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Abstract. Following up mass surveillance and privacy issues, modern
secure communication protocols now seek strong security, such as forward
secrecy and post-compromise security, in the face of state exposures. To
address this problem, ratcheting was thereby introduced, widely used in
real-world messaging protocols like Signal. However, ratcheting comes
with a high cost. Recently, Caforio et al. proposed pragmatic construc-
tions which compose a weakly secure “light” protocol and a strongly
secure “heavy” protocol, in order to achieve the so-called ratcheting on
demand. The light protocol they proposed has still a high complexity.

In this paper, we prove the security of the lightest possible proto-
col we could imagine, which essentially encrypts then hashes the secret
key. We prove it without any random oracle by introducing a new secu-
rity notion in the standard model. Our protocol composes well with the
generic transformation techniques by Caforio et al. to offer high security
and performance at the same time.

1 Introduction

A classic communication model usually assumes that the endpoints are secure
while the adversary is on the communication channel. However, protocols in
recent messaging applications are secured with end-to-end encryption due to the
prevalence of malware and system vulnerabilities. They attempt to enable secure
communication services by regularly updating (ratcheting) the encryption key.
One notable example of ratcheting is the Signal protocol [14] by Open Whisper
Systems with its double-ratchet algorithm. It is also widely used in WhatsApp,
Skype and many other secure messaging systems.

The term ratcheting on its own does not mean too much, instead, it is an
umbrella term for a number of different security guarantees. One security guar-
antee which is easiest to provide is forward secrecy, which, in case of an expo-
sure, prevents the adversary from decrypting messages exchanged in the past.
Typically, it is achieved by deleting old states and generating new ones through
one-way functions. Moreover, to prevent the adversary from decrypting messages
in the future, some source of randomness is added when updating every state
to obtain the so-called future secrecy, or backward secrecy, or post-compromise
security, or even self-healing. The ratcheting technique is mainly related to how
keys are used and updated, rather than how they are obtained. We thereby will
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not be concerned with the method of key distribution, regarding the initial keys
as created and distributed in a trusted way.

Besides security, there are many other characteristics of communication sys-
tems. In a bidirectional two-party secure communication, participants alternate
their role as senders and receivers. The modern instant messaging protocols are
substantially asynchronous. In other words, for a two-party communication, the
messages should be transmitted even though the counterpart is not online. More-
over, the moment when a participant wants to send a message is undefined. The
participants can use random roles (sender or receiver) arbitrarily.

Previous Work. The ratcheting technique was first deployed in real life pro-
tocols, such as the off-the-record (OTR) [5] messaging protocol and the Signal
protocol [14]. The Signal protocol especially, gained a lot of interest and adopted
by a number of other secure messaging apps. A clean description of Signal was
posted by the inventors Marlinspike and Perrin [12]. Cohn-Gordon et al. [7]
later gave the first academic analysis of Signal security. Recently, Blazy et al. [4]
revisited the Signal protocol. They showed some attacks on the original design
and proposed SAID, which reshapes Signal into an identity-based asynchronous
messaging protocol with authenticated ratcheting.

