Skip to main content

Dynamic Play via Suit Factorization Search in Skat

  • Conference paper
  • First Online:
KI 2020: Advances in Artificial Intelligence (KI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12325))

Included in the following conference series:

Abstract

In this paper we look at multi-player trick-taking card games that rely on obeying suits, which include Bridge, Hearts, Tarot, Skat, and many more. We propose mini-game solving in the suit factors of the game, and exemplify its application as a single-dummy or double-dummy analysis tool that restricts game play to either trump or non-trump suit cards. Such factored solvers are applicable to improve card selections of the declarer and the opponents, mainly in the middle game, and can be adjusted for optimizing the number of points or tricks to be made. While on the first glance projecting the game to one suit is an over-simplification, the partitioning approach into suit factors is a flexible and strong weapon, as it solves apparent problems arising in the phase transition of accessing static table information to dynamic play. Experimental results show that by using mini-game play, the strength of trick-taking Skat AIs can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, Vol. 1–4. A K Peters (2001)

    Google Scholar 

  2. Bowling, M., Burch, N., Johanson, M., Tammelin, O.: Heads-up limit hold’em poker is solved. Commun. ACM 60(11), 81–88 (2017)

    Article  Google Scholar 

  3. Cazenave, T.: Nested Monte-Carlo search. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 456–461 (2009)

    Google Scholar 

  4. Cazenave, T., Ventos, V.: The \(\alpha \)\(\mu \) search algorithm for the game of Bridge. CoRR, abs/1911.07960 (2019)

    Google Scholar 

  5. Edelkamp, S.: Challenging human supremacy in Skat. In: Symposium on Combinatorial Search (SOCS), pp. 52–60 (2019)

    Google Scholar 

  6. Edelkamp, S.: Representing and reducing uncertainty for enumerating the belief space to improve endgame play in Skat. In: European Conference on Artificial Intelligence (ECAI) (2020)

    Google Scholar 

  7. Furtak, T.M.: Symmetries and search in trick-taking card games. Ph.D. thesis, University of Alberta (2013)

    Google Scholar 

  8. Ginsberg, M.: Step toward an expert-level Bridge-playing program. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 584–589 (1999)

    Google Scholar 

  9. Gößl, R.: Der Skatfuchs - Gewinnen im Skatspiel mit Mathematische Methoden. Selfpublisher. Dämmig, Chemnitz, Available from the Author or via DSKV Altenburg (2019)

    Google Scholar 

  10. Keller, T., Kupferschmid, S.: Automatic bidding for the game of Skat. In: German Conference on Artificial Intelligence (KI), pp. 95–102 (2008)

    Google Scholar 

  11. Knorr, F.: Ein selbstkalibrierender Spieler für Skat. Master’s thesis, Universität Passau (2018)

    Google Scholar 

  12. Kupferschmid, S.: Entwicklung eines Double-Dummy Skat Solvers mit einer Anwendung für verdeckte Skatspiele. Master’s thesis, Albert-Ludwigs-Universität Freiburg (2003)

    Google Scholar 

  13. Kupferschmid, S., Helmert, M.: A Skat player based on Monte-Carlo simulation. In: Computers and Games, pp. 135–147 (2006)

    Google Scholar 

  14. Lasker, E.: Das verständige Kartenspiel. August Scherl Verlag, Berlin (1929)

    Google Scholar 

  15. Levy, D.N.L.: The million pound bridge program. In: Heuristic Programming in Artificial Intelligence (1989)

    Google Scholar 

  16. Long, J.R.: Search, inference and opponent modelling in an expert-caliber Skat player. Ph.D. thesis, University of Alberta (2011)

    Google Scholar 

  17. Müller, M.: Computer go as a sum of local games an application of combinatorial game theory. Ph.D. thesis, ETH Zürich (1995)

    Google Scholar 

  18. Müller, M.: Decomposition search: a combinatorial games approach to game tree search, with applications to solving Go endgames. In International Joint Conference on Artificial Intelligence (IJCAI), pp. 578–583 (1999)

    Google Scholar 

  19. Rebstock, D.: Improving AI in Skat through Human Imitation and Policy Based Inference. Master’s thesis (2019)

    Google Scholar 

  20. Rebstock, D., Solinas, C., Buro, M.: Learning policies from human data for Skat. CoRR, abs/1905.10907 (2019)

    Google Scholar 

  21. Rebstock, D., Solinas, C., Buro, M., Sturtevant, N.R.: Policy based inference in trick-taking card games. CoRR, abs/1905.10911 (2019)

    Google Scholar 

  22. Reinefeld, A., Marsland, T.A.: Enhanced iterative-deepening search. IEEE Trans. Pattern Anal. Mach. Intell. 16(7), 701–710 (1994)

    Article  Google Scholar 

  23. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo tree search. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 649–654 (2011)

    Google Scholar 

  24. Schettler, F., Kirschbach, G.: Das große Skatvergnügen. Urania Verlag, Leipzig, Jena, Berlin (1988)

    Google Scholar 

  25. Schubert, H.: Das Skatspiel im Lichte der Wahrscheinlichkeitsrechnung. J. F. Richter, Hamburg (1887)

    MATH  Google Scholar 

  26. Silver, D.A.H., et al.: Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484 (2016)

    Google Scholar 

  27. Silver, D., et al.: Mastering Chess and Shogi by self-play with a general reinforcement learning algorithm. Technical Report 1712.018, arxiv (2017)

    Google Scholar 

  28. Solinas, C.: Improving Determinized Search with Supervised Learning in Trick-Taking Card Games. Master’s thesis (2019)

    Google Scholar 

  29. Sturtevant, N.R., White, A.M.: Feature construction for reinforcement learning in hearts. In: Computers and Games, pp. 122–134 (2006)

    Google Scholar 

  30. Winands, M.H., Björnsson, Y., Saito, J.-T.: Monte-carlo tree search solver. Comput. Games 5131, 25–36 (2008)

    Article  MATH  Google Scholar 

  31. Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in games with incomplete information. In: Advances in Neural Information Processing Systems, pp. 1729–1736 (2008)

    Google Scholar 

Download references

Acknowledgments

Thanks to Rainer Gößl for his invaluable help as a skat expert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Edelkamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Edelkamp, S. (2020). Dynamic Play via Suit Factorization Search in Skat. In: Schmid, U., Klügl, F., Wolter, D. (eds) KI 2020: Advances in Artificial Intelligence. KI 2020. Lecture Notes in Computer Science(), vol 12325. Springer, Cham. https://doi.org/10.1007/978-3-030-58285-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58285-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58284-5

  • Online ISBN: 978-3-030-58285-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics