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Abstract

Duplicate detection is the problem of identifying whether a given item
has previously appeared in a (possibly infinite) stream of data, when only
a limited amount of memory is available.

Unfortunately the infinite stream setting is ill-posed, and error rates of
duplicate detection filters turn out to be heavily constrained: consequently
they appear to provide no advantage, asymptotically, over a biased coin
toss [8].

In this paper we formalize the sliding window setting introduced by
[13, 16], and show that a perfect (zero error) solution can be used up to
a maximal window size wmax. Above this threshold we show that some
existing duplicate detection filters (designed for the non-windowed setting)
perform better that those targeting the windowed problem. Finally, we
introduce a “queuing construction” that improves on the performance of
some duplicate detection filters in the windowed setting.

We also analyse the security of our filters in an adversarial setting.
Keywords— Duplicate detection, Streaming algorithms, Sliding window

1 Introduction

1.1 Motivation

Throughout this paper, we are interested in the following problem:

Definition 1 (Duplicate detection problem over a sliding window, wDDP).
Given a stream En = (e1, e2, . . . , en), a sliding window size w and a “new” item
e⋆, find whether e⋆ is also present in the last w elements of the stream, ie.,
whether e⋆ ∈ {en−w+1, . . . , en}. At every time increment, the new item is added
to the stream, i.e., En+1 = En | e⋆ where | denotes concatenation.
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Note that for w =∞, the problem becomes finding whether an element is a
duplicate amongst all previous stream elements. For simplicity in the notation,
when we refer to ∞DDP we instead write DDP.

Instances of the wDDP abound in computer science, with applications to file
system indexation, database queries, network load balancing, network manage-
ment [3], in credit card fraud detection [1], phone calls data mining [2], etc. A
discussion about algorithms on large data streams can be found in [9].

In practice, additional constraints exist that we can capture with the follow-
ing definition:

Definition 2 (wDDP with bounded memory). At every time step n, given e⋆

and a current state (dependent on history) of at most M bits, solve the wDDP
for En and e⋆.

Perfect detection is however not always reachable and it might be more
practical to work on a further relaxation of the problem, allowing for errors.

Approximate duplicate detection has many real-life use cases, and can some-
times play a critical role, for instance in cryptographic schemes where all security
and secrecy fall apart as soon as a random nonce is used twice, such as the El-
Gamal [6] or ECDSA signatures. Other uses include improvements over caches
[10], duplicate clicks [11] and others. Please note that approximate detection is
a different problem than detection of approximate duplicates [12], in which the
goal is to find elements similar but not necessarily equal to the target.

On a side note, it is clear that the input distribution plays a central role re-
garding how efficiently the wDDP can be solved. For instance, some determin-
istic streams may be expressed very compactly (such as the output of a PRNG
with known seed) making the wDDP relatively easy. Information-theoretically,
if the source has U bits of entropy then the situation is equivalent to having an
U -bit, uniformly distributed input. This is the setting we consider here.

As said before, when the window size in wDDP grows infinitely large, it be-
comes the following problem: find whether e⋆ ∈ En. Unfortunately any solution
to this problem will necessary encounter a phenomenon called “saturation” on
large enough data streams [8], and when it happens the algorithm performs no
better than at random.

This is problematic on two grounds: it makes the comparison of several
algorithms difficult (since they all asymptotically behave in that fashion), and
the unavoidable saturation ruins any particular design’s merits. As such, it is
more interesting to focus on wDDP rather than DDP.

1.2 Contributions

In this paper, we start from a näıve solution for the wDDP to then derive bounds
for when it can be solved within M memory bits, up to a window size wmax,
in constant time. We then introduce a generalization of the näıve solution, and
study its error rate. We show that this construction, which we call Short Hash
Filter (SHF), can push the value wmax further while operating in constant time
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— at the cost of some errors. We also provide a different tradeoff, the Compact
Short Hash Filter (CSHF), which uses fewer memory but operates in linear time.

Unfortunately, for w > wmax the performance of SHF degrades very rapidly.
We therefore turn our attention to existing data structures designed for the
“non-windowed” setting. We show that some of them outperform dedicated
data structures, including SHF, in the w > wmax regime.

We then introduce the “queuing construction”, a black box transformation
of non-windowed data structures into windowed ones, that improves their per-
formance in the wDDP setting.

Finally, we provide an analysis of our queueing construction’s resistance to
adversarial streams.

1.3 Related work

The notion of sliding window was, as far as we know, first introduced in [11]; but
several variations exist that are incomparable to one another (e.g. [14]). The
wDDP formulation we rely on is due to [16, 13], which also introduce algorithms
for solving the wDDP approximately.

The notion of using subfilters, as in the queuing construction, can be found
in the A2 filter’s design [16] and a variation thereof can be found in [14] but
in a different DDP formulation. The A2 is built from two Bloom filters, a con-
struction which we generalize and analyse generically in this paper. Similarly,
the construction in [14] only works with Bloom Filters.