The first formal definitions of ratcheting security is given by Bellare et al. [3]
at CRYPTO 2017. Following their work, a line of studies about ratcheting pro-
tocols have been made with different security levels and primitives [1,6,8–10,13].
Some of these results study secure messaging while others are about key-exchange.
These works can be considered as equivalent since secure ratcheted communication
can reduce to regularly secure key-exchange. At CRYPTO 2018, Poettering and
Rösler [13] designed a protocol with “optimal” security (in the sense that we know
no better security so far), but using a random oracle, and heavy algorithms such as
hierarchical identity-based encryption (HIBE). Jaeger and Stepanovs [9] proposed
a similar protocol with security against compromised random coins: with random
coin leakage before usage, which also requires HIBE and a random oracle. Durak
and Vaudenay [8] proposed a protocol with slightly lower security but relying on
neitherHIBEnor randomoracle.They also prove that public-key encryption is nec-
essary to construct post-compromise secure messaging. At EUROCRYPT 2019,
Jost et al. [10] proposed a protocol with security between optimal security and the
security of the Durak-Vaudenay protocol. In the same conference, Alwen et al. [1]
proposed two other ratcheting protocols with security against adversarially cho-
sen random coins and immediate decryption. Caforio et al. [6] proposed a generic
construction of a messaging protocol offering on-demand ratcheting, by compos-
ing a strongly secure protocol (to be used infrequently) and a weakly secure one.
Their construction further generically strengthen protocols by adding the notion
of security awareness. Recently, Jost et al. [11] modeled the ratcheting components
in a unified and composable framework, allowing for their reuse in a modular fash-
ion. Balli et al. [2] modeled optimally secure ratcheted key exchange (RKE) under
randomness manipulation and showed that key-update encryption (which is only
constructed from HIBE so far) is necessary and sufficient.
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In this paper, we are mostly interested in the work by Caforio et al. [6].
They considered message encryption and adapted Durak-Vaudenay protocol to
define asynchronous ratcheted communication with associated data (ARCAD).
They designed a weakly secure protocol called liteARCAD which is solely based
on symmetric cryptography. It achieves provable forward secrecy and excellent
software performances. Moreover, they defined a bidirectional secure commu-
nication messaging protocol with hybrid on-demand ratcheting. By integrating
two ratcheting protocols with different security levels — a strongly secure proto-
col (such as Durak-Vaudenay protocol) and a weaker but lighter protocol (such
as liteARCAD), the hybrid system allows the sender to select which security
level he wants to use. When the ratcheting becomes infrequent, the commu-
nication system enjoys satisfactory implementation performance thanks to the
high efficiency of liteARCAD. Although already quite efficient, liteARCAD has
send/receive complexities which can grow linearly with the number of messages.
For instance, a participant who sends n messages without receiving any response
accumulates n secret keys in his secret state. When he finally receives a message,
he must go through all accumulated keys and clean up his state. Furthermore,
the typical number of cryptographic operation per message is still high: send-
ing a message requires one hash and n + 1 symmetric encryptions. Receiving a
message is similar.

Contribution. In this paper we study the simplest protocol we can imagine: we
encrypt a message with a secret key then update the key with a hash function.
This guarantees one hash and encryption per message. We call this protocol
Encrypt-then-Hash (EtH). We introduce a new security notion which relates
symmetric encryption with key update by hashing. Essentially, we say that the
hash of the encryption key is indistinguishable from random. With this notion,
we prove the security of EtH in the standard model. We prove that EtH enforces
confidentiality and authentication. We deduce that we can use EtH in the generic
constructions by Caforio et al. [6].

Organization. In Section 2, we revisit the preliminary notions from Caforio-
Durak-Vaudenay [6], all of which are very relevant to our work. In Section 3, we
construct a correct and secure symmetric-cryptography-based ARCAD protocol.
Meanwhile, we define a new security notion with respect to one-time authen-
ticated encryption and hash function family. Finally, in Section 4, we formally
prove that our scheme is secure.

2 Primitives

In this section, we recall some definitions from Caforio et al. [6]. We mark some
of the definitions with the reference [6], indicating that these definitions are
unchanged except for possible necessary notation changes. Especially, we slightly
adapt the definition of asynchronous ratcheted communication with associated
data (ARCAD) for symmetric-cryptography-based ARCAD (SARCAD).
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Notations and General Definitions. In the following, we will use these nota-
tions. We have two participants Alice (A) and Bob (B). Whenever we talk about
either one of the participants, we represent it as P, then P refers to P’s coun-
terpart. We have two roles send and rec for sender and receiver respectively. We
define send = rec and rec = send. When participants A and B have exclusive roles
(like in unidirectional cases), we call them sender S and receiver R.

Definition 1 (SARCAD). A symmetric-cryptography-based asynchronous rat-
cheted communication with associated data (SARCAD) consists of the following
PPT algorithms:

– Setup(1λ)
$−→ pp: This defines the common public parameters pp.

– Initall(1λ, pp) → (stA, stB): This returns the initial state of A and B.
– Send(stP, ad, pt) $−→ (st ′

P, ct): It takes as input a plaintext pt and some asso-
ciated data ad and produces a ciphertext ct together with an updated state
st ′

P.

