N

N
N

HAL

open science

JavaScript Malware Detection Using Locality Sensitive
Hashing

Stefan Carl Peiser, Ludwig Friborg, Riccardo Scandariato

» To cite this version:

Stefan Carl Peiser, Ludwig Friborg, Riccardo Scandariato. JavaScript Malware Detection Using Lo-
cality Sensitive Hashing. 35th IFIP International Conference on ICT Systems Security and Privacy

Protection (SEC), Sep 2020, Maribor, Slovenia. pp.143-154, 10.1007/978-3-030-58201-2_10 .

03440842

HAL Id: hal-03440842
https://inria.hal.science/hal-03440842

Submitted on 22 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-03440842
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

JavaScript malware detection using
locality sensitive hashing

*Stefan Carl Peiser, *Ludwig Friborg, and Riccardo Scandariato

! Chalmers University of Technology, Gothenburg, Sweden
stefancarlpeiser@gmail.com
2 Chalmers University of Technology, Gothenburg, Sweden
ludwig.friborg@gmail.com
3 Chalmers and University of Gothenburg, Gothenburg, Sweden
riccardo.scandariato@cse.gu.se

Abstract. In this paper, we explore the idea of using locality sensitive
hashes as input features to a feed-forward neural network with the goal
of detecting JavaScript malware through static analysis. An experiment
is conducted using a dataset containing 1.5M evenly distributed benign
and malicious samples provided by the anti-malware company Cyren.
Four different locality sensitive hashing algorithms are tested and eval-
uated: Nilsimsa, ssdeep, TLSH, and SDHASH. The results show a high
prediction accuracy, as well as low false positive and negative rates. These
results show that LSH based neural networks are a competitive option
against other state-of-the-art JavaScript malware classification solutions.

Keywords: Malware - LSH - Neural network - JavaScript

1 Introduction

JavaScript is one of the most popular scripting languages in the world as it is
the ‘de facto’ scripting language used by internet browsers. This means that
JavaScript has become a popular attack vector to infect computers of inter-
net users as these scripts are executed automatically by browsers. In this pa-
per we focus on static techniques to detect malicious JavaScript code, as static
approaches are simpler to apply and have a performance advantage. However,
detecting malicious code statically has become difficult due to code obfuscation.
On top of that, in the world of JavaScript, code obfuscation is not an indicator
of maliciousness as most JavaScript code on benign websites is obfuscated as a
side-effect of minimizing the size of production code and preserving intellectual
property.

In this paper we present an approach that works on both clear-text and
obfuscated scripts. In particular, we explore the use of locality sensitive hashing

* These authors contributed equally to this work.

2 S. C. Peiser et al.

(LSH) as a means to extract features from the scripts. The features are fed to
a neural network for the effective identification of malicious scripts. LSH is a
family of dimensionality reducing algorithms, which previously has been used
for document and code comparison and is used here in a novel way for malware
detection.

In Section 2 we introduce background material and survey the related work.
We present our approach in Section 3. In Section 4, we evaluate the approach on
a large corpora of malware samples and compare the results to several alterna-
tive approaches from the state of the art (including Cujo and Zozzle). In Section
5 we discuss and investigate possible causes for false positives and false nega-
tives during our experimentation. Finally, we present the concluding remarks in
Section 6.

2 Background and related work

2.1 JavaScript malware

Almost all web pages today utilize JavaScript in some form, whether to dis-
play fancy animations or to send data to web servers. Browsers have started
to run JavaScript files automatically when loading websites, which has enabled
many new attack vectors. JavaScript malware have various purposes. Many try
to download other malware onto the victim’s computer, e.g. remote access tro-
jans (RATSs), ransomware and more, these are commonly known as drive-by-
downloads malware. Other common types of malware are bitcoin miners where
the malware uses the infected computer’s hardware to mine cryptocurrency.
Facelikers are also common, as they try to ”like” various posts and pages on
Facebook using infected Facebook accounts.