A literature review collects the following DDF constructions: A2 filters [16],
Stable Bloom Filters (SBF) [4], Quotient Hash Tables (QHT) [8], Streaming
Quotient Filters (SQF) [5], Block-decaying Bloom Filters (b DBF) [13], and a
slight variation of Cuckoo Filters [7] suggested by [8]. The structure proposed in
[11] is not designed for wDDP but a variant called ‘landmark‘ sliding window,
which consists of a zero-resetting of the memory at some user-defined epochs.

2 Notations and basic definitions

We consider an unbounded stream E = (e1, e2, . . . , en, . . . ) with elements be-
longing to an alphabet Γ.

A filter is an algorithm, which has a finite amount of memory M and, for
each new element e, outputs DUPLICATE or UNSEEN whether it thinks e is a
duplicate or not.

We usually consider the situations where the available memory is too small
for perfect detection, i.e., M ≪ |Γ|. Otherwise, if M = |Γ| then the problem
can be solved in constant time without errors [8].

An element ej is a duplicate in E over the sliding window w, and we note
ei ∈w E if there exists j − w ≤ i < j such that ei = ej . Otherwise we note
ei /∈wE, and we say ei is unseen over w. A false positive over w is an element
e/∈wE which is classified as a duplicate, and a false negative is an element e ∈w E
which is classified as unseen.
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For a filter, the false positive probability (FPw
i ) is the probability that after

i insertions, the unseen element ei /∈wE is a false positive over w. The false
positive rate FPRw

i is the number of false positives divided by the number of
unseen elements in E1. We similarly define the false negative probability FNw

i ,
and the false negative rate FNRw

i .

Remark. For benchmarking, we usually measure the error rateER = FPRw +FNRw,
as it allows a practical ranking of the solutions. An error rate of 0 means a per-
fect filter, while a filter answering randomly has an error rate of 1. A filter being
always wrong has an error rate of 2.

3 Approximate solution and SHF

3.1 Optimal and Approximate Optimal wDDF

Theorem 1. For M ≥ w(log2(w)+2 log2(|Γ|)), the wDDP can be solved exactly
(with no errors) in constant time.

Proof. We explicitly construct a DDF that performs the detection. Storing all
w elements in the sliding window takes w log2(|Γ|) memory, using a FIFO queue
Q; however lookup has a worst-time complexity of O(w).

We therefore rely on an ancillary data structure for the sake of quickly
answering lookup questions. Namely we use a dictionary D whose keys are
elements from Γ and values are counters.

When an element e is inserted in the DDF, e is stored andD[e] is incremented
(if the key e did not exist in D, it is created first, andD[e] is set to 1). In order to
keep the number of stored elements to w, we discard the oldest element elast in
Q. As we do so, we also decrement D[elast], and if D[elast] = 0 the key is deleted
from D. The whole insertion procedure is therefore performed in constant time.

Lookup of an element e⋆ is simply done by looking whether the key D[e⋆]
exists, which is done in constant time.

The queue size is w log2 |Γ|, the dictionary size is w(log2 |Γ| + log2 w) (as
the dictionary cannot have more than w keys at the same time, a dictionary
key occupies log2 |Γ| bits and a counter cannot go over w, thus being less than
log2 w bits long). Thus a requirement of w(log2(w) + 2 log2(|Γ|)) bits for this
DDF to work.

Finally this filter does not make any mistake, as the dictionary D keeps
an exact account of how many times each element is present in the sliding
window.

However, this optimal filter requires that the size of Γ is known in advance.
The dependence on log2 |Γ| can be dropped, at the cost of allowing errors.

Theorem 2. Let w ∈ N. Let M ≃ 2w log2 w, then the wDDP can be solved
with almost no error using M memory bits.

1We observe that FPRw

n
= 1

n

∑
n

i=1
FPw

i
, and similarly for FNRw

n
.
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More precisely, it is possible to create a filter of M bits with an FN of 0, an
FP of 1− (1− 1

w2 )
w ∼ 1

w , and a time complexity of O(w).
Using M ≃ 5w log2 w bits of memory, a constant-time filter with the same

error rate can be constructed.

Note that we only consider the false positive probability after the filter has
inserted at least w elements, i.e., once the filter is full and has reached a sta-
tionary regime.

Proof. Here again we explicitly construct the filters that attain the theorem’s
bounds.

Let h be a hash function with codomain {0, 1}2 log2 w. The birthday theorem
[15] states that for a hash function h over a bits, one must on average collect 2a/2

input-output pairs before obtaining a collision. Therefore 2(2 log2 w)/2 = w hash
values h(ei) can be computed before having a 50% probability of a collision (here,
a collision is when two distinct elements of the stream ei, ej with i 6= j, ei 6= ej
have the same hash, i.e. h(ei) = h(ej)). The 50% threshold we impose on h is
arbitrary but nonetheless practical.

Let F be the following DDF: the filter’s state consists in a queue of w
hashes, and for each new element e, Detect(e) returns DUPLICATE if h(e) is
present in the queue, UNSEEN otherwise. Insert(e) appends h(e) to the queue
before popping the queue.

There is no false negative, and a false positive only happens if the new
element to be inserted collides with at least one other element, which happens
with probability 1− (1− 1

22 log2 w )
w = 1− (1− 1

w2 )
w, hence an FN of 0 and a FP

of 1− (1 − 1
w2 )

w. The queue stores w hashes, and as such requires w · 2 log2 w
bits of memory.

