
A Simple Primal-Dual Approximation Algorithm
for 2-Edge-Connected Spanning Subgraphs
Stephan Beyer
Theoretical Computer Science, Osnabrück University, Germany
stephan.beyer@uni-osnabrueck.de

0000-0001-5274-0447

Markus Chimani
Theoretical Computer Science, Osnabrück University, Germany
markus.chimani@uni-osnabrueck.de

0000-0002-4681-5550

Joachim Spoerhase
Department of Computer Science, Aalto University, Finland
joachim.spoerhase@aalto.fi

0000-0002-2601-6452

Abstract
We propose a simple and natural approximation algorithm for the problem of finding a 2-edge-
connected spanning subgraph of minimum total edge cost in a graph. The algorithm maintains
a spanning forest starting with an empty edge set. In each iteration, a new edge incident to a
leaf is selected in a natural greedy manner and added to the forest. If this produces a cycle, this
cycle is contracted. This growing phase ends when the graph has been contracted into a single
node and a subsequent cleanup step removes redundant edges in reverse order.

We analyze the algorithm using the primal-dual method showing that its solution value is
at most 3 times the optimum. Although this only matches the ratio of existing primal-dual
algorithms, we require only a single growing phase, thereby addressing a question by Williamson.
Also, we consider our algorithm to be not only conceptually simpler than the known approxima-
tion algorithms but also easier to implement in its entirety. For n and m being the number of
nodes and edges, respectively, it runs in O(min{nm,m+n2 logn}) time and O(m) space without
data structures more sophisticated than binary heaps and graphs, and without graph algorithms
beyond depth-first search.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms,
Mathematics of computing → Paths and connectivity problems

Keywords and phrases network design, 2-edge-connected, primal-dual, approximation algorithm

Funding The first two authors are supported by the German Research Foundation (DFG), grant
CH 897/3-1. The third author is supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme, grant 759557, and by the
Academy of Finland, grant 310415.

1 Introduction

An undirected multigraph G = (V,E) with n := |V |,m := |E|,m ≥ n, is 2-edge-connected if
for every edge e ∈ E the graph G − e := (V,E \ {e}) is connected. The minimum 2-edge-
connected spanning subgraph problem (2ECSS) is defined as follows: Given a 2-edge-connected
undirected multigraph G = (V,E) with edge costs c : E → R≥0, find an edge subset E′ ⊆ E
of minimum cost c(E′) :=

∑
e∈E′ c(e) such that G′ = (V,E′) is 2-edge-connected. Any edge

ar
X

iv
:1

80
8.

04
65

1v
2

 [
cs

.D
S]

 2
0

N
ov

 2
01

8

mailto:stephan.beyer@uni-osnabrueck.de
http://orcid.org/0000-0001-5274-0447
mailto:markus.chimani@uni-osnabrueck.de
http://orcid.org/0000-0002-4681-5550
mailto:joachim.spoerhase@aalto.fi
http://orcid.org/0000-0002-2601-6452

XX:2 A Simple Primal-Dual Approximation Algorithm for 2ECSS

of G may only be used once in G′. 2ECSS is a fundamental NP-hard network design problem
that arises naturally in the planning of infrastructure where one wants to guarantee a basic
fault tolerance.

Related work. Some algorithms mentioned below work not only for 2ECSS but for more
general problems, like kECSS with k ≥ 2. Since we are interested in the former, we describe
their results, in particular the achieved approximation ratios, in the context of 2ECSS. We
restrict our attention to algorithms able to work on general edge costs (in contrast to, e.g.,
metric or Euclidean edge costs).

The first algorithms [1,7] yield 3-approximations by using a minimum spanning tree in G
and augmenting it to become 2-edge-connected. The factor 3 is based on a 2-approximation
for the latter problem (often called weighted tree augmentation). The algorithm of [1] runs
in O(n2) time and that of [7] in O(m+ n logn).

In [8], a 2-approximation algorithm is obtained by reducing the problem to a weighted
matroid intersection problem that can be solved in time O(n(m + n logn) logn) [2]. The
2-approximation algorithm in [6] is based on iterative rounding of solutions to a linear
programming formulation that we will see in a later section. On the negative side, no
algorithm with factor less than 2 is known, and, unless P=NP, there cannot be a polynomial-
time approximation with ratio better than roughly 1 + 1

300 [10].
Besides the algorithms mentioned above, there is a separate history of applying the

primal-dual method. The basic idea of a primal-dual algorithm is that a feasible solution to
the dual of the aforementioned linear program is computed and this process is exploited to
compute an approximate primal solution. There are several primal-dual 3-approximation
algorithms [3, 5, 9, 11, 13] with the best running time being O(n2 + n

√
m log logn). All

algorithms grow a solution in two phases: they first obtain a spanning tree, and then augment
that tree to be 2-edge-connected. Then, unnecessary edges are deleted in a cleanup phase to
obtain minimality. Most algorithms are algorithmically complex and, for example, require
solving multiple network flow problems.

Contribution. We present a simple 3-approximation algorithm, analyzed using primal-dual
techniques, that finds a minimal 2-edge-connected spanning subgraph on general edge costs.

In comparison to the other primal-dual algorithms, we grow the solution in a single phase,
i.e, we omit obtaining an intermediate spanning tree. Thus we make progress on the question
by Williamson [12] if it is possible “to design a single phase algorithm for some class of
edge-covering problems”. The (to our best knowledge) new conceptual idea is to modify
the classical synchronized primal-dual scheme by growing the solution only at leaves of the
current solution. We contract arising 2-edge-connected components on the fly. Although we
do not beat the so-far best primal-dual approximation ratio 3, our algorithmic framework
may offer new insight for further improvements.

Moreover, our algorithm is conceptually much simpler than the aforementioned approxi-
mation algorithms. In contrast to the 2-approximation algorithms based on weighted matroid
intersection or linear programming, our algorithm requires only trivial data structures (arrays,
lists, graphs, and optionally binary heaps) and no graph algorithms beyond depth-first search.
It is simple to implement in its entirety to run in O(min{nm,m + n2 logn}) time while
occupying only O(m) space.

Preliminaries. We always consider an undirected multigraph G = (V,E) with node set
V and edge set E. As we allow parallel edges, we identify edges by their names, not by

S. Beyer, M. Chimani, and J. Spoerhase XX:3

their incident nodes. For each e ∈ E, let V (e) := {v, w} ⊆ V be the two nodes incident
to e. We may describe subgraphs of G simply by their (inducing) edge subset H ⊆ E.
By V (H) :=

⋃
e∈H V (e) we denote the set of nodes spanned by the edges of H. For each

v ∈ V (H), let δH(v) := {e ∈ H | v ∈ V (e)} be the edges incident to v. For any S (V (H),
let δH(S) := {e ∈ H | V (e) = {u, v}, u ∈ S, v /∈ S}. The degree degH(v) := |δH(v)| of v ∈ V
in H is the number of incident edges of v in H.

