,il

ãi1,i2,...,il
zi1zi2 . . . zil

, (4.2)

where ãi1,i2,...,il
= ai1,i2,...,il

mod m. Let L = (0, 1, . . . , n − 1) be an ordered list of n symbols. Define a

characteristic function ψ : {0, 1, . . . , n− 1}n → {0, 1}n as:

ψ(u)[j] :=







1 if j ⊲ u

0 otherwise,
(4.3)

where 1 ≤ j ≤ n and ψ(u)[j] denotes the jth bit of ψ(u) ∈ {0, 1}n. If a string u ∈ {0, 1, . . . , n− 1}n, defined

over the symbols in L, contains the jth symbol from the ordered list L, then ψ(u)[j] = 1, else ψ(u)[j] = 0.

Define a comparison function δ(x, y) : {0, 1} × {0, 1} → {0, 1} as:

δ(u, v) := ¬(u⊕ v), (4.4)
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where ¬ and ⊕ denote negation and XOR, respectively. Hence, δ(u, v) = 1 if u = v, else δ(u, v) = 0. Let

A = (ax,y) be a nn × nn matrix (x, y ∈ {0, 1, . . . , n − 1}n). For x′ = ψ(x) and y′ = ψ(y), define each entry

ax,y as:

ax,y = Q̃(δ(x′
1, y

′
1), δ(x′

2, y
′
2), . . . , δ(x′

n, y
′
n)) mod m, (4.5)

where Q̃(·) is the polynomial defined in Equation 4.2, and x′
j , y

′
j denote the jth bit of the binary bit strings

x′, y′ ∈ {0, 1}n. It follows from Equation 4.3, Equation 4.4 and Equation 4.5 that if ax,y = Q̃(1, 1, . . . , 1) =

0 mod m, then either x = y or ∀j ∈ [n] it holds that y′
j = x′

j, i.e., x and y are comprised of the same symbols.

In both cases, we say that x and y “cover” each other, and denote it by xΥy. We know from Equation 4.2

that the polynomial Q̃(z) can be defined as a sum of monomials zi1zi2 . . . zil
(l ≤ d), where each monomial

zi1zi2 . . . zil
occurs with multiplicity ãi1,i2,...,il

in the sum. Therefore, since matrix A is generated via Q̃, it

follows from Equation 4.2 that A can be defined as the sum of matrices Bi1,i2,...,il
, whose entries are defined

as:

bi1,i2,...,il
x,y = δ(x′

i1
, y′

i1
)δ(x′

i2
, y′

i2
) . . . δ(x′

il
, y′

il
). (4.6)

Hence, it follows from Equation 4.2, Equation 4.5 and Equation 4.6, that A can be written as:

A =
∑

i1,i2,...,il

ãi1,i2,...,il
Bi1,i2,...,il

, (4.7)

where ãi1,i2,...,il
is the multiplicity with which the matrix Bi1,i2,...,il

occurs in the sum. Next, we analyze the

matrices A and Bi1,i2,...,il
. In particular, we count the number of 0 entries in A and the number of 1 entries

in Bi1,i2,...,il
.

Analysis of the Matrices. We begin by counting the total number of entries ax,y ∈ A that are equal to 0,

which translates into counting the number of x, y ∈ {0, 1, . . . , n− 1}n such that xΥy.

Let S be a set of n different symbols. Let unique symbol weight (USW) denote the number of different

symbols in a string, i.e., USW(x) =w(ψ(x)), where w(·) denotes the Hamming weight. To form a string x of

length n such that USW(x) = k, for a fixed k ≤ n, the first step is to select k distinct symbols si1, si2 . . . , sik

from S. We know from Rosen [55] (Section 2.4.2), that the number of onto functions from a set of n elements

to a set of k elements is given by k!
{n

k

}

, where
{n

k

}

denotes Stirling number of the second kind (see Graham

et al. [33], p. 257). Hence, k!
{n

k

}

is the total number of strings of length n, that contain exactly the selected

k-out-of-n symbols: si1, si2 . . . , sik
.