– Receive(stP, ad, ct) $−→ (acc, st ′
P, pt): It takes as input a ciphertext ct and some

associated data ad and produces a plaintext pt together with an updated state
st ′

P and a flag acc.

We consider bidirectional asynchronous communications. Sending/receiving
is then refined by the RATCH[P, role, ·, ·] call as depicted in Fig. 1. To formally
capture the communication status and the trivial cases during the communi-
cation, Caforio et al. [6] gave a set of definitions (originally defined in [8] and
adapted to ARCAD). We do not want to overload this section by redefining
the already existing terminology, so we put these less essential definitions in
Appendix A for completeness.

Moreover, we will need a symmetric one-time authenticated encryption
(OTAE) scheme in our protocol, which consists of a key space OTAE.K(λ) and
the OTAE.Enc and OTAE.Dec algorithms. We will also need a hash function fam-
ily H consisting of a key space H.K(λ), a domain H.D(λ), and the H.Eval(hk, sk)
algorithm which maps hk ∈ H.K(λ) and sk ∈ H.D(λ) to an element of H.D(λ).
We also put the definitions of the above primitives in Appendix A.

CorrectnessofSARCAD.Wesay that a symmetric ratcheted communicationpro-
tocol functions correctly if the receiver performs a right decryption and gets exactly
the same plaintext as sent by its counterpart. Correctness implies that participant
P has received messages in the same order as those sent by participant P.

We formally define the CORRECTNESS game given in Fig. 5 in Appendix B,
in which we initialize two participants. Meanwhile, we define variables sentPpt
(resp. receivedP

pt ) which keeps a list of messages sent (resp. received) by partici-
pant P when running Sent (resp. Receive). For each variable v such as sentPpt or stP
relative to participant P, we denote by v(t) the value of v at time t. The schedul-
ing1 is defined by a sequence sched of tuples of the form either (P, send, ·, ·) or

1 Scheduling communication is under the control of the adversary except in the
CORRECTNESS game, in which there is no adversary.
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Fig. 1. Oracles

(P, rec, ·, ·). In this game, the communication between participants uses a waiting
queue for messages in each direction. Each participant has a queue of incoming
messages and is pulling them in the order they have been pushed in. Sent mes-
sages from P are buffered in the queue of P.

Definition 2 (Correctness [6]). We say that a SARCAD protocol is correct if
for all sequence sched of tuples of the form (P, “send”, ad, pt) or (P, “rec”, ad, ct),
the game never returns 1. Namely,

– at each stage, for each P, receivedP
pt is prefix2 of sentPpt, and

– each RATCH(P, “rec”, ad, ct) call returns acc=true.

Security of SARCAD. We define the security of SARCAD with IND-CCA notion
resp. FORGE notion, which is captured by using the advantage of an adversary
playing the IND-CCA resp. FORGE game.

In addition to the RATCH oracles, the adversary can access several other
oracles called EXPst, EXPpt and CHALLENGE, see Fig. 1.

– RATCH. This oracle is used to ratchet (either to send or to receive), which is
essentially the message exchange procedure.

– EXPst. This oracle is used to obtain the state of a participant, which implies
that the adversary can expose the state of Alice or Bob.

– EXPpt. This oracle is used to obtain the last received message of a participant.

2 By saying that receivedP
pt is prefix of sentPpt, we mean that sentPpt is the concatenation

of receivedP
pt with a (possible empty) list of (ad, pt) pairs.
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– CHALLENGE. This oracle is used (only in the IND-CCA game) to send either
the plaintext or a random string.

Following previous work [6,8], we introduce a cleanness predicate when defin-
ing the security of a SARCAD scheme. The cleanness predicate identifies and
captures all trivial ways of attacking. The adversary is not allowed to make a
trivial attack when playing games, as defined by the cleanness predicate Cclean

appearing on Step 6 in the games in Fig. 2. Note that identifying the appro-
priate cleanness predicate Cclean is not easy. The difficulty is perhaps to clearly
forbid all trivial attacks while allowing efficient protocols. For more details and
discussions, we refer our readers to [6,8].