A path P of length k ≥ 0 is a subgraph with P = {e1, . . . , ek} such that there is an
orientation of its edges where the head of ei coincides with the tail of ei+1 for i < k. In such
an orientation, let u be the tail of e1 and v the head of ek. We call u and v the endpoints of
P , and P a u-v-path (or, equivalently, a path between u and v). Observe that our definition
of paths allows nodes but not edges to repeat (due to set notation). A path P is simple if
and only if degP (v) ≤ 2 for all v ∈ P . For a simple u-v-path P , we call V (P) \ {u, v} the
inner nodes of P . We call a path closed if both endpoints coincide (i.e., if it is a u-v-path
with u = v), and open otherwise. A cycle is a closed path of length at least 2. We say two
paths P1, P2 are disjoint if and only if P1 ∩ P2 = ∅, i.e., they do not share a common edge
(they may share nodes).

Let G be 2-edge-connected. An edge e ∈ E is essential if and only if E \ {e} is not
2-edge-connected; it is nonessential otherwise. An ear is a simple path P of length at least 1
such that E \ P is 2-edge-connected.

For any function f : A→ B and any A′ ⊆ A, we denote by f(A′) := {f(a) | a ∈ A′} the
image of A′ under f (unless otherwise stated). We also define f−1(b) := {a ∈ A | f(a) = b}.

Organization of the paper. Although our algorithm (which is described in Section 2) turns
out to be surprisingly simple, its analysis is more involved. In Section 3, we will show its
time and space complexity as well as its approximation ratio (under the assumption that a
particular leaf-degree property, which may be of independent interest, holds in every step
of the algorithm). The technical proof of the leaf-degree property is deferred to Section 4,
where it is shown independently (also to simplify the required notation).

2 The Algorithm

Our algorithm is outlined in Algorithm 1. Given a (multi-)graph G = (V,E) with cost
function c : E → R≥0, the main grow phase selects edges T ⊆ E such that T is spanning
and 2-edge-connected, but not necessarily minimal. The central idea of the grow phase—in
contrast to several other primal-dual approaches—is to only grow the solution with edges that
are currently attached to leaves.1 Afterwards, a trivial cleanup phase removes nonessential
edges from T , checking them in reverse order, to obtain the final solution.

The rest of this paper focuses on proving our main Theorem 1 below.

I Theorem 1. There is an algorithm for 2ECSS that runs in O(min{nm,m + n2 logn})
time and O(m) space. It obtains solutions within three times the optimum.

1 This is a key difference to the second phase suggested in [9], which on first sight looks somewhat similar
(but leads to very different proof strategies). In particular, we can directly attack the 2-edge-connected
subgraph in a single phase, instead of a multi-phase growing procedure where each phase has to consider
distinct objectives and rules.

XX:4 A Simple Primal-Dual Approximation Algorithm for 2ECSS

Algorithm 1: Approximation algorithm for 2ECSS
1 graph G′ = (V ′, E′) with edge costs c′ := c as a copy of G = (V,E)
2 solution T := ∅
3 forest F := (V ′,∅)

4 while F is not a single node do // grow phase
5 Simultaneously for each leaf in F , decrease the cost c′ of its incident edges in G′

until an edge, say ẽ, gets cost 0; by this, an edge cost c′ is reduced with double
speed if it is incident to two leaves

6 Add ẽ to F and to T
7 if ẽ closes a cycle Q in F then contract Q in F and in G′

8 forall e ∈ T in reverse order do // cleanup phase
9 if T − e is 2-edge-connected then remove e from T

3 Analysis of Algorithm 1 (Proof of Theorem 1)

We call the iterations within the phases of Algorithm 1 grow steps and cleanup steps,
respectively. In a grow step, a cycle may be contracted and some edges become incident
to the contracted node. As we identify edges by their names, the names of these edges are
retained although their incident nodes change.

Let E′ and EF be the edge set of G′ and F , respectively. During the algorithm we
have the following invariants: both G′ and F use the common node set V ′ that describes a
partition of V ; we consider T to form a subgraph of G; each edge in EF represents an edge
of T that is not part of a cycle in G; we have EF ⊆ E′ ⊆ E.

Initially, each node of V forms an individual partition set, i.e., |V ′| = |V |, and EF = ∅.
We merge partition sets (nodes of V ′, cf. line 7) when we contract a cycle, i.e., when the
corresponding nodes in V induce a 2-edge-connected subgraph in T . Arising self-loops are
removed both from G′ and F . The grow phase terminates once |V ′| = 1, i.e., all nodes of V
are in a common 2-edge-connected component.

Observe that for an edge e ∈ E′, we naturally define V (e) ⊆ V as its incident nodes in
original G, and V ′(e) ⊆ V ′ as its incident nodes in G′ and F .

Let L := {v ∈ V ′ | degF (v) ≤ 1} be the set of leaves (including isolated nodes) in F . For
any edge e ∈ E′, let `e := |V ′(e) ∩ L| ∈ {0, 1, 2} be the number of incident nodes of e that
are leaves in F . An edge e ∈ E′ is eligible if e /∈ T and `e ≥ 1. Let ∆(e) := c′(e)

`e
for eligible

edges e ∈ E′. Now line 5 can be described as first finding the minimum (w.r.t. ∆) eligible
edge ẽ ∈ E, and then, for each eligible edge e, decreasing c′(e) by `e∆(ẽ). For convenience,
we denote ∆(ẽ) by ∆̃.

3.1 Time and Space Complexity

Here we state the main time and space complexity results for Algorithm 1.

I Lemma 2. Algorithm 1 can be implemented to run in O(nm) time and O(m) space using
only arrays and lists.

Proof. Let us first describe the used data structures. The graphs G′ and F are stored
naturally using the adjacency list representation. We store T as a list (or array) and manage

S. Beyer, M. Chimani, and J. Spoerhase XX:5

the costs c′ in an array. The space consumption of O(m) follows directly, and the initialization
of all data structures takes O(m) time.

We now show that there are O(n) grow and cleanup steps. Consider T directly after the
grow phase. Let T0 (T be the edges that led to a contraction, thus |T0| < n. The edges
T \ T0 form a tree since any cycle would lead to a contraction.

Line 5 takes O(m) time by iterating over all e ∈ E′ twice, first to find ẽ, and second to
reduce the costs c′. Line 6 adds ẽ to T and to F in constant time. For line 7, we can find
the respective cycle in F (or determine that it does not exist) in O(n) time using depth-first
search. The contractions of the (same) cycle in G′ and F are performed in O(n) time.