Let Nk denote the total number of different x ∈ {0, 1, . . . , n− 1}n such that USW(x) = k. We know that

for a fixed set of k-out-of-n symbols, the number strings x ∈ {0, 1, . . . , n − 1}n satisfying USW(x) = k is

k!
{n

k

}

. Accounting for the number of ways one can choose k-out-of-n symbols, we get:

Nk =

(

n

k

)

k!

{

n

k

}

.
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We know that for each k, there are Nk rows in matrix A that “cover” exactly k!
{n

k

}

entries. Hence, from

Equation 4.5, the number of ax,y = 0 mod m entries in A is:

S(n) =
n
∑

k=1

Nk · k!

{

n

k

}

=
n
∑

k=1

(

n

k

)

k!

{

n

k

}

k!

{

n

k

}

. (4.8)

We recall the following well known identities involving the first-order Eulerian numbers (see Graham et

al. [33], p. 267) and Stirling numbers of the second kind:

ℓ!

{

n

ℓ

}

=
n
∑

k=0

〈

n

k

〉(

k

n− ℓ

)

; (n− ℓ)!

{

n

n− ℓ

}

=
n
∑

k=0

〈

n

k

〉(

k

ℓ

)

,

where
〈n

k

〉

denotes the first-order Eulerian number, which gives the total number of permutations π1, π2, . . . , πn

with k ascents, i.e., k places where πt < πt+1. Therefore, Equation 4.8 can be rewritten as:

S(n) =
n
∑

k=0

(

n

k

)

k!

{

n

k

}

k!

{

n

k

}

=
n
∑

k=0

(

n

k

)

k!

{

n

k

}

n
∑

j=0

〈

n

j

〉(

j

n− k

)

= n!
n
∑

k=0

{

n

k

}





n
∑

j=0

〈

n

j

〉(

j

n− k

)





1

(n− k)!
.

Thus, the exponential generating function for S(n) comes out to be:

∑

n≥0

S(n)
xn

n!
=
∑

n≥0

n
∑

k=0

{

n

k

}

xk





n
∑

j=0

〈

n

j

〉(

j

n− k

)





xn−k

(n− k)!
.

Recall the following definition of Touchard polynomial (Jacques Touchard [65]):

Tn(x) =
n
∑

k=0

{

n

k

}

xk.

We write S(n) as:

S(n) = n![xn] : (Tn(x)Pn(x)), (4.9)

where the second polynomial, Pn(x), is defined via convolution as:

Pn(x) =
n
∑

k=0





n
∑

j=0

〈

n

j

〉(

j

k

)





xk

k!
=

n
∑

k=0

(n− k)!

k!

{

n

n− k

}

xk.

Observe that all diagonal entries ax,x in matrix A are 0, and A is symmetric across its diagonal.
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Lemma 2. Let the term B-entries denote the entries bi1,i2,...,il
x,y ∈ Bi1,i2,...,il

that are equal to 1. Then the

following holds for B-entries:

1. ∀x ∈ {0, 1, . . . , n − 1}n, each entry ax,x ∈ A has the same number of B-entries, bi1,i2,...,il
x,x = 1, and this

number is divisible by m,

2. for each pair x, y (x, y ∈ {0, 1, . . . , n − 1}n), the total number of B-entries, bi1,i2,...,il
x,y = 1, corresponding

to ax,y ∈ A, is divisible by m iff xΥy, else not.