Note that this solution has a time complexity of O(w). Using an additional
dictionary, as in the previous proof, but with keys of size 2 log2(w), we get a
filter with an error rate of about 1

w and constant time for insertion and lookup,
using w · 2 log2 w + w · (2 log2(w) + log2(w)) = 5w log2 w bits of memory.

When log2 |Γ| > 5 log2 w this DDF outperforms the näıve strategy2, both
in terms of time and memory, at the cost of a minimal error. When log2 |Γ| >
2 log2 w, it outperforms the exact solution described sooner in terms of memory.

3.2 Short Hash Filter and Compact Short Hash Filter Al-
gorithms

Short Hash Filter (SHF) The approximate filter we described uses hashes
of size 2 log2(w) for a given sliding window w. However, this hash size is arbi-
trary, and while the current hash size guarantees a very low error rate, it can
be changed. More importantly, in some practical cases the maximal amount of

2The näıve strategy consisting of storing the w elements of the sliding window, requiring

w log2 |Γ| bits of memory.
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available memory is fixed beforehand. Fixing the memory is also more practi-
cal for benchmarking data structures, as it gives the guarantee that all filters
operate under the same conditions.

This gives us the Short Hash Filter (SHF), described in Algorithm 1. The
implementation relies on a double-ended queue or a ring buffer, which allows
pushing at beginning of a queue and popping at the end in constant time.

Algorithm 1 SHF Setup, Lookup and Insert

1: function Setup(M,w) ⊲ M is the available memory, w the size of the
sliding window

2: h← hash function of codomain size ⌊M2w − 1
2 log2 w⌋

3: Q← ∅ ⊲ Q is a queue of elements of size h
4: D ← ∅ ⊲ D is a dictionary h⇒ counter (of max value w)

1: function Insert(e)
2: Q.Push Front(h(e))
3: D[h(e)]++
4: if Q.length() > w then
5: h′ ← Q.Pop back()
6: D[h′]--
7: if D[h′] = 0 then
8: Erase key D[h′]

1: function Lookup(e)
2: if D[h(e)] > 0 then
3: return DUPLICATE

4: else
5: return UNSEEN

Compact Short Hash Filter (CSHF) Removing the dictionary from the
SHF construction yields a more memory-efficient, but less time-efficient con-
struction, which we dub “compact” short hash filter (CSHF). The CSHF per-
forms in linear time in w, and is a simple queue, the only point is that instead
of storing e, the filter stores h(e), where h is a hash function of codomain size
⌊Mw ⌋.

Error Probabilities. Let w > 0 be a window size and M > 0 the available
memory.

We write FNw
SHF the probability of false negative of an SHF with these

parameters. We similarly define FPw
SHF, FN

w
CSHF, FP

w
CSHF.

Theorem 3. We have:

• FNw
SHF = 0 and FPw

SHF = 1−
(

1−
√
w2−M/w

)w

• FNw
CSHF = 0 and FPw

CSHF = 1−
(

1− 2−M/w
)w

Proof. This is an immediate adaptation of the proof from Theorem 2. An SHF
has fingerprints of size h = M

2w − 1
2 log2 w, while a CSHF has fingerprints of size

h′ = M
w .
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Figure 1: Error rates of SHFs and CSHFs for M = 105 bits, for varying window
sizes w.

Remark: A CSHF of size M on a sliding window w has the same error rate
than an SHF of sliding window w of size 2M + w log2 w.

Saturation. SHF has strictly increasing error probabilities, which reach a
threshold of 1/2 for some maximum window size wmax. Beyond this value,
these filters saturate extremely quickly: in other words, most SHF will either
have an error rate of 0 or 1.

An illustration of this phenomenon can be seen in Figure 1, which shows the
error rates for SHF with M = 105, against a uniformly random stream of 18-bit
elements (|Γ| = 218). The benchmark used a finite stream of length 106.

The value wmax can be obtained by solving (numerically) for FPwmax = 1/2
for a given M . Experiments (numerical resolution of FPmax = 1/2, for about
200 different values of M , uniformly distributed on a log scale between 102

and 106) indicate an approximately linear relationship between M and wmax:
wCSHF

max = 0.0627M + 443 (r2 = 0.9981) and wSHF
max = 0.0233M + 186 (r2 =

0.9977).

4 Non-windowed DDFs in a wDDP setting

4.1 Lower Bound on the Saturation Resistance

As said in the introduction, it has been proven [8] that all filters will reach
saturation on the DDP setting. However, they sometimes prove to be efficient
in some specific wDDP settings. This bound is useful for several reasons, notably
it provides an estimation of how close to optimality existing filters are.
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Theorem 4. Let E be a stream of n elements uniformly selected from an al-
phabet of size |Γ|. For any DDF using M bits of memory, the error probability
EPn = FPn +FNn satisfies

EPn ≥ 1−
1−

(

1− 1
|Γ|

)M

1−
(

1− 1
|Γ|

)n

for any n > M .