Often, hackers obfuscate the code of malware in an attempt to make it harder
to analyse and detect. However, obfuscation is not necessarily an indicator of
maliciousness as it has become the norm in JavaScript development the last few
years as a way of minimizing code, hide client-side code and more.

2.2 Identification of JavaScript malware

There are several malware detection techniques that have been proposed in the
state of the art. In this section we focus on the most prominent approaches,
which are also used as comparison in Section 4.1. For a more complete coverage
of malware identification, we refer the interested reader to the survey of Ye et
al. [20].

Dynamic analysis. Ratanaworabhan et al. [13] propose a runtime heap-
spraying attack detector named Nozzle. The system has been used to analyse
JavaScript-based malware. Nozzle uses emulation techniques to detect executable
malicious code in objects allocated within the browser heap.

A drawback with using dynamic methods is that they are often resource
intensive and thus expensive to use at runtime. Thus, it is prevalent among

JavaScript malware detection using locality sensitive hashing 3

security vendors to use dynamic analysis methods to assess the scripts off-line
and, at runtime, just compare script files with a collection of already classified
samples.

Static analysis. Ndichu et al. [11] proposes using Doc2Vec to extract fea-
tures from malicious JavaScript files and then feed them into a support vector
machine model. The performance of the classifier is promising but the validation
dataset consists of only 80 files.

Curtsinger et al. [3] propose a method named Zozzle. They evaluate both a
handpicked and a automated feature extraction method to then infer the mali-
ciousness of a JavaScript file through a naive Bayesian classifier. It is important
to note that their system is only able to function on unobfuscated code.

Xu et al. [19] propose a method named JStill, which operates on obfuscated
code. This method works by analysing code and looking for blacklisted func-
tion calls. It is important to note that the approach relies on white/black lists.
Therefore, the method is limited to cover only a subset of all JavaScript malware.

Likarish et al. [9] evaluate multiple different statistical learning methods to-
gether with a tokenized feature extraction method based on different keywords.
Among the methods evaluated, the models with the lowest false positive rate are
ADTree [5] and RBF SVM [2]. Wang et al. [18] later provide a more refined pre-
sentation of the results presented by Likarish. They also present a deep learning
approach, called SAA-LR, based on the previously mentioned feature extraction
method and a deep neural network for statistical inference.

Rieck et al. [14] propose a system called Cujo, which leverages three different
methods of JavaScript malware analysis. One is static, one is dynamic and one is
the combination of the previous two. The static method utilizes support vector
machines to learn the patterns of malicious scripts. The dynamic method uses
sandboxing. The work focuses on detecting one specific type of malware, namely
the drive-by-download family.

Although not related to JavaScript, the work of Raff et al. [12] is worth
mentioning. They train a deep learning model that consumes entire malware
executable binaries. Thus, the model learns how the malware are structured
internally. However, performance is a major drawback in this approach, as it
takes a month to train the model on a dataset of 2M executable binaries.

2.3 Locality Sensitive Hashing

Raff et al. [12] show that using deep learning to learn structural properties of
malware seems to be a powerful way of classifying them. However, the bottleneck
is represented by the time and resources it takes to learn on entire malware files.
Instead of processing whole files, our idea is to find a dense representation of
the file contents and to infer characteristics from said representation. Hence this
paper focuses on the use of locality sensitive hashing methods to provide concise
input features for a neural network.

Locality Sensitive Hashing (LSH) is a relatively new family of dimensionality-
reducing algorithms, including Nilsimsa [4], TLSH [10], ssdeep [8], and SDHASH
[15], which are evaluated in this work. These algorithms produce condensed

4 S. C. Peiser et al.

Table 1. List of the most prevalent types of malicious scripts.