Proof. We know from Equation 4.6 that except for the B-entries, all other entries in matrices Bi1,i2,...,il

are equal to 0. Hence, it follows from Equation 4.7 that each entry ax,y ∈ A is simply the total number

of B-entries, bi1,i2,...,il
x,y = 1. It further follows from Equation 4.5 and Equation 4.1 that for all x, we get

ax,x = Q̃(1, 1, . . . , 1) = 0 mod m, i.e., for all x, the total number of B-entries, bi1,i2,...,il
x,x = 1, is divisible

by m. Furthermore, it follows from Equation 4.6 that because x = x, all entries bi1,i2,...,il
x,x are indeed B-

entries and all cells ax,x have the same number of corresponding B-entries, bi1,i2,...,il
x,x = 1. Finally, it follows

from Equation 4.5 and Equation 4.1 that for all pairs (x, y), where x 6= y, the total number of B-entries,

bi1,i2,...,il
x,y = 1, is: ax,y = Q̃(1, 1, . . . , 1) = 0 mod m if xΥy, and ax,y 6= 0 mod m otherwise. �

By taking all ax,y = 0 mod m (∀x, y ∈ {0, 1, . . . , n−1}n) entries of A to denote sets with the corresponding

B-entries, bi1,i2,...,il
x,y = 1, as the elements in those sets leads to a set-system H, that satisfies Conditions 2

and 3 of Theorem 1. The number of elements, h, over which H is defined is:

h = Q̃(n, n, . . . , n) =
∑

l≤d

∑

ãi1,i2,...,il
nl ≤ (m− 1)

∑

l≤d

(

n

l

)

nl

< (m− 1)
∑

l≤d

n2l/l! < 2(m− 1)n2d/d!,

assuming n ≥ 2d. Since d > 2, we get: n > 4. From Equation 4.9, it is easy to verify that the following holds

for n > 2:

|H| = S(n) > n1.5n. (4.10)

We know from [34] that for r > 1,m =
∏r

i=1 p
αi
i , d = O(n1/r), c = c(m) > 0 and h < 2(m − 1)n2d/d!, the

following relation holds:

nn ≥ exp

(

c
(log h)r

(log log h)r−1

)

.

Therefore, the following can be derived from Equation 4.10 and elementary estimations for binomial coeffi-

cients:

|H| > exp

(

c
1.5(log h)r

(log log h)r−1

)

.

A tighter bound can be derived by using Lambert W function [44] and the results from Corless et al. [18]

on the principal branch of Lambert W function, but the bound derived above suffices for our purpose. Since
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m ≥ 6 and r ≥ 2, the size of our set-system H is strictly greater than exp

(

c
1.5(log h)2

log log h

)

. Condition 4 of

Theorem 1 follows directly from Lemma 1. It is easy to verify that the total number of B-entries corresponding

to each cell (x, y), where x 6= y and for which ax,y = 0 mod m, is not same. Moreover, since all bi1,i2,...,il
x,x

entries are indeed B-entries, it holds that ax,y < ax,x for all x 6= y. Hence, the sets in H do not have the

same size, making H a non-uniform set-system. This completes the proof of Theorem 1. �

4.2 Covering Vector Families

Definition 12 (Covering Vectors). Let m,h > 0 be positive integers, S ⊆ Zm \ {0}, and w(·) and 〈·, ·〉

denote Hamming weight and inner product, respectively. We say that a subset V = {vi}
N
i=1 of vectors in

(Zm)h forms an S-covering family of vectors if the following two conditions are satisfied:

– ∀i ∈ [N ], it holds that: 〈vi,vi〉 = 0 mod m,

– ∀i, j ∈ [N ], where i 6= j, it holds that:

〈vi,vj〉 mod m =







0 if w(vi ◦ vj mod m) = 0 mod m

∈ S otherwise,

where ◦ denotes Hadamard/Schur product (see Definition 4).

Recall from Theorem 1 that h,m are positive integers, with m =
∏r

i=1 p
αi
i having r > 1 different prime

divisors. Further, recall Condition 4 of Theorem 1, which implies that the sizes of the pairwise intersections

of the sets in H occupy at most 2r − 1 residue classes modulo m. If each set Hi ∈ H is represented by a

representative vector vi ∈ (Zm)h, then for the resulting subset V of vectors in (Zm)h, the following result

follows from Theorem 1.