For the running time of a cleanup step (line 9), consider T at the current iteration. Note
that T induces a 2-edge-connected graph. We can check in O(|T |) time if an edge e ∈ T
with V (e) = {s, t} is essential using a simplified version of the classical 2-connectivity test:
Perform a depth-first search in T − e starting at s to compute the DFS indices for each node.
Using a single bottom-up traversal, compute low(u) for each u ∈ V where low(u) is the node
with the smallest DFS index reachable from u by using only edges in the DFS tree to higher
DFS indices, and at most one edge not in the DFS tree. Now initialize v := t and iteratively
go to v := low(v) until v = low(v). Clearly, there is a cycle in T − e containing s and t if
and only if v = s; otherwise e is essential. J

Unfortunately, m can be unbounded if G has parallel edges. We can improve the running
time for graphs with m ∈ ω(n logn). For this, we first shrink m to O(n2) by removing
uninteresting (parallel) edges in the beginning as well as after every contraction. Then, we
use one global value Γ that simulates the shrinking of all costs c′ in constant time, and we
use O(

√
m) binary heaps of size O(

√
m) to manage the eligible edges and their costs c′; O(n)

many updates in these binary heaps lead to a dominating running time of O(n logn) per
grow step.

I Lemma 3. Algorithm 1 can be implemented to run in O(m + n2 logn) time and O(m)
space using only arrays, lists, and binary heaps.

Proof. Consider a set of p > 2 pairwise parallel edges. We call each of the p− 2 highest-cost
edges futile. By removing all futile edges we decrease the maximum edge-multiplicity in G
to 2. This reduction can be performed in O(m+ n2) time (e.g., by using n buckets for the
neighbors of each v ∈ V). This guarantees that each node has degree O(n), hence from now
on m ∈ O(n2). Whenever we contract a cycle Q of nQ nodes into a single node q in line 7, we
re-establish degG′(q) ∈ O(n) by removing arising self-loops and futile edges. Spotting futile
edges requires O(n) time per contraction. Although there are O(n2

Q) edges within V (Q)
(which become self-loops at q) and O(nQn) edges from V (Q) to VG \ V (Q), the removal of
the self-loops and futile edges takes O(m) time in total (for the whole grow phase), since any
edge is removed at most once.

Instead of storing c′ directly, store a single global value Γ, initially being zero, and for
each edge e ∈ E′, store a value ∆̄(e) that keeps the invariant ∆̄(e) = ∆(e) + Γ if e is eligible
and ∆̄(e) = c′(e) if not. Furthermore, we partition the eligible edges of E′ arbitrarily into
Θ(
√
m) many (binary) heaps of size Θ(

√
m), with ∆̄ as the priorities. Initially, all edges are

eligible. The initialization takes O(m) time.
By looking at the minimum edge of each heap, we can find and extract ẽ (see line 5) in

O(
√
m) time. To decrease c′(e) by `e∆̃ for all eligible e ∈ E′, we have to decrease ∆(e) by

∆̃ which is performed by increasing Γ by ∆̃ in constant time. Observe that this preserves
the invariant: If e is eligible, decreasing c′(e) by `e∆̃ updates ∆(e) to c′(e)−`e∆̃

`e
= c′(e)

`e
− ∆̃,

which is exactly what increasing Γ by ∆̃ does; otherwise, neither ∆(e) nor Γ is changed.

XX:6 A Simple Primal-Dual Approximation Algorithm for 2ECSS

Adding edge e with V ′(e) = {s, t} to F (line 6) or contracting a cycle Q into q (line 7)
may change the `e values of all O(n) edges in G incident to s and t or to q, respectively.
If `e decreases to 0, we remove e from its heap; if it increases from 0, we re-add it to its
original heap. Otherwise, if `e decreases from 2, we want ∆(e) to double; if it increases to
2, ∆(e) should be halved. The necessary changes to ∆̄(e) follow straightforwardly. Each
necessary operation on a heap requires O(logn) time. We can hence perform each grow step
in O(n logn) time. J

3.2 Analysis of the Approximation Ratio
Let S := 2V \ {∅, V } and Se := {S ∈ S | e ∈ δG(S)} for any e ∈ E. We analyze the
approximation ratio using the primal-dual method. Hence consider the basic integer program
for 2ECSS:

minimize
∑
e∈E

c(e)xe (1)∑
e∈δG(S)

xe ≥ 2 ∀S ∈ S (2)

xe ∈ {0, 1} ∀e ∈ E. (3)

For its linear relaxation, (3) is substituted by 0 ≤ xe ≤ 1 for every e ∈ E. The bound xe ≤ 1
is important since edge duplications are forbidden. Its dual program is

maximize 2
∑
S∈S

yS −
∑
e∈E

ze (4)∑
S∈Se

yS − ze ≤ c(e) ∀e ∈ E (5)

yS ≥ 0 ∀S ∈ S (6)
ze ≥ 0 ∀e ∈ E. (7)

We show that Algorithm 1 implicitly constructs a solution (ȳ, z̄) to the dual program. Let
(ȳi, z̄i) denote this dual solution computed after the i-th grow step. Initially, we have the
dual solution (ȳ0, z̄0) = 0. Following this notion, let F i = (V i, EF i) be the forest after the
i-th grow step, Li := {v ∈ F i | degF i(v) ≤ 1}, and `ie := |V ′(e) ∩ Li| for each e ∈ E′. For
any node v ∈ V ′, let S(v) be the corresponding node subset of V .

I Lemma 4. The grow phase constructs a feasible solution to the dual problem implicitly as
follows. We have, for each v ∈ V ′ and i ≥ 1,

ȳiS(v) :=
{
ȳi−1
S(v) + ∆̃ if v ∈ Li−1

ȳi−1
S(v) otherwise,

z̄ie :=
{
z̄i−1
e + ∆̃ if v ∈ Li−1 and e ∈ δF i−1(v)
z̄i−1
e otherwise.

Proof. Let c̄i be c′ after the i-th grow step. Initially, (ȳ0, z̄0) = 0 matches the initialization
c̄0 := c. Consider the i-th grow step. We show that (ȳi, z̄i) satisfies (i) c̄i(e) = c(e) −∑
S∈Se

ȳiS + z̄ie, i.e., the right-hand side minus the left-hand side of (5), and (ii) c̄i(e) ≥ 0,
i.e., the constructed solution is feasible.