Malware Type Count %
Redirector 166857 20.4
Trojan downloader 43505 5.3
CoinHive 6285 0.8
SEOHide 4394 0.5
IFrame 3629 0.4
FaceLiker 2285 0.3
Ramnit 1615 0.2
FakejQuery 1073 0.1
Crypted 938 0.1
Unknown type 588153 71.8
Total 818734

representations (hashes) of the given input data. By construction, the hashes of
similar files are also similar®, hence the hashes can be used as proxies in order
to compare the similarity of the original files. The benefit is that the hashes
are much more concise and lend themselves to be used as features in learning
algorithms.

3 Experimental setup

3.1 Dataset

The dataset contains about 1.5M scripts, of which 54% are malicious. Table 1
describes the different malware types that are present in the dataset. The data
is provided by Cyren (https://www.cyren.com), which is a large vendor in the
field of cybersecurity and supplies, among other, the scanner for email attach-
ments used by Google and Microsoft [1]. All JavaScript files in the dataset have
been collected and labeled during the first half of 2019. The files originate from
various sources, e.g. from web scrapers, customers sending in files for analysis,
e-mail attachments, incoming files from VirusTotal [17] and more. Each of these
files goes through Cyren’s malware scanners (based on dynamic analysis) and the
system assigns a label to the sample indicating whether it is clean or malicious.
These labels represent our ground truth.

3.2 Feature extraction

As shown in Figure 1, the locality sensitive hashes are pre-processed before
being used as input to the neural network. Thus we have to take into account

4 This contrasts to cryptographic hashing techniques, like SHA256, where the hashing
algorithm minimizes the probability of collisions, i.e., two almost identical files yield
two drastically different hashes.

https://www.cyren.com

JavaScript malware detection using locality sensitive hashing

CODE
Nilsimsa TLSH SSDEEP SDHASH
04E2FDO02ES4ED2E... 1a304¢41a07781f915530... 4I+vIG2+OMGi+VZGIikH.. 297a7fadb6dc7abded32cS...

N e

Split into 3-grams
04E, 4E2, E2F, 2FD, FDO, D00...

v

v

{

Split into 3-grams
41+, I+v, +v1, vIG, 1G2...

Split into 2-grams
2997 7a a7 7ffa ad db b6...

v

v

Integer Encoding Integer Encoding Count Vectorization
25,22, 4,10, 85, 45... 43,26, 12,43, 62, 2. 74,8, 23,43, 10, 114, 1...
) v v
Neural Network Zero Padding Neural Network
v

Neural Network

Fig. 1. Feature extraction and prediction pipeline.

the different characteristics of the hashes. Both TLSH and Nilsimsa produce a
fixed-length, hex-encoded strings of 70 and 64 characters respectively. SSDEEP
produces a hash that is base64 encoded and its length is variable, but has a
max size of 148 characters. Finally, SDHASH produces hex encoded hashes of
variable length, but with no maximum limit.

To let the neural network find patterns in the substrings of the hashes we
decided to split the hashes into n-grams by using a sliding window (of size n and
sliding of 1 position at a time). As detailed later, the learning algorithm (namely,
the embedding layer) uses a dictionary whose size is 16™ for TLSH and Nilsimsa
(hex encoding), and 64" for ssdeep (base64 encoding). A larger dictionary has
an impact on the training time and the memory consumption. Therefore, after
experimentation, the trade-off decision has been made to use tri-grams. During
the experimentation, we also found that using n > 4 did not yield any noticeable
classification improvements but a high increase in training time.

After splitting the hash into n-grams, each hash is then encoded as a se-
quence of integers, i.e., each n-gram is converted to its positional value. After
the encoding, we we are left with input vectors of different size for each LSH
type. In the case of TLSH and Nilsimsa, the vectors are of fixed size and they
are used as-is to train a neural network. In the case of SSDEEP, the vectors have
variable length but, due to the nature of the output from this algorithm, there
is an upper bound. In this case, we take the length of the longest vector and add
zero-padding to the vectors so that they have the same length.