Corollary 2 (to Theorem 1). For the set-system H defined in Theorem 1, if each set Hi ∈ H is represented

by a unique vector vi ∈ (Zm)h, then for a set S of size 2r − 1, the set of vectors V = {vi}
N
i=1, formed by the

representative vectors of all sets in H, forms an S-covering family such that N > exp

(

c
1.5(log h)r

(log log h)r−1

)

and

∀i, j ∈ [N ] it holds that 〈vi,vj〉= |Hi ∩Hj|(mod m).

5 Our Scheme

In Section 5.1, we introduce an algorithm to encode and identify hidden access structures, that remain

unknown unless some authorized subset of parties collaborate. Followed by that, in Section 5.2, we extend

that algorithm into an access structure hiding computational secret sharing scheme. We assume semi-honest

polynomial-time parties, which try to gain additional information while correctly following the protocols.

The following notations are frequently used from hereon.
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– If each party Pi holds a value xi, then for any subset of parties A, {xi}i∈A denotes the set of all xi values

that belong to the parties Pi ∈ A,

–
∏

i∈A xi and
∑

i∈A xi respectively denote the product and sum of all values from the set {xi}i∈A,

– large prime: refers to a prime number of size equal to or greater than the minimum size recommended

by NIST for primes [3].

5.1 Access Structure Encoding Scheme (ASES)

In this section, we describe our scheme to encode and identify hidden access structures. Let P = {P1, . . . , Pℓ}

be a set of ℓ polynomial-time parties and Ω ∈ Γ0 be any minimal authorized subset (see Definition 8). Hence,

each party Pi ∈ P can be identified as Pi ∈ Ω or Pi ∈ P \ Ω.

Setup. The scheme is initialized as follows:

1. For η ≥ ℓ, generate a set of distinct large primes, {p1, p2, . . . , pη}. Generate a prime q = u
∏η

i=1 pi + 1,

where u is an integer. We know from Dirichlet’s Theorem (see Definition 2) that there are infinitely many

such primes q. Generating q in this manner ensures hardness of the discrete log problem in Zq [37] which,

by extension, translates into hardness of the Generalized Diffie-Hellman assumption in Zq.

2. Let w =
∏η

i=1 pi and m = ϕ(q). Then, it follows from q = u
∏η

i=1 pi + 1 that w|ϕ(q), where ϕ denotes

Euler’s totient function (see Definition 3). Hence, the following holds for d ≥ 1 primes βd and positive

integers αd:

m = w ·
∏

d≥1

βαd
d =

η
∏

i=1

pi ·
∏

d≥1

βαd
d .

Let r = d+ η > ℓ denote the total number of prime factors of m.

3. Construct a set-system H modulo m (as defined by Theorem 1). Let V ∈ (Zm)h denote the covering

vectors family (as defined by Corollary 2) representing H such that each vector vi ∈ V represents a

unique set Hi ∈ H.

4. Randomly sample H ∈ H. Let v ∈ V be the representative vector for H. We call v and H the access

structure vector and access structure set, respectively.

Distributing Access Structures. Following procedure “encodes” the access structure Γ that originates

from Ω, and outputs ℓ access structure tokens.

1. For each party Pi ∈ Ω, randomly select a unique vector vi
$
←− V, such that, 〈v,vi〉 6= 0 mod m (i.e., H 6⊆

Hi and Hi 6⊆ H) and v =
∑

i∈Ω vi mod m. Compute the identifier for party Pi as: xi = 〈v,vi〉 mod m.

2. For each party Pe ∈ P \ Ω, select a unique covering party Pi ∈ Ω. Let Hi ∈ H be the set represented by

Pi’s covering vector, vi ∈ V. Randomly sample Hj ∈ H, such that, Hi ⊂ Hj. Let vj ∈ V be the covering

vector representing Hj.

3. Compute ve ∈ V such that: ve + vi = vj mod m. Verify that 〈v,ve〉 6= 0 mod m, which translates into

H 6⊆ He,He 6⊆ H, for He ∈ H represented by ve. If these requirements do not hold, go back to Step 2.
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4. Compute the identifier for party Pe as: xe = 〈v,ve〉 mod m. Generating identifiers in this manner for

parties Pe ∈ P \ Ω ensures that they are “covered” by the identifiers of parties in Ω. Since each party

Pi ∈ Ω can “cover” at most one party Pe ∈ P \ Ω, our scheme requires that |P| ≤ 2 · |Ω|.