(i) The claim is trivial for v /∈ Li−1 since the corresponding variables do not change.
Consider v ∈ Li−1 and any e ∈ δG(S(v)). By ȳiS(v) = ȳi−1

S(v) +∆̃, we have
∑
S∈Se

ȳi−1
S − z̄i−1

e =∑
S∈Se

ȳiS − z̄i−1
e − ∆̃ for the left-hand side of (5). By the definition of z̄ie, this coincides with

S. Beyer, M. Chimani, and J. Spoerhase XX:7

∑
S∈Se

ȳiS − z̄ie if e ∈ δF (v), and with
∑
S∈Se

ȳiS − z̄ie − ∆̃ otherwise. This change is reflected
exactly by c̄i(e) := c̄i−1(e)− `i−1

e ∆̃ (that is, decreasing c′ by ∆̃ for each leaf incident to e
in F) if and only if e is eligible.

(ii) Assume by contradiction that there is an e ∈ E with c̄i−1(e) ≥ 0 and c̄i(e) < 0.
Note that c̄i−1(ẽ) = `i−1

ẽ ∆̃. By c̄i(e) := c̄i−1(e)− `i−1
e ∆̃ < 0 we get c̄i−1(e) < `i−1

e ∆̃, which
contradicts the choice of ẽ. J

Let T̄ be the solution edges remaining after the cleanup phase. Let (V i, T̄ i) be the
graph on nodes V i that consists of all edges in T̄ without self-loops. In other words, T̄ i
are the edges corresponding to T̄ when mapped into the node partition defined by F i. We
partition Li into the set Li0 := {v ∈ Li | degF i(v) = 0} of isolated nodes in F i, the set
Li1 := {v ∈ Li | degF i(v) = 1, δF i(v) ⊆ T̄ i} of degree-1 nodes in F i incident to an edge in
the contracted solution T̄ i, and the set Li2 := {v ∈ Li | degF i(v) = 1, δF i(v)∩ T̄ i = ∅} of the
degree-1 nodes in F i incident to an edge in Ei \ T̄ i, i.e., not being in the contracted solution.

I Lemma 5. For each i, every edge e ∈ T̄ i \ EF i is essential in (V i, T̄ i ∪ EF i).

Proof. First observe that for a cycle Q in a 2-edge-connected graph H, an edge e /∈ Q is
essential in H if and only if e is essential in H after contracting Q.

The claim holds trivially for the single-node forest (i.e., after the last grow step). Consider
any i where we have that every edge e ∈ T̄ i \ EF i is essential in (V i, T̄ i ∪ EF i). In the i-th
grow step, we insert an edge e ∈ T̄ i−1 \ EF i−1 into F i−1 or possibly contract an emerging
cycle. In any way, e /∈ T̄ i \EF i . By induction, all edges T̄ i−1 \ (EF i−1 ∪ {e}) are essential. If
e was nonessential, the cleanup step corresponding to the i-th grow step would remove e. J

I Lemma 6 (Leaf-Degree Property). We have
∑
v∈Li degT̄ i(v) ≤ 3(|Li|+ |Li0|) + |Li1|.

Note that Lemma 5 is a prerequisite for Lemma 6. The proof of Lemma 6 is highly non-trivial
and may be of independent interest. We thus defer its presentation, together with all the
required notations and further definitions, to Section 4. There, we will restate the lemma
(including all prerequisites) in more general terms as Theorem 8.

I Lemma 7. The solution obtained by Algorithm 1 is within three times the optimum.

This result is tight as can be seen in Figure 1.

Proof. Let (ȳ, z̄) be the dual solution Algorithm 1 produces implicitly, as described by
Lemma 4, with dual solution value B. On the other hand, T̄ is called our primal solution.
Note that for all edges e ∈ T̄ , we have c′(e) = 0, i.e., their constraints (5) are tight. Hence
we can rewrite our primal solution value

c(T̄) =
∑
e∈T̄

c(e) =
∑
e∈T̄

(∑
S∈Se

ȳS − z̄e
)

=
∑
S∈S

degT̄ (S)ȳS −
∑
e∈T̄

z̄e.

We prove a 3-approximation by showing that c(T̄) ≤ 3B, i.e.,∑
S∈S

degT̄ (S)ȳS −
∑
e∈T̄

z̄e ≤ 3
(∑
S∈S

2ȳS −
∑
e∈E

z̄e

)
,

or equivalently∑
S∈S

degT̄ (S)ȳS ≤ 6
∑
S∈S

ȳS − 2
∑
e∈T̄

z̄e − 3
∑

e∈E\T̄

z̄e. (8)

XX:8 A Simple Primal-Dual Approximation Algorithm for 2ECSS

. . .
k many

∑
v∈L degE′(v) = 8k

|L0| = 1, |L1| = 2k, |L2| = 0

3 (|L|+ |L0|) + |L1| = 8k + 6

Figure 1 An example showing tightness for the approximation ratio as well as for the leaf-degree
property. For the approximation ratio, consider all thick edges’ costs to be 0, all solid thin edges’
costs 1, and all dashed edges’ costs 1 + ε for an arbitrary small ε > 0. The algorithm’s solution
consists of all solid edges of total cost 3k. The optimum solution is the Hamiltonian cycle consisting
of all dashed edges, all thick edges, and two solid thin edges to connect the center node. Its total
cost is k+ 1 + (k− 1)ε. The ratio 3k

k+1+(k−1)ε) approaches 3 for k →∞. For the leaf-degree property,
all edges are in E, thick edges in F (E, solid edges in E′ (E.

Observe that (8) trivially holds initially since all values (ȳ0, z̄0) are zero. We show that
(8) holds after each grow step. Assume it holds for (ȳi, z̄i). We look at the increase of the
left-hand side and right-hand side of (8) when adding an edge to F i. By Lemma 4, we have
ȳi+1
S(v) = ȳiS(v) + ∆̃ for all v ∈ Li and z̄i+1

e = z̄ie + ∆̃ for all e ∈ δF (Li1 ∪ Li2). Hence it remains
to show that∑

v∈Li

degT̄ i(v)∆̃ ≤ 6
∑
v∈Li

∆̃− 2
∑
v∈Li

1

∆̃− 3
∑
v∈Li

2

∆̃

holds. After dividing by ∆̃ and since |Li| = |Li0|+ |Li1|+ |Li2|, the right-hand side simplifies to
6|Li|−2|Li1|−3|Li2| = 6|Li0|+4|Li1|+3|Li2| = 3(|Li|+ |Li0|)+ |Li1|, i.e., we have Lemma 6. J

4 The Leaf-Degree Property (Proof of Lemma 6)

This section is dedicated to show the following theorem. The theorem is a reformulation
of Lemma 6 in terms that are totally independent of the setting and notation used in the
previous section.