Definition 3 (Cclean-IND-CCA Security [6]). Let Cclean be a cleanness predi-
cate. We consider the IND-CCAA

b,Cclean
game in Fig. 2. We say that SARCAD is

Cclean-IND-CCA-secure if for any PPT adversary A, the advantage

Adv(A) =| Pr
[
IND-CCAA

0,Cclean
(1λ) → 1

]
− Pr

[
IND-CCAA

1,Cclean
(1λ) → 1

]
|

of A in IND-CCAA
b,Cclean

game is negligible.

Definition 4 (Cclean-FORGE Security [6]). Let Cclean be a cleanness predicate.
Consider FORGEA

Cclean
game in Fig. 2. We say that SARCAD is Cclean-FORGE-

secure if for any PPT adversary A, the advantage Pr
[
FORGEA

Cclean
(1λ) → 1

]
of

A in FORGEA
Cclean

is bounded by ε.

Fig. 2. IND-CCA, FORGE Games
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Fig. 3. EtH: our SARCAD scheme
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Fig. 4. Message exchanges between Alice and Bob.

3 Construction of a SARCAD Scheme

In this section, we propose a SARCAD scheme, as depicted in Fig. 3. We call it
Encrypt-then-Hash (EtH), as we encrypt the message with OTAE then update the
secret key with H. In this construction, we assume that OTAE.K(λ) = H.D(λ).
An example of a flow of messages is depicted on Fig. 4. Our scheme guar-
antees most of the security properties, which can be a perfect alternative to
liteARCAD [6]. Note that we do not expect full security (especially the post-
compromise security) from this symmetric-only protocol. As pointed by Durak
and Vaudenay in [8], a secure and a correct unidirectional ARCAD always implies
public-key encryption. We formalize below the security that we achieve for
Theorem 2.
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In our SARCAD scheme, the participants share two secret symmetric keys as
the initial keys, one for encrypting (sending) messages and one for (decrypting)
receiving messages. The two communication directions are independent channels
in our scheme. Communications are protected by a symmetric one-time authen-
ticated encryption (OTAE) scheme. Moreover, the key states are updated after
each communication by a hash function family.

Theorem 1 (Correctness). Suppose that OTAE is correct. EtH is a correct
SARCAD.

Proof. In the EtH protocol, the two directions of communication are quite inde-
pendent. Therefore, the correctness of both directions will separately imply the
correctness of the whole protocol.

The correctness of the unidirectional case is trivial, which can be easily
deduced from the correctness of the OTAE scheme and the deterministic prop-
erty of the hash function family H. At the beginning, the sender S and the
receiver R share the same initial secret key k, and clearly the communica-
tion functions correctly at the first step of the loop in the CORRECTNESS
game. Suppose that it functions correctly before the i-th step. Let sendS

pt =

(seq1, (ad, pt), seq2) and receivedR
pt = seq1 at the (i-1)-th step, and let the

key used for encrypting/decrypting the last message in seq1 be k ′. Now con-
sider a RATCH(R, “rec”) call at the i-th step of the loop, namely schedi =
(R, “rec”, ad, ct). Let receivedR

pt = (seq1, (ad ′, pt ′)). Note that the key states are
updated after each communication by H. Due to the deterministic property of
H, the key used by S for encrypting (ad, pt) (to (ad, ct)) and the key used by R

for decrypting (ad, ct) (to (ad ′, pt ′)) are the same, which is H(k ′). Further, due
to the correctness of the OTAE scheme, there must be (ad ′, pt ′) = (ad, pt) and
RATCH(R, “rec”, ad, ct) = acc. ��

The SARCAD scheme uses a hash function family with an ad-hoc pseudoran-
dom (PR) property.

Definition 5 (PR-Security). Let H be a hash function family and OTAE be
a one-time authenticated encryption scheme. We say that H is pseudorandom
for OTAE (PR) if for any PPT adversary A playing the following game, the
advantage

Pr
[
PRA

0 → 1
]
− Pr

[
PRA

1 → 1
]

is negligible.