SDHASH produces output hashes with no definitive maximum length and no
upper bound. Hence, for this hashing algorithm, the construction of the features
is different. Starting from the hash, we split it into a vector of bi-grams (in place
of tri-grams) and filter the vector through a count vectorizer, which returns a
vector of frequencies for each unique bi-gram. We use the vector of frequencies

6 S. C. Peiser et al.

Table 2. Network model composition (where L is length of input vector).

Layer name Output dimensions

Embeddings 32xL

Flatten 1xL

BatchNormalization 1xL

Dense 1x256 activation: relu
Dropout 1x256 probability: 0.125
Dense 1x64 activation: relu
Dense 1x1 activation: sigmoid

as input vector for the neural network. Note that the ordering of bi-grams gets
lost in the process, which might negatively affect the performance of the neural
network performance. The choice of using bi-gram is justified by the fact that, in
this way, the input vector is of similar size with respect to the other algorithms.

3.3 Neural network design and implementation

A supervised learning approach with a normal deep feed-forward neural network
is used to classify each locality sensitive hash. The input layer of the neural
network takes the integers generated from each hash, and the output layer will
return one single value, presented on a scale between 0 and 1, determining the
likelihood of the input of being malicious. Table 2 provides an overview of the
network structure. The embedding layer transforms positive integers into dense
non-zero vectors. This was chosen to mitigate the problem of it having a high
presence of sparse input-vectors in addition to some hashing methods producing
hashes of an inconsistent length leading to a lot of 0-padding. Not embedding
the input data resulted in worse performance and slower convergence rate for
the learning model. We use both Batch Normalization [6] and Dropout [16] for
regularization.

In terms of fitting the network to gain an accurate understanding of the
given data adam optimization [7] was used together with binary cross-entropy
as loss-function.

3.4 Experiments and performance indicators

By means of random sampling, we split the complete dataset into seven subsets
of incrementally bigger sizes, namely 5k, 10k, 50k, 100k, 500k, 1M, 1.5M (i.e., the
whole set). We use subsets of varying sizes in order to investigate the trade-off
between prediction performance and training cost. Ultimately, we would like to
understand how much data is necessary in order to generalize. Note that, as we
use random sampling, the positive rate in the subsets is expected to be similar
to the complete dataset.

For each subset and each LSH method, we run a 5-fold cross-validation ex-
periment and measure the average performance of the prediction approach. As

JavaScript malware detection using locality sensitive hashing 7

Table 3. Results from the 5-fold cross-validation experiment.

LSH ACC (%) FPR (%) FNR (%)
TLSH 97.79 1.01 3.25
Nilsimsa 98.05 1.09 2.69
ssdeep 97.97 0.94 2.98
SDHASH 95.06 1.83 7.63

ACC FPR FNR

1.00 0.10 0.200
0.175 4
0.150 4

0.96 0.06 0125 4
0.100

.94 041 0.075 -
0.050 4
0.92 4 0.02 4
0.025 4

T T T T T T T T . T T T T T T T T 0.000 - T T T T T T T
5k 10k 50k 100k 250k 500k 1000k1527k 5k 10k 50k 100k 250k 500k 1000k1527k 5k 10k 50k 100k 250k 500k 1000k1527k

—4— Nilsimsa —e— ssdeep —=— TLSH —— SDHASH

Fig. 2. Accuracy, False Positive Rate and False Negative Rate across the different
experiments with increasingly larger dataset sizes.

we use 5-fold cross-validation, the results we report are averaged over the per-
formance obtained in the individual folds.

To assess the different prediction models, we rely on three performance in-
dicators: accuracy (ACC), false positive rate (FPR), and false negative rate
(FNR). The key performance indicators are FPR and F'N R. However, we also
include accuracy for comparison reasons, as this indicator is often reported by
the other approaches we compare to (cf. Section 4.1). The performance indicators
are calculated as follows:

-~ _ TP+TN
ACC = TPFTN+FP+FN
_ _ _FP
FPR = spi7y
_ _ _FN
FNR = gxi7p

where TP, TN, FP and FN corresponds to the number True/False
Positives/Negatives.