In particular, the asymptotic error rate EP∞ satisfies

EP∞ ≥
(

1− 1

|Γ|

)M

≈ 1−M/|Γ|.

Proof. By definition, a perfect filter has the lowest possible error rate. With
M bits of memory, a perfect filter can store at most M elements in memory [8,
Theorem 2.1]. Up to reordering the stream, without loss of generality because
it is random, we may assume that the filter stores the M last elements of the
stream: any other strategy cannot yield a strictly lower error rate.

If an element is already stored in the filter, then the optimal filter will
necessarily answer DUPLICATE. On the other hand, if the element is not in
memory, a perfect filter can choose to answer randomly. Let p be the probability
that a filter answers DUPLICATE when an element is not in memory. An optimal
filter will lower the error rate of any filter using the same strategy with a different
probability.

An unseen element, by definition, will be unseen in the M last elements of
the stream, and hence will not be in the filter’s memory, so the filter will return
UNSEEN with probability 1−p. For this reason, this filter has an FP probability
of p.

On the other hand, a duplicate e⋆ ∈ E is classified as UNSEEN if and only
if it was not seen in the last M elements of the stream, and the filter answers
UNSEEN. Let D be the event “There is at least one duplicate in the stream”
and C be the event “There is a duplicate of e⋆ in the M previous elements of
the stream”. Then e⋆ triggers a false negative with probability

FNn = (1− Pr[C|D])(1 − p)

=

(

1− Pr[C ∩D]

Pr[D]

)

(1 − p)

=

(

1− Pr[C]

Pr[D]

)

(1− p)

=

(

1− 1− Pr[C̄]

1− Pr[D̄]

)

(1− p)

FNn =






1−

1−
(

1− 1
|Γ|

)M

1−
(

1− 1
|Γ|

)n






(1− p)
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Hence, the error probability of the filter is

EPn = FNn +p

=






1−

1−
(

1− 1
|Γ|

)M

1−
(

1− 1
|Γ|

)n






(1− p) + p

EPn = 1−
1−

(

1− 1
|Γ|

)M

1−
(

1− 1
|Γ|

)n (1− p),

which is minimized when p = 0.

Note, as highlighted in the proof, that this bound is not tight : better bounds
may exist, the study of which we leave as an open question for future work.

4.2 Saturation Resistance of DDFs

We now evaluate the saturation rate for several DDFs, in the original DDP
setting (without sliding window). Parameters are chosen to yield equivalent
memory footprints and were taken from [8], namely:

• QHT [8], 1 bucket per row, 3 bits per fingerprint;

• SQF [5], 1 bucket per row, r = 2 and r′ = 1;

• Cuckoo Filter [7], cells containing 1 element of 3 bits each;

• Stable Bloom Filter (SBF) [4], 2 bits per cell, 2 hash functions, targeted
FPR of 0.02.

These filters are run against a stream of uniformly sampled elements from an
alphabet of 226 elements. This results in around 8% duplicates amongst the 150
000 000 elements in the longest stream used. Results are plotted in Figure 2.

The best results are given by the following filters, in order: QHT, SQF,
Cuckoo and SBF. We also observe that QHT and SQF have error rates rela-
tively close to the lower bound, hence suggesting that these filters are close to
optimality, especially since the lower bound is not tight.

4.3 Performance in wDDP

We now consider the performance of the filters just discussed in the windowed
setting, for which they were not designed. In particular, it is not possible to
adjust their parameters as a function of w.

Remarkably, some of these filters still outperform dedicated windowed filters
for some window sizes at least, as shown in Figure 3. In this benchmark, we
used the following filters:
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Figure 2: Error rate (times 100) of DDFs of 1Mb as a function of stream length.
Hatched area represents over-optimal (impossible) values.

• block decaying Bloom Filter3 (b DBF) [13], sliding window of size w

• A2 filter [16], changing subfilter every w/2 insertions

• QHT [8], 1 bucket per row, 3 bits per fingerprint

Nevertheless, we will now discuss the queuing construction, which allow us
to build windowed filters from the DDP filters.

5 Queuing filters

We now describe the queuing construction, which produces a sliding window
DDF from any DDF. We first give the description of the setup, before studying
the theoretical error rates. A scheme describing our structure is detailed in
Figure 4.

5.1 The queuing construction

Principle of operation. Let F be a DDF. Rather than allocating the whole
memory to F , we will create L copies of F , each using a fraction of the available
memory. Each of these subfilters has a limited timespan, and is allowed up to c
insertions. The subfilters are organised in a queue.

3Note that by design, a b DBF of 105 bits cannot operate for w > 6000.
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Figure 3: Error rates for QHT, b DBF, and A2. While A2 and b DBF were
designed and adjusted to the wDDP, this is not the case of QHT. Still, QHT
outperforms these filters for some values of w.

When inserting a new element in the queuing filter, it is inserted in the
topmost subfilter of the queue. After c insertions, a new empty filter is added
to the queue, and the oldest subfilter is popped and erased.

As such, we can consider that each subfilter operates on a sub-sliding window
of size c, which makes the overall construction a DDF operating over a sliding
window of size w = cL.

Insertion and lookup. The filter returns DUPLICATE if and only if at least
one subfilter does. Insertion is a simple insertion in the topmost subfilter.