Game PRA
b :

1: queryenc = ⊥
2: hk

$←− H.K(λ)

3: k
$←− OTAE.K(λ)

4: k ′ ← H.Eval(hk, k)
5: if b = 0 then replace k ′ by a ran-

dom value with the same length
6: AENC,DEC(hk, k ′) → z

Oracle ENC(ad, pt)
1: if queryenc �= ⊥ then abort
2: ct ← OTAE.Enc(k, ad, pt)
3: queryenc ← ct
4: return ct

Oracle DEC(ad, ct)
1: return OTAE.Dec(k, ad, ct)
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The PR security allows us to prove forward secrecy without using the random
oracle model. In practice, we can use e.g. AES-GCM and SHA-256 truncated to
the required length. However, having an extra hashing may be unnecessary as
we could build an integrated primitive. We give further discussions on the PR
security in a full version of this paper.

When there is a state exposure, it allows simulating every subsequent recep-
tion of messages. Therefore, there is no possible healing after a state exposure. To
formalize our IND-CCA-security, we prune out post-compromise security but leave
forward secrecy by using the following Csym predicates from Caforio et al. [6]. Sim-
ilarly, the notion of trivial forgery changes as the exposure of the state of P now
allows to forge for P as well, due to the symmetric key. Thus, a forgery becomes
trivialwhen anEXPst occurs.Hence, theFORGE game cannot allow any state expo-
sure at all. We formalize the security by using the Cnoexp cleanness [6] predicate in
FORGE-security.

Cnoexp: neither A nor B has an EXPst before seeing (adtest, cttest).

Csym: the following conditions are all satisfied:

– there is no EXPpt(Ptest) after time ttest until there is a RATCH(Ptest,.,.,.) ;
– if the CHALLENGE call makes the i-th RATCH(Ptest,“send”,.,.) call and the i-

th accepting RATCH(Ptest,“rec”,.,.) call occurs in a matching status (Def. 8)
at some time t, then there is no EXPpt(Ptest) after time t until there is
another RATCH(Ptest,.,.,.) call;

– (Cnoexp) neither A nor B has an EXPst before seeing (adtest, cttest).

Theorem 2. Consider the SARCAD scheme EtH in Fig. 3. If OTAE is IND-
OTCCA-secure and SEF-OTCMA-secure, and H is PR-secure for OTAE, then the
scheme is Csym-IND-CCA-secure and Cnoexp-FORGE-secure.

Proof. We will give the proof in Sect. 4. ��
Theorem 1 and Theorem 2 show that EtH satisfies the conditions of the

theorems from Caforio et al. [6]. Hence, EtH can play the role of the weakly
secure ARCAD in their hybrid “on-demand ratcheting” construction. EtH can
also be generically strengthened by the block strengthening [6] to offer security
awareness. For instance, if an adversary releases a trivial forgery after a state
exposure, the participants can notice it by seeing they can no longer talk with
each other. Furthermore, they can see which messages have been received by
their counterparts.
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4 Security Proof for Our SARCAD Scheme

In this section, we will prove that our scheme is secure (corresponding to
Theorem 2).

IND-CCA-Security. We first consider the IND-CCA-security. We define Γb the
initial Csym-IND-CCA game which has a challenge message (adtest, cttest). We
consider the event Cnoexp that no participant P has an EXPst(P) query before
having seen (adtest, cttest). The game Γb has the property that whenever Csym

does not occur, it never returns 1 due to the Csym cleanness condition.
We define below for each (Q,m,n) the hybrids Γb

Q,m,n (refer to Fig. 6) which
essentially assumes that the challenge message is the n-th message sent by Q.
The game maintains two counters: one counter cntsendQ for the number of mes-
sages sent by Q and one counter cntrec