I Theorem 8 (Reformulation of Lemma 6). Let G = (V,E) be a 2-edge-connected graph
and E′ a minimal 2-edge-connected spanning subgraph in G. Let F ⊆ E be an edge set
describing a (not necessarily spanning) forest in G such that each edge e ∈ E′ \ F is
essential in E′ ∪ F . Let L0 := V \ V (F), L1 := {v ∈ V (F) | degF (v) = 1, δF (v) ⊆ E′},
L2 := {v ∈ V (F) | degF (v) = 1, δF (v) ∩ E′ = ∅}, and L := L0 ∪ L1 ∪ L2.

Then we have
∑
v∈L degE′(v) ≤ 3 (|L|+ |L0|) + |L1|.

Figure 1 illustrates an example where the left-hand side approaches the right-hand side.
Throughout this section, we will use the following convention: We call the nodes in L leaves;
they are either L1 ∪ L2, degree-1 nodes in F , or L0, isolated nodes w.r.t. F . This is quite
natural since E and E′ do not contain any degree-1 nodes. For any subforest F ′ ⊆ F , let
L(F ′) := L ∩ V (F ′). We use the term component for a connected component in F since E
and E′ consist of one connected component only. Hence these two terms only make sense in
the context of F .

We consider an ear decomposition of E′, that is, we consider an ordered partition of E′
into disjoint edge sets O0, O1, . . . where O0 is a simple cycle and where Ot for t ≥ 1 is a
simple u-v-path with V (Ot) ∩

⋃t−1
i=0 V (Oi) = {u, v}. Such an ear decomposition exists since

E′ is 2-edge-connected. Note that every ear Ot has at least one inner node since it would
otherwise only consist of a single edge which would be nonessential in E′. Let E′t :=

⋃t−1
i=0 Oi

be the subgraph of E′ that contains of the first t ears of the ear sequence.

S. Beyer, M. Chimani, and J. Spoerhase XX:9

unexplored

explored E′t

ai

bi Ot
πi

general setting

ai

bi

situation E

ai

bi

situation U

ai

bi

situation D

Figure 2 Illustration of the general setting for an ear Ot and a πi ∈ Π with θ(bi) = t, and
examples of situations E, U, and D. Thick edges are in F , rectangular nodes in L.

We interpret the ear decomposition as a sequential procedure. We say Ot is added to
E′t at time t. For t2 > t1 ≥ 1, the ear Ot1 appears earlier than Ot2 , and Ot2 appears later
than Ot1 . At any time t, we call a node v explored if v ∈ V (E′t), otherwise it is unexplored;
we call a component discovered if it contains an explored node, otherwise it is undiscovered.
Observe that the inner nodes v of Ot are not yet explored at time t. We define θ(v) := t as
the time when v will become explored. Clearly, we have θ(v) := 0 for all nodes v ∈ O0.

The basic idea of our proof is to use the ear sequence to keep track (over time t) of
degE′t(v) for v ∈ L via a charging argument. Consider any t ≥ 1. An inner (and thus
unexplored) node of Ot might be in L. Every such leaf has a degree of 2 in E′t+1. However,
the endpoints of Ot may be explored leaves whose degrees increase in E′t+1. We tackle this
problem by assigning this increase to other leaves and making sure that the total assignment
to each leaf is bounded.

Let Π be the set of all edges in E′ that are incident to a leaf that is simultaneously an
endpoint of some ear Ot. We denote the edges in Π by π1, . . . , π|Π| in increasing time of
their ears, i.e., for πi ∈ Ot, πj ∈ Ot′ with i < j we have t ≤ t′. We say i is the index of
edge πi ∈ Π. To be able to refer to the nodes V (πi) =: {ai, bi} by index, we define ai as the
endpoint and bi as the inner node of the ear containing πi. Note that there might be distinct
πi, πj ∈ Π with θ(bi) = θ(bj) if both ai and aj are leaves (with possibly even bi = bj). By Ci
we denote the component that contains bi.

For any index i, we may have: situation E if πi is an element of F , situation U if πi /∈ F
and Ci is undiscovered, and situation D if πi /∈ F and Ci is discovered, c.f. Figure 2.

We will assign the degree increments of ai to other leaves by some charging scheme χ,
which is the sum of several distinct charging schemes. The precise definition of these
(sub)schemes is subtle and necessarily intertwined with the analysis of the schemes’ central
properties. Thus we will concisely define them only within the proofs of Lemmata 9 and 10
below. We call a leaf charged due to a specific situation if that situation applied at the time
when the increment was assigned to the leaf. Let χE, χU, χD : L→ N be the overall charges
(on a leaf) due to situation E, U, D, respectively. The leaf-degree property will follow by
observing that no leaf is charged too often by these different chargings.

I Lemma 9. We can establish a charging scheme χE such that we guarantee χE(v) ≤ 1 if
v ∈ L1 and χE(v) = 0 if v ∈ L0 ∪ L2.

Proof. Consider situation E occurring for index i. By πi ∈ F , we have ai ∈ L1 (and thus
χE(ai) = 0 if ai ∈ L0 ∪ L2). Assume situation E occurs for another index j 6= i such that
ai = aj . This yields πi, πj ∈ F which contradicts that ai is a leaf. Hence the claim follows
by setting χE(ai) = 1. J

I Lemma 10. We can establish charging schemes χU, χD such that we guarantee χU(v) +
χD(v) ≤ 2 if v ∈ L0 and χU(v) + χD(v) ≤ 1 if v ∈ L1 ∪ L2.

XX:10 A Simple Primal-Dual Approximation Algorithm for 2ECSS

The proof is rather technical and will be proven in the following subsection. It mainly exploits
the finding of contradictions to the fact that each edge e ∈ E′ \F is essential in E′ ∪F . Two
mappings can be established: first an injective mapping (based on induction) from edges
πi in situation D to leaves, and second an ‘almost injective’ (relaxing the mappings to L0
nodes slightly) mapping from edges πi in situation U to remaining leaves. For the latter, we
establish an algorithm that hops through components. We show that this algorithm identifies
suitable distinct leaves. The charging schemes χU, χD with the desired properties follow from
these mappings.

Proof of Theorem 8. Let v ∈ L be any leaf. The charging of v during the whole process is
χ(v) := 2 +χE(v) +χU(v) +χD(v) where the 2 comes from an implicit charging of the degree
of v when v is discovered. By Lemmata 9 and 10, we obtain χ(v) ≤ 4 for v ∈ L0, χ(v) ≤ 4
for v ∈ L1, and χ(v) ≤ 3 for v ∈ L2. This yields

∑
v∈L degE′(v) ≤ 4|L0|+ 4|L1|+ 3|L2| ≤

3(|L|+ |L0|) + |L1|. J

4.1 Proof of Lemma 10
We first introduce some notation in order to show Lemma 10. For any subforest F ′ ⊆ F

and S ∈ {U,D}, let ΠS(F ′) := {πj ∈ Π | situation S applies for j with bj ∈ V (F ′)}. Let
aS(F ′) := {aj | πj ∈ ΠS(F ′)}. For any subgraph H in G and two (not necessarily distinct)
nodes x1, x2 ∈ V (H) we define H[x1~~x2] to be the set of all paths in H between x1 and x2.
Consider nodes w0, w1, . . . , wk ∈ V for some k ∈ N and a collection P1, . . . ,Pk of wj−1-wj-
paths, that is, Pj ⊆ G[wj−1~~wj] for j = 1, . . . , k. Then let 〈P1, . . . ,Pk〉 denote the set of all
w0-wk-paths that are the concatenation of k (necessarily) pairwise disjoint paths P1, . . . , Pk
with Pj ∈ Pj for j = 1, . . . , k. For notational simplicity, we may also use single paths and
single edges as sets Pj . Note that 〈E′t[x1~~ai], E′t[ai~~x2]〉 6= ∅ for nodes x1, x2 ∈ V (E′t),
which follows from the well-known fact that any 2-edge-connected graph contains two disjoint
u-v-paths for all nodes u, v.

The below proofs of our auxiliary lemmas will use the following reasoning. We will
determine an edge πj ∈ Π \ F and a set of paths P such that there is a cycle Q ∈ P
with V (πj) ⊆ V (Q), and πj /∈ Q. Since πj /∈ F , we say that (j,P) is a cycle witness that
contradicts our assumption that every edge in E′ \ F is essential in E′ ∪ F .

I Lemma 11. Let πi ∈ ΠD(F) and t := θ(bi). There are no two disjoint paths in Ci between
bi and explored nodes. Moreover, there is at least one unexplored leaf in Ci.

Proof. Assume there are two disjoint paths P1, P2 between bi and nodes w1, w2 ∈ V (E′t) ∩
V (Ci), respectively. We can w.l.o.g. assume that P1, P2 do not contain explored nodes other
than w1, w2, respectively. Then (i, 〈P1, E

′
t[w1~~ai], E′t[ai~~w2], P2〉) is a cycle witness.

The second claim follows directly as bi is either an unexplored leaf itself or there is a
path to another leaf that must be unexplored by the first claim. J

Consider component Ci for πi ∈ ΠD(F). Based on the above lemma, we define C̄i as the
unique path in (Ci \ E′t)[bi~~y] where y ∈ V (E′t) ∩ V (Ci) is an explored node. Furthermore,
let C∗i be the component in Ci \ C̄i that contains bi.

I Lemma 12. Let S ∈ {U,D}, πi ∈ ΠS(F), t := θ(bi), HU := (E′ ∪ F) \ E′t+1, and
HD := (E′ ∪ F) \ (E′t ∪ {πi} ∪ C̄i). We have HS [bi~~x] = ∅ for any x ∈ V (E′t).

Proof. Assume there is a path P ∈ HS [bi~~x]. Let QU := Ot \ {πi} and QD := C̄i. We have
a cycle witness (i, 〈P,E′t[x~~ai], E′t[ai~~y], QS〉) with y ∈ V (QS) ∩ V (E′t). J

S. Beyer, M. Chimani, and J. Spoerhase XX:11

This allows us to define a path witness (j,P) for a situation S ∈ {U,D} as a shorthand for a
cycle witness on edge πj with P ∈ HS in the proof of Lemma 12.

I Lemma 13. Let πi ∈ ΠD(F). We have |ΠD(C∗i)| ≤ |aD(C∗i) ∪ L(C∗i)| − 1.

Proof. Note that ai /∈ L(C∗i). Let r := |L(C∗i)|, and x1, x2, . . . , xr the members of L(C∗i)
such that for each j ∈ {2, . . . , r} we have θ(xj) ≥ θ(xj−1). Let T1 be the path in C∗i [bi~~x1].
Given Tj−1, j ∈ {2, . . . , r}, we obtain Tj by adding a path Pj ∈ (C∗i \ Tj)[hj~~xj] where
hj ∈ V (Tj). Note that V (Pj) ∩ V (Tj−1) = {hj} and L(Tj) = L(Tj−1) ∪ {xj}. By definition,
we have Tr = C∗i . For brevity, let P ′j := Pj − hj and aj := aD(Tj) ∪ L(Tj) for any j.

B Claim 1. Let P ∈ C∗i [bi~~x] for any x ∈ L(C∗i). Let Q ⊆ P be any subpath of P . Then
ΠD(Q) is independent, i.e., no two of its edges have a common node.

Proof. There are three cases. (1) Assume there are distinct πk, π` ∈ ΠD(Q) with bk = b`. Let
t := θ(b`). For w1, w2 being the endpoints of Ot, we have a cycle witness (k, 〈Ot, E′t[w1~~w2]〉).
(2) Assume there are distinct πk, π` ∈ ΠD(Q) with bk = a`. Since πk ∈ Π, we have bk ∈ L,
i.e., Q ends at bk and bk = x. Hence, Q[b`~~bk] contradicts Lemma 11 since θ(bk) = θ(a`) = t.
(3) Assume there are distinct πk, π` ∈ ΠD(Q) with ak = a`, w.l.o.g. k < `. We have a
path witness (k, 〈Q[bk~~b`], π`〉). C

B Claim 2. Let P ∈ C∗i [bi~~x] for any x ∈ L(C∗i). Let Q ⊆ P be any subpath of P with
x ∈ V (Q). Then x /∈ aD(Q).

Proof. Assume not. We have x ∈ aD(Oθ(bk)) for some index k > i. Hence x ∈ V (C∗k) is an
explored node at time θ(bk) which contradicts Lemma 11. C

B Claim 3. For each j ∈ {2, . . . , r}, we have |aD(P ′j) ∩ aj−1| ≤ 1.

Proof. Assume not. Let Q be the path in Tj+1 between bi and xj . ΠD(Q) is independent by
Claim 1. Hence there are π`1 , π`2 ∈ ΠD(Q) and v1, v2 ∈ V (Tj−1 \Q), v1 6= v2, such that one
of the following holds: (1) A1 and A2, (2) A1 and B2, (3) B1 and A2, (4) B1 and B2, where
Ad, d = 1, 2, is the case that there is a πkd

∈ ΠD(Tj−1 \Q) with bkd
= vd and a`d

= akd
, and

Bd is the case that we have vd ∈ L(Tj−1) with a`d
= vd. W.l.o.g. `1 ≤ `2.

For case (1), we have a path witness (`1, 〈P ′j [b`1~~b`2], π`2 , πk2 , Tj−1[v2~~v1], πk1〉).
For case (2), we have a path witness (`1, 〈P ′j [b`1~~b`2], π`2 , Tj−1[v2~~v1], πk1〉).
For case (3), we have a path witness (`1, 〈P ′j [b`1~~b`2], π`2 , πk2 , Tj−1[v2~~v1]〉).
For case (4), we have a path witness (`1, 〈P ′j [b`1~~b`2], π`2 , Tj−1[v2~~v1]〉). C

B Claim 4. For each j ∈ {2, . . . , r}, we have xj /∈ aj−1.

Proof. We have xj /∈ L(Tj−1) by definition of Tj−1. It remains to show xj ∈ aD(Tj−1).
Assume not. There is a π` ∈ ΠD(Tj−1) with a` = xj . Choose xk ∈ L(Tj−1) such that b` lies
on the path between bi and xk. By definition of xj , we have θ(xj) > θ(xk). Lemma 11 at
time θ(b`) gives θ(xk) > θ(b`). By a` = xj , we have θ(b`) > θ(xj), a contradiction. C

We show |ΠD(Tj)| ≤ |aj | − 1 inductively for all j ∈ {1, . . . , r}. First consider j = 1.
Since T1 is a path, ΠD(T1) is independent by Claim 1; hence |ΠD(T1)| = |aD(T1)|. The claim
follows by observing that |aD(T1)| = |aD(T1) ∪ {x1}| − 1 = |a1| − 1 since x1 /∈ aD(T1) by
Claim 2. We now assume that the claim holds for j − 1 with j ∈ {2, . . . , r}, and show that it

XX:12 A Simple Primal-Dual Approximation Algorithm for 2ECSS

holds for j. We get

|ΠD(Tj)| = |ΠD(Pj) ∪ΠD(Tj−1)| = |ΠD(P ′j)|+ |ΠD(Tj−1)|
≤ |ΠD(P ′j)|+ |aj−1| − 1 by induction
= |aD(P ′j)|+ |aj−1| − 1 by Claim 1
≤ |aD(P ′j)|+ |aj−1| − |aD(P ′j) ∩ aj−1| by Claim 3
= |aD(P ′j) ∪ aj−1|
= |aD(P ′j) ∪ aj−1 ∪ {xj}| − 1 by Claims 2 and 4
= |aD(P ′j) ∪ aD(Tj−1) ∪ L(Tj)| − 1
= |aD(Tj) ∪ L(Tj)| − 1 = |aj | − 1. J

For each πi ∈ ΠD(F), let s(i) := min{j | πi ∈ ΠD(C∗j)} be the index of the earliest
situation D on component Ci. Let S := {s(i) | πi ∈ ΠD(F)}. Using Lemma 13, we
construct an injection µi : ΠD(C∗i)→ L \ {ai} for every i ∈ S. First observe that |ΠD(C∗i)| ≤
|(aD(C∗i) \ {ai}) ∪ L(C∗i)| by ai ∈ aD(C∗i) and ai /∈ L(C∗i) (see Lemma 11). There might be
distinct πj , πk ∈ ΠD(C∗i) with aj = ak. It is possible to construct µi as injection such that
for each w ∈ aD(C∗i) \ {ai} there is one k with w = ak and µi(πk) = ak. Since components
are a partition of F , we can define a mapping µ : ΠD(F)→ L by µ :=

⋃
j∈S µj .

I Lemma 14. The mapping µ is an injection.

Proof. Assume there are πk, π` ∈ ΠD(F) with s(k) < s(`) and w := µs(k)(πk) = µs(`)(π`).
We have C∗s(k) 6= C∗s(`) since otherwise µs(k)(πk) = µs(k)(π`) contradicts the injectivity of
µs(k). The following three cases remain: (1) w = a` ∈ L(C∗s(k)), (2) w = ak ∈ L(C∗s(`)), and
(3) w = ak = a`. Consider case (1). By ` 6= s(`) and k < ` (since w = a`), we have a path
witness (s(`), 〈C∗s(`)[bs(`)~~b`], π`, C∗s(k)[w~~bs(k)], πs(k)〉). Consider case (2). By k 6= s(k) and
` < k (since w = ak), we have a path witness (s(`), 〈C∗s(`)[bs(`)~~w], πk, C∗s(k)[bk~~bs(k)], πs(k)〉).
For case (3), we have a path witness (s(`), 〈C∗s(`)[bs(`)~~b`], π`, πk, C∗s(k)[bk~~bs(k)], πs(k)〉). J

For any F ′ ⊆ F , let L′(F ′) := L(F ′) \ µ(ΠD(F)) be the leaves not used by µ.

I Lemma 15. There is a mapping η : ΠU(F) → L′(F) such that for each v ∈ L, we have
|η−1(v)| ≤ 2 if v ∈ L0 and |η−1(v)| ≤ 1 otherwise.

Proof. We give an algorithm that establishes our mapping η. Let C ⊆ F be a subtree and
w ∈ V (C). Consider the following recursive algorithm which, invoked on (C,w), tries to
construct a path P between w and a leaf x ∈ L′(F). P is initially empty and will be extended
in each recursion step. Trivially, if there is an x ∈ L′(C), the algorithm adds the unique path
in C[w~~x] to P and terminates. Otherwise, we have L′(C) = ∅. There are two cases:
1. There is a πk ∈ ΠD(C). Let C ′ be the component containing as(k). We add to P the

unique path in 〈C[w~~bs(k)], πs(k)〉 and recurse on (C ′, as(k)).
2. We have ΠD(C) = ∅ but then there is a component C ′ 6= C with πk ∈ ΠD(C ′) and µ(πk) =

ak ∈ L(C). We add to P the unique path in 〈C[w~~ak], πk〉 and recurse on (C ′, bk).
We define C∗i for a given πi ∈ ΠU(F) to be the component in Ci \ Oθ(bi) that contains bi.
However, there is a tricky exception: if πi+1 ∈ ΠU(F) and Oθ(bi) = {πi, πi+1}, i.e., if we
have bi = bi+1. Then, if bi ∈ L0, we say that C∗i and C∗i+1 consist only of bi (η may map
to it twice anyhow). Otherwise, we have at least two leaves in Ci = Ci+1. By removing an
edge e with V (e) = {bi, z} from Ci, we obtain the two components C∗i and C∗i+1 such that
bi /∈ V (C∗i) and bi ∈ V (C∗i+1). For technical simplicity, we set b′i := bi if bi ∈ C∗i and b′i := z

otherwise. However, η will never map to z in the following.

S. Beyer, M. Chimani, and J. Spoerhase XX:13

We now construct η by invoking the algorithm on (C∗i , b′i) for each πi ∈ ΠU(F) in
chronological order from the latest to the earliest component; we set η(πi) := x where x is
the found leaf. By construction, bi is the earliest node in P , since otherwise we would have a
path witness (bi, P).