5. Each party Pz ∈ P receives an access structure token t
(Γ )
z = µxz mod q, where µ

$
←− Z∗

q \ {1}.

In case of an identifier collision, i.e., xi = xj, where xj is the identifier of another party Pj ∈ P, re-generate

the identifier for either Pi or Pj . Recall from Corollary 2 that 〈v,vi〉 occupies ≤ 2r − 1 residue classes

modulo m. Therefore, the probability of an identifier collision is ≈ 1/(2r − 1)2 < 1/(2ℓ − 1)2, which may be

non-negligible. Since our scheme works with minimal authorized subsets Ω such that |Ω| ≥ ⌈ℓ/2⌉, it supports

2( ℓ
ℓ/2+1) out of the 22ℓ−O(log ℓ)

total monotone access structures over a set of size ℓ.

Access Structure Identification. Theorem 3 proves that any authorized subset of parties A ∈ Γ can use

its set of access structure tokens, {t
(Γ )
i }i∈A, to identify itself as a member of the access structure Γ .

Theorem 3. Every authorized subset A ∈ Γ can identify itself as a member of the access structure Γ by

verifying that:
∏

i∈A t
(Γ )
i = 1 mod q.

Proof. Recall that for any authorized subset A ∈ Γ , it holds that the set HA ∈ H, represented by
∑

i∈A vi =

vA, is a superset of the access structure set H ∈ H, i.e., H ⊆ HA. Hence, from Theorem 1 and Corollary 2,

it follows that: 〈v,vA〉 = 0 mod m = y · m = y · ϕ(q), where y is a positive integer. This translates into

µ〈v,vA〉 = 1 mod q (using Euler’s theorem). Hence, the following holds for all authorized subsets A ∈ Γ :

∏

i∈A

t
(Γ )
i =

∏

i∈A

µxi = µ

〈

v,
∑

i∈A

vi

〉

= µ〈v,vA〉 = µy·ϕ(q) = 1 mod q. �

Perfect Soundness and Computational Hiding.

Theorem 4. Every unauthorized subset B /∈ Γ can identify itself to be outside Γ by using its set of access

structure tokens, {t
(Γ )
i }i∈B, to verify that:

∏

i∈B t
(Γ )
i 6= 1 mod q. Given that the Generalized Diffie-Hellman

problem is hard, the following holds for all unauthorized subsets B /∈ Γ and all access structures Γ ′ ⊆ 2P ,

where Γ 6= Γ ′ and B /∈ Γ ′:
∣

∣

∣Pr[Γ | {t
(Γ )
i }i∈B]− Pr[Γ ′ | {t

(Γ )
i }i∈B]

∣

∣

∣ ≤ ǫ(ω),

where ω = |P \ B| is the security parameter and ǫ is a negligible function.

Proof. It follows from the ASES procedure that for all unauthorized subsets B /∈ Γ , it holds that the set

HB ∈ H, represented by
∑

i∈B vi = vB, cannot be a superset or subset of the access structure set H ∈ H.

Hence, it follows from Theorem 1 and Corollary 2 that: 〈v,vB〉 6= 0 mod m, which translates into the following

relation by Euler’s theorem (since m = ϕ(q) and µ
$
←− Z∗

q \ {1}) :

∏

i∈B

t
(Γ )
i =

∏

i∈B

µxi = µ

〈

v,
∑

i∈B

vi

〉

= µ〈v,vB〉 6= 1 mod q.
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Hence, any unauthorized subset B /∈ Γ can identify itself as not being a part of the access structure Γ by

simply multiplying its access structure tokens, {t
(Γ )
i }i∈B. The security parameter ω = |P \ B| accounts for

this minimum information that is available to any unauthorized subset B /∈ Γ .