Q
for the number of messages received

and accepted by Q. For the unidirectional communication from Q to Q, the
m first session keys are picked randomly, while the following session keys are
just updated by hashing the previous one as usual. This is implemented by (1)
preparing m randomly-chosen keys k1, . . . , km in the Initall phase, and (2) mod-
ifying the RATCH (Q, “send”, ·, ·) oracle (Line 6–10) and the RATCH (Q, “rec”,
·, ·) oracle (Line 8–12). When the challenge message is released, the values of
Q and n are verified. If it is incorrect, the game aborts. This is enforced by
modifying the CHALLENGE oracle (Line 5–6). Clearly, we have that

Pr [Γb → 1] =
∑

Q,n

Pr
[
Γb
Q,1,n → 1

]
. (1)

In the following, we will prove that for 1 � m � n, the difference between
Pr

[
Γb
Q,m,n → 1

]
and Pr

[
Γb
Q,m+1,n → 1

]
is negligible. Recall that the (m+1)-th

session key km+1 in Γb
Q,m,n is generated by hashing km while in Γb

Q,m+1,n it is
picked at random. This is the only difference. For any distinguisher A playing
game which is either Γb

Q,m,n or Γb
Q,m+1,n, define an adversary B (refer to Fig. 7)

playing game PRB
b′ :

Game PRB
b′ :

1: queryenc = ⊥
2: hk

$←− H.K(λ)

3: km
$←− OTAE.K(λ)

4: k ′ ← H.Eval(hk, km)
5: if b ′ = 0 then replace k ′ by a ran-

dom value with the same length
6: BENC,DEC(hk, k ′) → z

Oracle ENC(ad, pt)
1: if queryenc �= ⊥ then abort
2: ct ← OTAE.Enc(k, ad, pt)
3: queryenc ← ct
4: return ct

Oracle DEC(ad, ct)
1: return OTAE.Dec(k, ad, ct)
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The adversary B can simulate the difference between Γb
Q,m,n and Γb

Q,m+1,n by
using k ′ he received in game PRB

b′ , which is either a hash value or a random
value, as the (m+1)-th session key km+1. Finally, B outputs what A outputs.
We can see that the advantage of B is

∣
∣Pr

[
Γb
Q,m,n → 1

]
− Pr

[
Γb
Q,m+1,n → 1

]∣∣ ,

which is negligible due to PR-security (recall Definition. 5). Note that
∣
∣Pr

[
Γb
Q,1,n → 1

]
− Pr

[
Γb
Q,n+1,n → 1

]∣∣

is upper bounded by
∑n

m=1

∣
∣
∣Pr

[
Γb
Q,m,n → 1

]
− Pr

[
Γb
Q,m+1,n → 1

]∣∣
∣, thereby

also negligible. Combined with Eq. (1), we can then deduce that
∣
∣
∣
∣
∣
∣
Pr [Γb → 1] −

∑

Q,n

Pr
[
Γb
Q,n+1,n → 1

]
∣
∣
∣
∣
∣
∣

is negligible. (2)

Until now, we have reduced the game Γb
Q,1,n to an ideal case Γb

Q,n+1,n. In
game Γb

Q,n+1,n, k1, . . . , kn+1 are randomly picked. When sending the challenge
message, each session key is only used to encrypt/decrypt one message. More-
over, according to Csym-cleanness, no participant has an EXPst before seeing
(adtest, cttest), and the plaintext pttest corresponding to (adtest, cttest) has no
direct or indirect leakage. We can deduce that the difference

∣
∣Pr

[
Γ0
Q,n+1,n → 1

]
− Pr

[
Γ1
Q,n+1,n → 1

]∣∣

is negligible by the IND-OTCCA security of OTAE. More specifically, for any
distinguisher A playing game which is either Γ0

Q,n+1,n or Γ1
Q,n+1,n, define an

adversary D (refer to Fig. 8) playing game IND-OTCCAD
b :

Game IND-OTCCAD
b

1: challenge = ⊥
2: kn

$←− OTAE.Kλ

3: DCH,DEC() → b′

4: return b′

Oracle DEC(ad, ct)
1: if (ad, ct) = challenge then abort
2: return OTAE.Dec(kn, ad, ct)

Oracle CH(ad, pt)
1: if challenge �= ⊥ then abort
2: if b = 0 then
3: replace pt by a random message

of the same length
4: OTAE.Enc(kn, ad, pt) → ct
5: challenge ← (ad, ct)
6: return (ct)
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The adversary D can simulate the difference between Γ0
Q,n+1,n and Γ1