4 Results

Table 3 shows the results from the cross-validation experiment on 1.5M samples.
Figure 2 shows the results for all the experiments with different dataset sizes.
It is possible to observe that Nilsimsa has a slight advantage compared to the
other methods. Interestingly, and contrary to expectations, the SDHASH model,

8 S. C. Peiser et al.

Table 4. Comparison of the performance indicators between our models and the state
of the art, where M:C corresponds to Malware:Clean, which is the amount of samples
used.

Classifier ACC (%) FPR (%) FNR (%) M:C
Zozzle manual 98.2 1.50 1.20 900:8000
Zozzle auto 99.2 0.30 9.20 900:8000
JStill 97.3 17.5 0.53 30k:50k
RBF SVM 86.8 4.92 8.33 14k:12k
ADTree 82.7 2.42 14.92 14k:12k
SdA-LR 94.8 4.13 6.04 2959:2464
CUJO static 90.1 0.10 9.80 609:200k
Ours - TLSH 97.79 1.01 3.25 818k:709k
Ours - Nilsimsa 98.05 1.09 2.69 818k:709k
Ours - ssdeep 97.97 0.94 2.98 818k:709k

which used a count-vectorized style of network input, also seems to produce
good results, though falling short against the other LSH methods. The results
also show that the models are more prone to making false negative predictions
rather than false positives, which is a beneficial trait in the world of malware
detection.

Observing the graphs in Figure 2, it is possible to see that even in the smallest
dataset of bk samples, the best models (Nilsimsa, ssdeep, and TLSH) are already
capable of yielding an accuracy of more than 90%. SDHASH, instead, requires
a bigger dataset (50k samples and above) in order to produce stable results. In
general, there is an expected trend of increased performance as the sample size
grows, although with diminishing returns staring from a size of 500k samples.

4.1 Comparison to alternative approaches

In Table 4 we present a comparison between our models and other approaches
that utilize static analysis. The performance values for the competing approaches
are taken from the corresponding research papers.

In comparison to Zozzle, i.e., the best performing compared model we com-
pare to, our model is quite close in performance but does not match it. However,
our approach does support the classification of obfuscated JavaScript, which
is not supported by Zozzle. This implies a wider range of applicability for our
models. When comparing to the other models from the state of the art, our ap-
proach performs better when considering the accuracy (about 98%) and is more
balanced when considering the FPR and the FNR jointly (e.g., with a threshold
of about 3% for both).

In addition to this, due to the very large size of our dataset, we can reliably
test the validity of our models and have confidence that a similar performance can
be achieved when used in real life circumstances. Making classifiers with small
datasets might lead to less generic models. Since there exists a vast diversity

JavaScript malware detection using locality sensitive hashing 9

Table 5. Top 10 most common false negative categories, ordered by percentage of
occurrences.

TLSH Nilsimsa ssdeep SDHASH
1st Unknown Unknown Unknown Unknown
2nd Redirect Redirect Redirect Redirect
3rd Trojan Trojan Trojan Trojan
4th CoinHive CoinHive CoinHive CoinHive
5th SEOHide SEOHide SEOHide SEOHide
6th IFrame IFrame IFrame IFrame
7th Faceliker Faceliker Faceliker Faceliker
8th Crypted FakejQuery FakejQuery Crypted
9th FakejQuery Crypted Ramnit FakejQuery
10th Ramnit Ramnit Crypted Ramnit

of possible malware and clean files, a small dataset might give a skewed image
of the performances of the methods, due to not being able to verify whether
it works on new never-seen-before malware. In our case, we have 1.5M samples
with a 54% positive rate. The only competitor that has a similarly sized dataset
is Cujo, with roughly 201k samples, but very few samples of malware (0.3%).
This can be further seen in Table 4, as the best performing classifiers all have
very few samples of malware files compared to our dataset.

5 Discussion

In this section we discuss the possible causes of misclassifications, which might
lead to false negatives and false positives.