If some unauthorized subset B /∈ Γ has non-negligible advantage in distinguishing access structure Γ

from any other Γ ′ ⊆ 2P , where Γ 6= Γ ′ and B /∈ Γ ′, then the following must hold for some non-negligible

function χ:
∣

∣

∣Pr[Γ | {t
(Γ )
i }i∈B]− Pr[Γ ′ | {t

(Γ )
i }i∈B]

∣

∣

∣ ≥ χ(ω), (5.1)

Let g ∈ Z∗
q be a generator of Z∗

q (recall that Z∗
q is a cyclic group). We know that the setup procedure

used to generate q ensures that: |Z∗
q | = ϕ(q)≫ |P|. Hence, given that g is a generator of Z∗

q, it follows that

for each identifier xi, there exists some ai ∈ Z such that: µxi = gai mod q. Therefore, by extension, it follows

that for all sets B, there exists set(s) of n different integers IB = {a1, . . . , an}, where n = |B|, such that

µ
∑

i∈B
xi = g

∏n

i=1
ai mod q. Hence, it holds that:

∏

i∈B µ
xi = g

∏n

i=1
ai mod q.

We know that each unauthorized subset B /∈ Γ has at least one proper superset A ) B, such that A ∈ Γ .

Since g is a generator of Z∗
q, there exists set(s) of n′ different integers IA = IB ∪ {an+1, . . . , an′}, where

n′ = |A|, such that the following holds:
∏

i∈A µ
xi = g

∏n′

i=1
ai mod q.

We know that in order to satisfy Equation 5.1, B must gain some non-negligible information about g
∏n′

i=1
ai

in Z∗
q. We also know that B can compute g

∏n

i=1
ai mod q. Hence, it follows directly from Definition 1 that

gaining any non-negligible information about g
∏n′

i=1
ai from g

∏n

i=1
ai in Z∗

q requires solving the Generalized

Diffie-Hellman (GDH) problem. Therefore, Equation 5.1 cannot hold given that the GDH assumption holds.

Hence, the advantage of B /∈ Γ must be negligible in the security parameter ω. �

5.2 Building the Full Scheme

The following procedure allows an honest dealer to employ the ASES scheme and realize an access structure

hiding computational secret sharing scheme.

1. Perform ASES to generate access structure tokens t
(Γ )
z = µxz mod q, for each party Pz ∈ P.

2. Follow Step 1 of the setup procedure of ASES to generate a suitable prime q′.

3. Generate a set-system H′ modulo m′ (as defined by Theorem 1), where m′ = ϕ(q′). Let V ′ denote the

covering vector family (as defined by Corollary 2) that is formed by the representative vectors vi ∈ V for

the sets Hi ∈ H.

4. Generate the secret that needs to be shared: k
$
←− Z∗

q′ , and randomly sample |Ω| integers, {bi}
|Ω|
i=1, such

that:
∏|Ω|

i=1 bi = k mod q′.

5. Generate γ
$
←− Z∗

q′ \ {1}. For each party Pj ∈ P \Ω, employ ASES with parameters {m′, q′,H′,V ′, γ} to

generate identifier yj ∈ Zm, and access structure token: s
(k)
j = γyj mod q′. Party Pj receives s

(k)
j as its

share.
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6. The share for each party Pi ∈ Ω is generated as: s
(k)
i = (bi · γ

yi) mod q′. Each party Pz ∈ P receives

<access structure token, share> pair: (t
(Γ )
z , s

(k)
z ).

Completeness, Soundness, Correctness, Secrecy and Hiding: We prove that our access structure

hiding computational secret sharing scheme satisfies the completeness, soundness, correctness, hiding and

secrecy requirements outlined by the definition of Access Structure Hiding Computational Secret Sharing

(see Definition 11). Since independent iterations of ASES are used to generate the access structure tokens and

shares, perfect completeness follows directly from Theorem 3. Similarly, perfect soundness and computational

hiding follow directly from Theorem 4. Hence, we move on to proving perfect correctness and computational

secrecy.