Q,n+1,n

by using the challenge message he received in game IND-OTCCAD
b (where pt is

replaced by some random value for b = 0) as the challenge message in game
Γb
Q,n+1,n. Finally, D outputs what A outputs. The advantage of D is

∣
∣Pr

[
Γ0
Q,n+1,n → 1

]
− Pr

[
Γ1
Q,n+1,n → 1

]∣∣ ,

which is negligible due to the IND-OTCCA security of OTAE.
Finally, we can deduce that the difference |Pr [Γ0 → 1] − Pr [Γ1 → 1]| is negli-

gible combined with (2).

FORGE-security. We then consider the FORGE-security. We now define Γ as the
initial Cnoexp-FORGE game which has a special message (ad∗, ct∗). This special
message is the forgery sent by the adversary to participant P, where P = Q.
The game Γ returns 1 if the special message is a forgery. We also consider the
event Cnoexp that no participant P has an EXPst(P) query before having seen
(ad∗, ct∗). The game Γ has the property that whenever Cnoexp does not occur, it
never returns 1 due to the Cnoexp cleanness condition.

Similarly with the IND-CCA-security proof, we define below for each (Q,m,n)
the hybrids ΓQ,m,n (refer to Fig. 9) which essentially assumes that the forgery
message is the n-th message sent by Q. We have that

Pr [Γ → 1] =
∑

Q,n

Pr [ΓQ,1,n → 1] . (3)

Moreover, we have that |Pr [ΓQ,m,n → 1] − Pr [ΓQ,m+1,n → 1]| is negligible due
to PR-security (Fig. 7 reduction). Therefore,

|Pr [ΓQ,1,n → 1] − Pr [ΓQ,n+1,n → 1]| �
n∑

m=1

|Pr [ΓQ,m,n → 1] − Pr [ΓQ,m+1,n → 1]|

is negligible. Combined with Eq. (3), we can then deduce that
∣
∣
∣
∣
∣
∣
Pr [Γ → 1] −

∑

Q,n

Pr [ΓQ,n+1,n → 1]

∣
∣
∣
∣
∣
∣

is negligible. (4)

The probability that Pr [ΓQ,n+1,n → 1] is negligible due to the SEF-OTCMA-
security of OTAE. Again, for any distinguisher A playing game ΓQ,n+1,n, we
define an adversary E (refer to Fig. 10) playing game SEF-OTCMAE:
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Game SEF-OTCMAE

1: kn
$←− OTAE.Kλ

2: E(λ)
$−→ sentQpt [n] (:= ad, pt)

3: OTAE.Enc(kn, ad, pt) → ct

4: E(ad, pt, ct) → (ad∗, ct∗)
5: if (ad∗, ct∗) = (ad, ct) then abort
6: if OTAE.Dec(kn, ad∗, ct∗) =⊥ then abort
7: return 1

Meanwhile, E makes a forgery by using the forgery given by A in game ΓQ,n+1,n.
The advantage of A, which is

Pr [ΓQ,n+1,n → 1] ,

is upper bounded by the advantage of E, thereby negligible. Finally, we deduce
that the probability Pr [Γ → 1] is negligible combine with (4).

5 Conclusion

We have shown that the simplest Encrypt-then-Hash protocol EtH provides con-
fidentiality and authentication is a very strong sense. Namely, it provides for-
ward secrecy and unforgeability, except for trivial attacks. It can be used as a
replacement of liteARCAD in the hybrid ratchet-on-demand protocol with secu-
rity awareness by Caforio et al. [6]. It provides good complexity advantages.
Furthermore, we avoided the use of a random oracle by expliciting a combined
security assumption of encryption and hashing (PR security).

A Used Definitions

Function Families. A function family H defines a key space H.K(λ), a domain
H.D(λ), and a polynomially bounded deterministic algorithm H.Eval(hk, x)
which takes a key hk in H.K(λ) and a message x in H.D(λ) to produce a digest
in H.D(λ).