5.1 False negatives

False negatives are misclassified malware scripts, for which we have full access to
the code. This section will focus on the models trained on the entire 1.5M dataset,
as these are the best performing models and also the dataset that contains
all malware files, giving a better view of the shortcomings of LSH. Table 5
shows the top 10 most common types of misclassified malware, for each LSH
method. The detection names come from Cyren’s labelling system. The most
occurring category represents the most difficult class of malware for our models
to generalise. The unknown category contains files that got flagged for malicious
behaviour but where there was not enough information to sort the files into
one of the more known malware families. One very likely scenario is that the
unknown malware belong to smaller groups of malware types which might be
less prevalent in the dataset.

Observing Table 5, it is possible to see that all LSH methods lead to almost
the same false types of negatives: the top 7 misclassified categories are the same
for all four methods. When inspecting these files, it can be seen that they have

10 S. C. Peiser et al.

two common elements: either they are very similar to clean looking code, like in
the case of Redirectors and FakejQuery, or the actual malicious part of the code
is very small, making it easy to inject into otherwise clean code, like CoinHive.

In consequence, when these malware types are hashed, malicious information
might get lost, e.g. if there is a single line of malicious code in an otherwise clean
file it might result in that the hash looks more like a clean file rather than a
malicious file, which is often the case with CoinHive or other cryptocurrency
mining malware.

In the case of redirectors, we have malware that is not necessarily doing any-
thing malicious, as redirecting users on websites is a very common thing, but it
is the destination that is malicious. This is a similar problem with malware of
the downloader type (in Table 5 are Trojan, Ramnit, FakejQuery, and Crypted)
since the act of downloading is not malicious, but the file that is downloaded
might be malicious. In that case, the JavaScript file itself does not actually hold
any malicious code. In these cases, the destination/download URLs that are the
malicious indicators might after locality sensitive hashing have a little to no dif-
ference from URLs that are benign. In other words when a locality sensitive hash
is created, it might end up looking like other downloader/redirection programs
that are benign.

5.2 False positives

False positives are misclassified clean files. The clean files from Cyren were not
directly available to us (only the file’s SHA256 signature and its LSH hashes are
stored in our dataset) as these files are more likely to contain personally identi-
fiable information. Thus we have to rely on analysing the files that come from
VirusTotal, which are publicly available. In comparison to false negatives, false
positives are much harder to analyse because clean files do not carry a category
label that we could use as a basis for generalization. By doing a manual inspec-
tion on 50 of the publicly available false positives, the following observations
have been made:

— Due to malware like FakejQuery, there is a chance that other similar benign
code gets detected, e.g., code that is a fork of jQuery or a jQuery plugin.

— Shorter files give hashes that carry less information, leading to higher false
positives. This is the reason why the LSH methods have a recommended
minimum file/length.

— Some obfuscation techniques are less common than others, for example, en-
coding JavaScript statements as a string which the program then interprets
using the eval method is highly suspicious but is not always an indicator of
maliciousness. It is sometimes used to hide sensitive data that should not be
able to get scraped by web crawlers.

6 Conclusion

In this paper we have shown that utilising deep learning together with local-
ity sensitive hashing as a form of feature extraction it is possible to classify

JavaScript malware detection using locality sensitive hashing 11

JavaScript malware with a high accuracy and a low false positive rate. Our
method works with obfuscated code and is completely static. When comparing
our method to other methods of static JavaScript malware detection, our method
provides competitive results without having drawbacks such as not being able
to handle obfuscated code.

References

10.
11.

12.

13.

14.

15.
16.

17.