Queue update. After c insertions, the last filter of the queue is dropped, and
a new (empty) filter is appended in front of the queue.

Pseudocode. We give a brief pseudocode for the queuing filter’s functions
Lookup and Insert, as well as a Setup function for initialisation, in Algorithm 2.
We introduced for simplicity a constructorF .Setup that takes as input an integer
M and outputs an initialized empty filter F of size at mostM . Here subfilters
is a FIFO that has a pop and push first operations, which respectevely removes
the last element in the queue or inserts a new item in first position.

5.2 Error rate analysis

The queuing filter’s properties can be derived from the subfilters’. False positive
and false negative rates are of particular interest. In this section we consider a
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F0 F1 F2
... FL−1 FL FL+1

c elements

Capacity of Lc ≈ w elements

Current sliding window (of size w)

Stream (most recent on the left)

em em−2em−4em−6em−8
. . . em−w+1

Queuing filter

F

Subfilter being

populated

Fi

Populated active

subfilter

Fj Expired subfilter

Figure 4: Architecture of the queuing filter, which consists of L subfilters Fi,
each containing up to c elements. Once the newest subfilter has inserted c
elements in its structure, the oldest one expires. As such, the latter is dropped
and a new one is created and put under population at the beginning of the
queue. In this example, the sub-sliding window of F1 is (em−2, em−3, em−4).

queuing filter Q with L subfilters of type F and capacity c (which means that
the last subfilter is dropped after c insertions).

Remark. By definition, after c insertions the last subfilter is dropped. Information-
theoretically, this means that all the information related to the elements inserted
in that subfilter has been lost, and there are c such elements by design. There-
fore, in the steady-state regime, the queuing filter holds information about at
least c(L − 1) elements (immediately after deleting the last subfilter) and at
most cL elements (immediately before this deletion).

Hence, if w < cL, the queuing filter can hold information about more than
w elements.

5.2.1 False Positive Probability

Theorem 5. Let FPw
Q,m be the false positive probabilityof Q after m > w in-

sertions, over a sliding window of size w = cL, we have

FPw
Q,m = 1− (1− FPF ,c)

L−1 (1− FPF ,m mod c)

where FPF ,m is the false positive probability of a subfilter F after m insertions.

Proof. Let E = (e1, . . . , em, . . . ) be a stream and e⋆ /∈wE.
Therefore, e⋆ is a false positive if and only if at least one subquery Fi.Lookup(e

⋆)
returns DUPLICATE. Conversely, e⋆ is not a false positive when all subqueries
Fi.Lookup(e

⋆) return UNSEEN, i.e., when e⋆ is not a false positive for each
subfilter.
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Algorithm 2 Queuing Filter Setup, Lookup and Insert

1: function Setup(F ,M,L, c) ⊲ M is the
available memory, F the subfilter structure, L the number of subfilters and
c the number of insertions per subfilter

2: subfilters ← ∅
3: counter ← 0
4: m← ⌊M/L⌋
5: for i from 0 to L− 1 do
6: subfilters.push first(F .Setup(m))

7: store (subfilters, L, m, counter)

1: function Lookup(e)
2: for i from 0 to L− 1 do
3: if subfilters[i].Lookup(e)

then
4: return DUPLICATE

5: return UNSEEN

1: function Insert(e)
2: subfilters[0].Insert(e)
3: counter++
4: if counter == c then
5: subfilters.pop()
6: subfilters.push first(F .Setup(m))

Each subfilter has undergone c insertions, except for the first subfilter which
has only undergone m mod c, we immediately get Eq. (5).

Remark. In the case w < cL, as mentioned previously, there is a non-zero
probability that e⋆ is in the last subfilter’s memory, despite not belonging to
the sliding window.

Assuming a uniformly random input stream, and writing δ = cL − w, the

probability that e⋆ has occurred in {em−cL, . . . em−w+1} is 1 −
(

1− 1
|Γ|

)δ

. For

large |Γ| (as is expected to be the case in most applications), this probability is
about δ

|Γ| ≪ 1. Hence, we can neglect the probability that e⋆ is present in the

filter, and we consider the result of Theorem 5 to be a very good approximation
even when w < cL.

5.2.2 False Negative Probability

Theorem 6. Let FNw
Q,m be the false negative probability of Q after m > w

insertions on a sliding window of size w = cL, we have

FNw
Q,m = uL−1

c um mod c

where we have introduced the short-hand notation uη = pη FNF ,η +(1− pη) (1− FPF ,η)
where FNF ,η (resp. FPF ,η) is the false negative probability (resp. false positive)

of the subfilter F after η insertions, and pη =
1−(1− 1

|Γ| )
η

1−(1− 1
|Γ| )

w ≈ η
w .
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Proof. Let E = (e1, . . . , em, . . . ) be a stream, let w be a sliding window and let
e⋆ ∈w E.

Then e⋆ is a false negative if and only if all subfilters Fi answerFi.Detect(e
⋆) =

UNSEEN. There can be two cases:

• e⋆ is present in Fi’s sub-sliding window;

• e⋆ is not present in Fi’s sub-sliding window.

In the first case, Fi.Detect(e
⋆) returns UNSEEN if and only if e⋆ is a false

negative for Fi. This happens with probability FNF ,c by definition, except for
F0, for which the probability is FNF ,m mod c.

In the second case, Fi.Detect(e
⋆) returns UNSEEN if and only if e⋆ is not a

false positive for Fi, which happens with probability 1− FPF ,c, execpt for F0,
for which the probability is 1− FPF ,m mod c.

Finally, each event is weighted by the probability pc that e⋆ is in Fi’s sub-
sliding window:

pc = Pr[e⋆ is in Fi sub-sliding window — e⋆ ∈w E]

=
Pr[e⋆ is in Fi sub-sliding window ∩ e⋆ ∈w E]

Pr[e⋆ ∈w E]

=
Pr[e⋆ is in Fi sub-sliding window]

Pr[e⋆ ∈w E]

=
1− Pr[e⋆ is not in Fi sub-sliding window ]

1− Pr[e⋆ /∈wE]

pc =
1−

(

1− 1
|Γ|

)c

1−
(

1− 1
|Γ|

)w

This concludes the proof.

Remark. As previously, the effect of w < cL is negligible for all practical
purposes and Theorem 6 is considered a good approximation in that regime.

5.3 FNR and FPR

From the above expressions we can derive relatively compact explicit formulas
for the queuing filter’s FPR and FNR when m = cn for n a positive integer.

Theorem 7. Let FPRw
Q,m be the false positive rate of Q after m = cn > w

insertions on a sliding window of size w = cL, we have

FPRw
Q,cn = 1− (1− FPF ,c)

L−1

c

c−1
∑

ℓ=0

(1− FPF ,ℓ).
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Proof.

FPRw
Q,cn =

1

cn

cn
∑

k=1

FPw
Q,k =

1

cn

n
∑

k=1

c−1
∑

ℓ=0

FPw
Q,k+ℓ =

1

c

c−1
∑

ℓ=0

FPw
Q,ℓ

=
1

c

c−1
∑

ℓ=0

1− (1− FPF ,c)
L−1(1− FPF , ℓ)

= 1− 1

c
(1 − FPF ,c)

L−1
c−1
∑

ℓ=0

(1− FPF ,ℓ)

Theorem 8. Let FNRw
Q,m be the false negative rate of Q after m = cn > w

insertions on a sliding window of size w = cL, we have

FNRw
Q,cn =

uL−1
c

c

c−1
∑

ℓ=0

uℓ.

Proof.

FNRw
Q,cn =

1

cn

cn
∑

k=1

FNw
Q,k =

1

cn

n
∑

k=1

c−1
∑

ℓ=0

FNw
Q,k+ℓ =

1

c

c−1
∑

ℓ=0

FNw
Q,ℓ

=
1

c

c−1
∑

ℓ=0

uL−1
c uℓ =

uL−1
c

c

c−1
∑

ℓ=0

uℓ

As for the probabilities, the expressions derived above for the FNR and FNR
are valid to first order in (w − cL)/|Γ|, i.e. they are good approximations even
when w ≈ cL.

5.4 Optimising queuing filters

Let us relax, temporarily, the a priori constraint that w = cL. The parameter L
determines how many subfilters appear in the queuing construction. Summing
up the false positive and false negative rates, we have a total error rate ERw

Q,cn =

1−αβL−1+α′β′L−1, where β = 1−FPF ,c, β
′ = uc, α = 1

c

∑c−1
ℓ=0 1−FPF ,ℓ and

α′ = 1
c

∑c−1
ℓ=0 uℓ depend on w, c and the choice of subfilter type F .

Because uη = pη FNF ,η +(1− pη) (1− FPF ,η), differentiating with respect
to L, knowing that w = Lc, and equating the derivative to 0, one can find the
optimal value for L by solving for x, which has been obtained via Mathematica:

− αβ−1+x log(β) + (β + FNF ,c(−1 + x))
−2+x

x−x
[

− αβ + FNF ,c (−β(−2 + x) + FNF ,c(−1 + x))

+ (α+ FNF ,c(−1 + x))× (β + FNF ,c(−1 + x)) (log (β + FNF ,c(−1 + x)) − log(x))
]

= 0
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If numerically solving the equation for individual cases is feasible, it seems
unlikely that a closed-form formula exists.

5.5 Queuing filters from existing DDFs

Our queuing construction relies on a choice of subfilters. A first observation is
that we may assume that all subfilters can be instances of a single DDF design
(rather than a combination of different designs).

Indeed, a simple symmetry argument shows that a heterogenous selection of
subfilters is always worse than a homogeneous one: the crux is that all subfilters
play the same role in turn. Therefore we lose nothing by replacing atomically
one subfilter by a more efficient one. Applying this to each subfilter we end up
with a homogenous selection.

It remains to decide which subfilter construction to choose. The results of
an experimental comparison of different DDFs (details about the benchmark
are given in Section 4.2) are summarized in Figure 2. It appears that the most
efficient filter (in terms of saturation rate) is the QHT, from [8].