Assume by contradiction that the algorithm does not terminate. Consider the recursion
step where edges are added to P that are already included in P . P contains a cycle Q. Note
that in case (1), we have θ(as(k)) < θ(w), i.e., we go back in time only, and thus Q also
involves a case (2) step. On the other hand, after a recursion step handling case (2), we
either terminate or recurse into case (1). Hence there is a component C such that by case (2)
there is a πj ∈ ΠD(C) with bj ∈ V (C) and j /∈ S and by case (1) we have bs(j) ∈ V (C). Now
Q′ := Q \ {πs(j)} is a path between bs(j) and as(j); (s(j), Q′) is a path witness.

Now that we can ensure that the algorithm terminates, consider an arbitrary πi ∈ ΠU(F).
For an invocation of the algorithm on (C∗i , b′i), let xi ∈ L′(F) be the resulting leaf and Pi
the resulting bi-xi-path. Assume that there is a πj ∈ ΠU(F) with xi ∈ η(πj). Note that
j > i since we invoke the recursive algorithm from last to first index. Let y be the first node
that Pi and Pj have in common, and let P ′ be the unique path in 〈Pj [bj~~y], Pi[y~~bi]〉. If
θ(bj) > θ(bi), we have a path witness (j, 〈P ′, πi〉). Now consider the case θ(bj) = θ(bi). Let
C be the component containing y. We distinguish the following subcases:

If L′(C) = L(C), we have xi ∈ L(C). If xi ∈ L0, we set η(bi) := xi. Otherwise there is
an xj ∈ L(C) \ {xi}. Since η(bj) is already set to xi, we set η(bi) := xj .
If P ′ enters C using case (1), there is a πk ∈ ΠD(P ′) with k ∈ S and ak ∈ V (C). Then
(k, P ′[bk~~bi]) or (k, P ′[bk~~bj]) is a path witness since θ(bk) > θ(bi) = θ(bj).
If P ′ enters C using case (2), there is a πk ∈ ΠD(P ′) with k /∈ S and bk ∈ V (C). Hence
there is a πs(k) ∈ ΠD(C) and (s(k), 〈P ′[bs(k)~~bi]〉) or (s(k), 〈P ′[bs(k)~~bj]〉) is a path
witness since θ(bs(k)) > θ(bi) = θ(bj). J

It is now easy to show Lemma 10 using Lemmata 14 and 15. We first charge all situation D
nodes, that is, we set χD(v) = 1 for all v ∈ µ(ΠD(F)). Now we charge all situation U nodes
using η, that is, we have χU(v) = 1 for all v ∈ L′(F)\L0 and χU(v) ≤ 2 for all v ∈ L′(F)∩L0.

5 Conclusion

We presented a simple 3-approximation algorithm for 2ECSS with general edge costs. While
there have been primal-dual approximations before (but none achieving a better ratio based
on the primal-dual method), they require two grow phases (followed by a cleanup phase) to
first compute a tree and then augment this tree to a 2-edge-connected solution. Our approach
does not require this separation, by the (to our best knowledge) new idea of growing the
solution only at leaves.

While our primal-dual analysis is non-trivial, the resulting algorithm is very straight-
forward to implement with O(min{nm,m+ n2 logn}) time, requiring only very basic graph
operations and the simplest data structures. An implementation with time O(nm) is
remarkably simple. This is in contrast to the other known primal-dual algorithms. Of
those, only the algorithm in [3] achieves a faster running time of O(n2 + n

√
m log logn),

but at the cost of requiring intricate data structures and subalgorithms detailed in separate
papers [4,13]. For sparse graphs, m ∈ O(n), our running time is in fact equivalent. For dense
simple graphs, m ∈ O(n2), we have O(n2 logn) instead of their O(n2√log logn).

Note that on instances with uniform costs, the ratio naturally drops to the trivial
approximation ratio 2. We may also note that former tight examples (for example, the
tight instances for the 3-approximation given in [1, 9]) are now approximated with factor 2.

XX:14 A Simple Primal-Dual Approximation Algorithm for 2ECSS

Moreover, by a simple extension, our algorithm can also compute lower bounds (which could
be useful for branch-and-bound algorithms and instance preprocessing), without changing its
runtime complexity.

It would be interesting to see if (and how) it is possible to improve our approach to
achieve an even better running time or approximation ratio, and/or to transfer it to 2-
node-connectivity or generalized edge-connectivity (e.g., {0, 1, 2}-survivable network design)
problems.

References
1 G. N. Frederickson and J. JáJá. Approximation algorithms for several graph augmentation

problems. SIAM J. Comput., 10(2):270–283, 1981.
2 H. N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.

J. Comput. Syst. Sci., 50(2):259–273, 1995.
3 H. N. Gabow, M. X. Goemans, and D. P. Williamson. An efficient approximation algorithm

for the survivable network design problem. Math. Program., 82:13–40, 1998.
4 Harold N. Gabow, Zvi Galil, Thomas H. Spencer, and Robert Endre Tarjan. Efficient

algorithms for finding minimum spanning trees in undirected and directed graphs. Combi-
natorica, 6(2):109–122, 1986.

5 M. X. Goemans, A. V. Goldberg, S. A. Plotkin, D. B. Shmoys, É. Tardos, and D. P.
Williamson. Improved approximation algorithms for network design problems. In Proc. of
SODA’94, pages 223–232, 1994.

6 K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39–60, 2001.

7 S. Khuller and R. Thurimella. Approximation algorithms for graph augmentation. J.
Algorithms, 14(2):214–225, 1993.

8 S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings. J. ACM,
41(2):214–235, 1994.

9 P. N. Klein and R. Ravi. When cycles collapse: A general approximation technique for
constrained two-connectivity problems. In Proc. of IPCO’93, pages 39–55, 1993.

10 David Pritchard. k-edge-connectivity: Approximation and LP relaxation. In Proc. of
WAOA’10, pages 225–236, 2010.

11 H. Saran, V. Vazirani, and N. Young. A primal-dual approach to approximation algorithms
for network Steiner problems. In Proc. of the Indo-US workshop on Cooperative Research
in Computer Science, pages 166–168, 1992.

12 D. P. Williamson. On the Design of Approximation Algorithms for a Class of Graph Prob-
lems. PhD thesis, Massachusetts Institute of Technology, 1993.

13 D. P. Williamson, M. X. Goemans, M. Mihail, and V. Vazirani. A primal-dual approxi-
mation algorithm for generalized Steiner network problems. Combinatorica, 15(3):435–454,
1995.

	1 Introduction
	2 The Algorithm
	3 Analysis of Algorithm ?? (Proof of Theorem ??)
	3.1 Time and Space Complexity
	3.2 Analysis of the Approximation Ratio

	4 The Leaf-Degree Property (Proof of Lemma ??)
	4.1 Proof of Lemma ??

	5 Conclusion