Cyren - Malware Attack Detection (2019), https://www.cyren.com/tl_
files/downloads/resources/Cyren_Malware-Attack-Detection_Datasheet_
20160915_1tr_EN_web.pdf

. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3) (1995).

https://doi.org/10.1007/BF00994018

Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: Low-overhead mostly
static javascript malware detection. Tech. Rep. MSR-TR-2010-156 (November
2010)

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: An open
digest-based technique for spam detection. vol. 2004 (2004)

Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Pro-
ceedings of the Sixteenth International Conference on Machine Learning (1999)
Toffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR abs/1502.03167 (2015), http://arxiv.
org/abs/1502.03167

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014)
Kornblum, J.: VirusTotal (2018), https://ssdeep-project.github.io/ssdeep/
index.html

Likarish, P., Jung, E., Jo, I.: Obfuscated malicious javascript detection using classi-
fication techniques. In: International Conference on Malicious and Unwanted Soft-
ware (MALWARE) (2009)

Micro, T.: TLSH (2018), https://github.com/trendmicro/tlsh

Ndichu, S., Ozawa, S., Misu, T., Okada, K.: A machine learning approach to ma-
licious javascript detection using fixed length vector representation. pp. 1-8 (07
2018). https://doi.org/10.1109/IJCNN.2018.8489414

Raff, E., Barker, J., Sylvester, J., Brand on, R., Catanzaro, B., Nicholas, C.: Mal-
ware Detection by Eating a Whole EXE. arXiv e-prints arXiv:1710.09435 (2017)
Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: A defense against heap-
spraying code injection attacks. In: Proceedings of the Usenix Security
Symposium (2009), https://www.microsoft.com/en-us/research/publication/
nozzle-a-defense-against-heap-spraying-code-injection-attacks-2/
Rieck, K., Krueger, T., Dewald, A.: Cujo: Efficient detection and prevention of
drive-by-download attacks. In: Proceedings of the 26th Annual Computer Security
Applications Conference (2010). https://doi.org/10.1145/1920261.1920267
sdhash@roussev.net: SDHash (2018), http://roussev.net/sdhash/sdhash.html
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research (2014), http://jmlr.org/papers/vi5/srivastavalda.
html

VirusTotal: VirusTotal (2018), https://support.virustotal.com/hc/en-us/
articles/115002126889-How-it-works

https://www.cyren.com/tl_files/downloads/resources/Cyren_Malware-Attack-Detection_Datasheet_20160915_ltr_EN_web.pdf
https://www.cyren.com/tl_files/downloads/resources/Cyren_Malware-Attack-Detection_Datasheet_20160915_ltr_EN_web.pdf
https://www.cyren.com/tl_files/downloads/resources/Cyren_Malware-Attack-Detection_Datasheet_20160915_ltr_EN_web.pdf
https://doi.org/10.1007/BF00994018
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://ssdeep-project.github.io/ssdeep/index.html
https://ssdeep-project.github.io/ssdeep/index.html
https://github.com/trendmicro/tlsh
https://doi.org/10.1109/IJCNN.2018.8489414
https://www.microsoft.com/en-us/research/publication/nozzle-a-defense-against-heap-spraying-code-injection-attacks-2/
https://www.microsoft.com/en-us/research/publication/nozzle-a-defense-against-heap-spraying-code-injection-attacks-2/
https://doi.org/10.1145/1920261.1920267
http://roussev.net/sdhash/sdhash.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works

12

18.

19.

20.

S. C. Peiser et al.

Wang, Y., Cai, W.d., Wei, P.c.: A deep learning approach for detect-
ing malicious javascript code. Security and Communication Networks (2016).
https://doi.org/10.1002/sec.1441

Xu, W., Zhang, F., Zhu, S.: Jstill: Mostly static detection of obfuscated
malicious javascript code. In: Proceedings of the Third ACM Conference
on Data and Application Security and Privacy. CODASPY ’13 (2013).
https://doi.org/10.1145/2435349.2435364

Ye, Y., Li, T., Adjeroh, D., Iyengar, S.S.: A survey on malware detection using data
mining techniques. ACM Comput. Surv. (2017). https://doi.org/10.1145/3073559

https://doi.org/10.1002/sec.1441
https://doi.org/10.1145/2435349.2435364
https://doi.org/10.1145/3073559

	JavaScript malware detection using locality sensitive hashing