6 Experiments and Benchmarks

This section provides details and additional information on the benchmarking
experiments run to validate the above analysis. All code is accessible online and
will be disclosed after peer review.

Benchmarking queuing filters. Applying the queuing construction to DDFs
from the literature, we get new filters which are compared in the wDDP setting.

In Section 5.5 we suggested the heuristic that the DDFs with the least sat-
uration rate in the DDP would yield the best (error-wise) queuing filter for the
wDDP. This heuristic is supported by results, summarized in Figure 5. For this
benchmark we used the following parameters: uniform stream from an alpha-
bet of size |Γ| = 218, memory size M = 100, 000 bits, sliding window of size
w = 10, 000, and we measure the error rate (sum of FNRw and FPRw).

A surprising observation is that when Lw approaches the size of the stream,
there is a drop in the error. This is an artifact due to the finite size of our
simulations; the stream should be considered infinite, and this drop disappears
as the simulation is run for longer (see Appendix A). This effect also alters
the error rates for smaller window sizes, albeit much less, and we expect that
filter designers care primarily about the small window regime. Nevertheless a
complete understanding of this effect would be of theoretical interest, and we
leave the study of this phenomenon for future work.

The number of subfilters The number of subfilters L is an important pa-
rameter in the queuing construction, as it affects the filter’s error rate in a
nontrivial way. An illustration of this dependence is shown in Figure 6 which
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Figure 5: Error rate (times 100) of queuing filters as a function of window size,
M = 105, L = 10, |Γ| = 218, on a stream of size 107.

plots the error rate of a queueing QHT on an uniform stream of alphabet size
Γ = 216, with 105 elements in the stream, on various sliding window sizes.

We observe that the optimal value for L does indeed depend on the desired
sliding window. However, other experiments on alphabets of other sizes yield
very similar results, hence validating the observation made in Section 5.4 that
the optimal number of subfilters does not depends on the alphabet, at least in
first approximation.

Filters vs queued filters. Using the same stream as previously, we can build
queued filters (with an optimal value L for each considered sliding window) and
compare their performances to that of non-modified filters. Results on the QHT
and SQF are shown in Figure 7, results for the Cuckoo and SBF are shown in
Appendix B.

We observe that queueing filters do not necessarily behave better than their
’vanilla’ counterparts, especially on large sliding windows. This can be inter-
preted by the fact that the DDPs were optimised for infinite sliding windows,
and as such operate better than their queueing equivalent on large sliding win-
dows.

7 Adversarial Resistance of Queueing Filters

As DDFs have numerous security applications, we now discuss the queuing
construction from an adversarial standpoint. We consider an adversarial game
in which the attacker wants to trigger false positives or false negatives over
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Figure 6: Evolution of the error rate of a queueing QHT as a function of L, for
several window sizes, with M = 105, |Γ| = 218, on a stream of size 106.

the sliding window. One motivation for doing so is causing cache saturation
or denial of service by forcing cache misses, triggering false alarms or crafting
fradulent transactions without triggering fraud detection systems.

To create a realistic adversary model, we assume like in [1] that the adversary
does not have access to the filter’s internal memory. Nonetheless, after every
insertion she knows whether the inserted element was detected as a duplicate
or not.

We first recall the definition of an adversarial game, adapted to our context.

Definition 3. An adversary A feeds data to a sliding window DDF Q, and for
each inserted element, A knows whether Q answers DUPLICATE or UNSEEN,
but has not access to Q’s internal stateM. The game has two distinct parts.

• In the first part, A can feed up to n elements to Q and learns Q’s response
for each insertion.

• In the second part, A sends a unique element e⋆.

A wins the n-false positive adversarial game (resp. n-false negative adversarial
game) if and only if e⋆ is a false positive (resp. a false negative).

Variants of these games over a sliding window of size w are immediate.

Definition 4 (Adversarial False Positive Resistance). We say that a DDF F is
(p, n)-resistant to adversarial false positives if no polynomial-time probabilistic
(PPT) adversary A can win the n−false positive adversarial game with proba-
bility greater than p.
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Figure 7: Comparing performances of QHT and SQF filters, in ‘vanilla’ setting
or when placed in our queueing structure.

Note that if F is (p, n)-resistant, then it is (p,m)-resistant for all m < n.
We define similarly the notion of being resistant to adversarial false nega-

tives. Finally, both definitions also make sense in a sliding window context.

Theorem 9 (Bound on false positive resistance). Let Q be a filter of L subfilters
Fi, with c insertions maximum per subfilter, let w be a sliding window.

If F is (p, c)-resistant to adversarial false positive attacks and cL ≤ w, then
Q is (1− (1− p)L, w)-resistant to adversarial false positive attacks on a sliding
window of size w.

If cL > w, the adversary has a success probability of at least 1− (1− p)L.

Proof. If cL ≤ w, then information-theoretically the subfilters only have infor-
mation on elements in the sliding window. The false positive probability for Q
is 1 − (1 − FPF ,c)

L, which is strictly increasing with FPF ,c. Hence, the opti-
mal solution is reached by to maximising the false positive probability in each
subfilter Fi. By hypothesis the latter is bounded above by p after c insertions.