Perfect Correctness: It follows directly from Theorem 3 that for all authorized subsets A ∈ Γ , it holds that:
∏

i∈A γ
yi = 1 mod q′. Hence, any A ∈ Γ can reconstruct the secret, k, by combining its shares as:

∏

i∈A

s
(k)
i mod q′ = 1 ·

∏

y∈Ω

by mod q′ = k, (using
∏

i∈A
γyi = 1 mod q′).

Theorem 5. The maximum share size of our access structure hiding secret sharing scheme for any access

structure is (1 + o(1))
2ℓ+1

√

πℓ/2
.

Proof. Our access structure hiding secret sharing scheme is designed to “encode” minimal authorized subsets.

It is easy to verify that the maximum number of unique minimal authorized subsets in any access structure

is
( ℓ

ℓ/2

)

. For each minimal authorized subset, each party Pz ∈ P receives two elements, s
(k)
z and t

(Γ )
z , both

of which have (almost) the same size as the secret. Hence, it follows that the maximum share size for any

(supported) access structure is:

max
(

Π(k)
)

≈

(

ℓ

ℓ/2

)

2|k|

= (1 + o(1))
2ℓ+1

√

πℓ/2
|k|, (using results from [21]).

Hence, the maximum share size with respect to the secret size |k| is: (1 + o(1))
2ℓ+1

√

πℓ/2
. �

Computational Secrecy: Since independent iterations of ASES are used to generate the sets {t
(Γ )
z }z∈P and

{s
(k)
z }z∈P , computational indistinguishability (w.r.t. security parameter ω = |P \ B|) of all different access

structures Γ, Γ ′ ⊆ 2P , for all unauthorized subsets B /∈ Γ, Γ ′ follows directly from Theorem 4, i.e., it holds

that:
∣

∣

∣Pr[Γ | {t
(Γ )
i }i∈B, {s

(k)
i }i∈B]− Pr[Γ ′ | {t

(Γ )
i }i∈B, {s

(k)
i }i∈B]

∣

∣

∣ ≤ ǫ(ω).
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Theorem 6. Given that GDH problem is hard, it holds for every unauthorized subset B /∈ Γ and all different

secrets k1, k2 ∈ K that the distributions {s
(k1)
i }i∈B and {s

(k2)
i }i∈B are computationally indistinguishable w.r.t.

the security parameter ω = |P \ B|.

Proof. Since the set {bi}
|Ω|
i=1 is generated randomly, secrecy of the bi values follows from one-time pad. Moving

on to the secrecy of γyi values: since γ(6= 1) is a random element from Z∗
q′ , there exists a generator g of Z∗

q′

(note that Z∗
q′ is a cyclic group) such that for each identifier, yi, generated by the ASES procedure, there

exists an ai ∈ Z such that: γyi = gai mod q′. By extension, there exists set(s) of n different integers IB =

{a1, . . . , an}, where n = |B|, such that:
∏

i∈B γ
yi = g

∏n

i=1
ai mod q′. We know that each unauthorized subset

B /∈ Γ has at least one proper superset A ) B, such that A ∈ Γ . Since g is a generator of Z∗
q′ , there exists

set(s) of n′ different integers IA = IB∪{an+1, . . . , an′}, where n′ = |A|, such that:
∏

i∈A γ
yi = g

∏n′

i=1
ai mod q′.

It follows from Definition 1 that in order to gain any non-negligible information about g
∏n′

i=1
ai from g

∏n

i=1
ai ,

in Z∗
q′ , B must solve the GDH problem. Therefore, for every unauthorized subset B /∈ Γ , computational

indistinguishability of {s
(k1)
i }i∈B and {s

(k2)
i }i∈B w.r.t. the security parameter ω follows directly from the

GDH assumption. �

Open Problems

Our access structure hiding secret sharing scheme requires that |P| ≤ 2|Ω|, where Ω ∈ Γ0 is any mini-

mal authorized subset. It is worth exploring whether this restriction can be further relaxed, or removed.

Another interesting problem is defining and constructing set-systems and vector families that can support

simultaneous encoding of multiple minimal authorized subsets.
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