One-Time Authenticated Encryption (OTAE). An OTAE scheme defines
a key space OTAE.K(λ) and two polynomially bounded deterministic algo-
rithms OTAE.Enc and OTAE.Dec, associated with a message domain OTAE.D(λ).
OTAE.Enc takes a key k in K(λ), an associated data ad and a message pt in
OTAE.D(λ) and returns a string ct = OTAE.Enc(k, ad, pt). OTAE.Dec takes k, ad
and ct and returns a string in OTAE.D(λ) or else the distinguished symbol ⊥. It
satisfies that

OTAE.Dec(k, ad,OTAE.Enc(k, ad, pt)) = pt

for all k ∈ K(λ), and ad, pt ∈ OTAE.D(λ). Moreover, we require that it satisfy
the one-time IND-CCA security and SEF-CMA security.



Symmetric Asynchronous Ratcheted Communication with Associated Data 197

Definition 6 (IND-OTCCA [6]). An OTAE scheme is IND-OTCCA-secure, if for
any PPT adversary A playing the following game, the advantage

Pr
[
IND-OTCCAA

0 → 1]
]
− Pr

[
IND-OTCCAA

1 → 1
]

is negligible.

Game IND-OTCCAA
b (1λ)

1: challenge = ⊥
2: k

$←− OTAE.K(λ)
3: ACH,DEC(1λ) → b′

4: return b′

Oracle DEC(ad, ct)
1: if (ad, ct) = challenge then abort
2: return OTAE.Dec(k, ad, ct)

Oracle CH(ad, pt)
1: if challenge �= ⊥ then abort
2: if b = 0 then
3: replace pt by a random message

of the same length
4: OTAE.Enc(k, ad, pt) → ct
5: challenge ← (ad, ct)
6: return ct

Definition 7 (SEF-OTCMA [6]). An OTAE scheme resists to strong existential
forgeries under one-time chosen message attacks (SEF-OTCMA), if for any PPT
adversary A playing the following game, the advantage Pr

[
SEF-OTCMAA → 1

]

is negligible.

Game SEF-OTCMAA(1λ)

1: k
$←− OTAE.Kλ

2: A(1λ)
$−→ (st, ad, pt)

3: OTAE.Enc(k, ad, pt) → ct

4: A(st, ad, pt, ct) → (ad ′, ct ′)
5: if (ad ′, ct ′) = (ad, ct) then abort
6: if OTAE.Dec(k, ad ′, ct ′) =⊥ then abort
7: return 1

We further append some necessary definitions in ARCAD [6] (adapted from
Durak-Vaudenay protocol [8]). For more details, please refer to [6] and [8].

Definition 8 (Matching status [6]). We say that P is in a matching status
at time t if

– at any moment of the game before time t for P, receivedP
ct is a prefix of sentPct

— this defines this defines the time t for P when P sent the last message in
receivedP

ct(t).
– and at any moment of the game before time t for P, receivedP

ct is a prefix of
sentPct.
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Definition 9 (Forgery [6]). Given a participant P in a game, we say that
(ad, ct) ∈ receivedP

ct is a forgery if at the moment of the game just before P

received (ad, ct), P was in a matching status, but no longer after receiving (ad, ct).

B Correctness Game

We formally define the CORRECTNESS game in Fig. 5.

C Hybrids and Adversaries in Security Proof

We define hybrids Γb
Q,m,n in Fig. 6, adversary B in Fig. 7, adversary D in Fig. 8,

hybrids ΓQ,m,n in Fig. 9 and adversary E in Fig. 10.

Fig. 5. The CORRECTNESS Game of the SARCAD Protocol
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Fig. 6. IND-CCA-Security: Hybrids Γb
Q,m,n
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Fig. 7. Adversary B: Simulating ΓQ,m,n and ΓQ,m+1,n
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Fig. 8. Adversary D: Simulating Γ0
Q,n+1,n and Γ1

Q,n+1,n
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Fig. 9. FORGE-Security: Hybrids ΓQ,m,n
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Fig. 10. Adversary E: Simulating ΓQ,n+1,n
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