On the other hand, if cL > w then the oldest filter holds information about
elements that are not in the sliding window anymore. Hence, a strategy for the
attacker trying to trigger a false positive on e⋆ could be to make it so these
oldest elements are all equal to e⋆. Let E be the optimal adversarial stream for
triggering a false positive on the sliding window w with the element e⋆, when
cL ≤ w. The adversary A can create a new stream E′ = e⋆|e⋆| . . . |E where e⋆

is prepended cL− w times to E.
After w insertions, the last subfilter will answer DUPLICATE with probabil-

ity at least p, hence giving a lower bound on A′s success probability. If, for
some reason, the last subfilter answers DUPLICATE with probability less than
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p, then the same reasoning as for when cL ≤ w still applies, hence we get the
correspondig lower bound (which is, in this case, an equality).

Theorem 10 (Bounds on false negative resistance). Let Q be a filter of L
subfilters of kind F , with c insertions maximum per subfilter, and let w be a
sliding window.

If F is (p, c)-resistant to adversarial false negative attacks, then A can win
the adversarial game on the sliding window w with probability at least pL.

Furthermore, for q the lower bound on the false positive probability FPF ,c for
a given stream, if w ≤ (L−1)c then Q is (min(1−q, p)L−1p, w)-resistant to false
negative attacks on the sliding window w. On the other hand if w > (L − 1)c
then Q is (max(1 − q, p)L, w)-resistant to false negative attacks on the sliding
window w.

Proof. Let us first prove that a PPT adversary A can win the game with prob-
ability at least pL. For this, let us consider the adversarial game against the
subfilter F : after c insertions from an aversarial stream Ec, A choses a duplicate
e⋆ which will be a false negative with proability p. Hence, if A crafts, for the
filter Q, the following adversarial stream E′ = Ec | Ec | · · · | Ec consisting of L
concatenations of the stream Ec, then e⋆ is a false negative for Q if and only
if it is a false negative for all subfilters Fi, hence a success probability for A of
pL.

Now, Let us prove the case where w ≤ (L − 1)c. In this case, at any time,
Q remembers all elements from inside the sliding window. As we have seen in
the previous example, the success probability of A is strictly increasing with the
probability of each subfilter to answer UNSEEN. The probability of a subfilter
to answer UNSEEN is:

• FN′
F ,c if e⋆ is in the subfilter’s sub-sliding window;

• 1− FP′
F ,c if e⋆ is not in the subfilter’s sub-sliding window

where FN′ and FP′ are the probabilities of false negative and positives on the
adversarial stream (which may be different from a random uniform stream).

However, since e⋆ is a duplicate, it is in at least one subfilter’s sub-sliding
window. As such, the optimal strategy for A is to maximise the probability
of all subfilters to answer UNSEEN. Now, FN′

F ,c is bounded above by p and

1−FP′
F ,c is bounded above by 1−q, so the best strategy is where as many filters

as possible answer UNSEEN with probability max(p, 1−q), knowing that at least
one filter must contain e⋆ and as such its probability for returning UNSEEN is
at most p, hence the result.

Now, let us consider the case when w > (L−1)c. We have already introduce
the element e⋆ in the last w elements, and we want to insert it again. It is possi-
ble, for the adversary, to create the following streamE = (e1, e2, . . . , ec−1, e

⋆, ec+1, . . . ,
eLc, eLc+1), and to insert e⋆ afterwards.

When eLc+1 is inserted, all elements (e1, . . . , ec−1, e
⋆) are dropped as the

oldest subfilter is popped. Hence, in this context e⋆ is not in any subfilter
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anymore, so by adapting the previous analysis, A can get a false negative with
probability at most max(1− q, p)L.
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A Effects of the simulation’s finiteness

Theoretical results about the queuing construction apply in principle to an
infinite stream. However, simulations are necessarily finite, and for very large
windows (that are approximately the same size as the whole stream) this causes
interesting artefacts in the error rates.

Note that these effects have very little impact on practical implementations
of queuing filters, since almost all use cases assume a window size much smaller
than the stream (or, equivalently, a very large stream). Nevertheless we illus-
trate the effect of the finite simulation and the parameters affecting it, if only
to motivate a further analytical study of this phenomenon.
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Figure 8: Error rate for queuing QHT (L = 10, M = 105, |Γ| = 216) with
streams of size 105 to 108.

Figure 8 measures the error rate as a function of w, for different stream sizes
N . A visible decrease in ER can be found around w ≈ N . While we do not
have any explanation for the difference in the peaks sizes and exact location, we
give the hypothesis that it is related to the choice of |Γ|.

As can be seen on this simulation, there is only disagreement around w ≈
N/L, and increasing N results in a later and smaller peak.

It is also possible to run simulations for different alphabet sizes Γ, which
shows that the peak’s position increases with |Γ|, although the relationship is
not obvious to quantify.

B Filters vs queued filters (complement)

We here run a comparison of the Cuckoo Filter relative to the Queueing Cuckoo
Filter, as well as the SBF relatively to the queueing SBF. The results are given
in Figure 9.
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Figure 9: Comparing performances of the Cuckoo and SBF filters, in ‘vanilla’
setting or when placed in our queueing structure.
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