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Abstract. Microscopic examination of tissues or histopathology is one of the 

diagnostic procedures for detecting colorectal cancer. The pathologist 

involved in such an examination usually identifies tissue type based on 

texture analysis, especially focusing on tumour-stroma ratio.  In this work, 

we automate the task of tissue classification within colorectal cancer 

histology samples using deep transfer learning. We use discriminative fine-

tuning with one-cycle-policy and apply structure-preserving colour 

normalization to boost our results. We also provide visual explanations of the 

deep neural network’s decision on texture classification. With achieving 

state-of-the-art test accuracy of 96.2% we also embark on using deployment 

friendly architecture called SqueezeNet for memory-limited hardware. 

Keywords: Histology, colorectal cancer, transfer learning. 

1 Introduction  

According to the statistics provided by the American Cancer Society, colorectal 

cancer (CRC) is the third and second most commonly occurring cancer in men and 

women, respectively [1]. Histopathology provides one of the diagnosis procedures 

wherein, suspicious tissue is sampled by biopsy and examined under a microscope.  

A typical pathology report consists of tissue cell structural information which is 

used by the pathologist to decide any presence of malignant tumours. Such 

histological samples may typically contain more than two tissue types. Automating 

texture classification in CRC histology images will aid pathologists in making 

informed clinical decisions. Figure 1 represents randomly sampled histological 

images of eight different tissue types in CRC. Histology image analysis for cancer 

diagnosis can be extremely challenging because of issues with slide preparation, 

variations in staining and inherent biological structure [2]. This makes the need for 

domain-specific input very important for feature generation. Deep learning being 

domain agnostic can make use of rich information present in histology images. 

2  Related work 

Studies relating to different texture analysis in human CRC has been lacking, 

although [2] has introduced a similar dataset containing 8 different classes of 

textures in CRC. They used traditional machine learning with hand-engineered 

texture descriptor features like histogram, local binary patterns, gray level co-

occurrence matrix, gabor filters and perception like features with a reported 

accuracy of 87.4%. Work involving the use of deep neural networks on this dataset 

is very limited. A neural network designed from scratch on a small dataset will lack 

generality and perform poorly on unseen data. Authors in [3] have designed a fully 

convolutional neural network (CNN) of 11 layers which could only classify with 

75.5% accuracy. In another work [4], stain decomposition has boosted the 

performance on this dataset. They have derived hematoxylin and eosin (H&E) 
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image components using an orthonormal transformation of the original RGB images 

and fed it into a bilinear convolutional neural network giving an accuracy of 92.6%. 

Since transfer learning based classification approach has not been taken on this 

dataset we introduce methodologies that achieve state-of-the-art performance. 

3  Methodology 

3.1  Dataset and Preprocessing  

The CRC dataset contains 5000 RGB histological images of 150*150 px each 

belonging to one of the 8 tissue categories. Each category has 625 images of H&E 

stained tissue samples digitized with an Aperio ScanScope [2]. We follow two steps 

of image preprocessing for this dataset. Firstly, the H&E staining process enables a 

clear view of morphological changes within a tissue [5]. 

 

 
 
Fig. 1. Randomly sampled 8 images from each class (row)  - a) Tumour epithelium b) Simple 

stroma c) Complex stroma d) Immune cell e) Debris f) Mucosal glands g) Adipose tissue h) 

Background (no tissue) in row-wise order starting from the top. 

But this process is prone to undesirable colour variations across tissue types because 

of differences in tissue preparation, staining protocols, the colour response of 

scanners, and raw materials used in stain manufacturing. Any learning algorithm 
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weighing-in more on the colour variation will lead to error in classification [6]. We 

use a structure-preserving colour normalization technique with sparse stain 

separation on these images given by [7]. Keeping one target image, other images 

are normalized by combining their respective stain density maps with a stain colour 

basis of the target image thus preserving the morphology. Figure 2 illustrates the 

effect of colour normalization. Second, the colour normalized dataset is then scaled 

between 0 and 1 followed by normalizing each channel to the ImageNet dataset [8]. 

 

 
Fig. 2. Effect of structure-preserving colour normalization on a) Raw images as illustrated 

in b) Structure preserved colour normalized images. 

3.2  Data Augmentation 

 
Fig. 3. Examples of image transformations for data augmentation using a) Rotations b) 

Random zoom crops and c) Jitter 

With limited data, convolutional neural networks may overfit. Data augmentation 

improves the generalization capability of these networks by transforming images 
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such that the network becomes robust to unseen data [9]. Random zoom crops were 

applied, as image patches in histopathology are invariant to translation in the input 

space. Tissue diagnosis is rotation invariant, which means that the pathologists can 

study histopathological images from different orientations. We introduce vertical 

and horizontal flips, and rotations, restricted to 90, 180 and 270 degrees because of 

interpolation issues. The other augmentation techniques used were lighting, warps,  

gaussian blur, and elastic deformation. We applied in-memory dynamic data 

augmentation that applies random transformations on a batch of images during 

training. Figure 3 shows examples of a few transformations. 

3.3  Transfer Learning using SqueezeNet     

Advancements in Deep Learning has led to super-human level performance on 

ImageNet large scale visual recognition challenge. State-of-the-art deep neural 

networks (DNN) trained on ImageNet dataset possess generic feature computation 

capabilities like gabor filters and colour bobs in their first layer that are very generic 

to any dataset or task. Whereas the final layer of these architectures become task-

specific [10]. Given a new target visual dataset with a limited number of training 

examples,  features from the pre-trained neural networks can be repurposed to adapt 

to this new dataset, called transfer learning. Since the AlexNet [11] breakthrough in 

ImageNet classification, many variants of convolutional neural networks have been 

submitted to the ImageNet challenge achieving state-of-the-art results. There is a 

high correlation between top-1 accuracy ImageNet architectures and their transfer 

learning capabilities [12], which makes it obvious to pick an architecture that 

performs the best on ImageNet. The focus of the majority of the models has not 

been on resource utilization hence are not practically deployable on resource-

limited hardware. In this work, we choose a state of the art DNN architecture in 

terms of speed and accuracy tradeoff namely, SqueezeNet [13]. Squeezenet is a 

convolutional neural network that is carefully designed such that it has few 

parameters but with competitive accuracy on ImageNet. For this, they follow 

strategies like replacing 3x3 filters with 1x1 filters, reduce the number of input 

channels to 3x3 filters and maintaining large activation maps for the convolutional 

layers by downsampling late in the network. These strategies are bundled into a 

module called Fire module (Figure 4) which consists of a set of 1x1 filters in the 

squeeze convolutional layer, and a mix of 1x1 and 3x3 filters in the expand layer. 

With only 1,267,400 parameters and model size of 4.85 MB, SqueezeNet turns out 

to be a very lightweight model. The network macro architecture and architectural 

dimensions are presented in Figure 5 and Table 1, respectively. 
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Fig. 4. Fire module of SqueezeNet 

Table 1. SqueezeNet architectural dimensions 

Pretrained SqueezeNet was used as a backbone network 

and its penultimate layer is used as a feature extractor. 

The final output layer is replaced with a series of fully 

connected layers with Kaiming initialization [14], 

coupled with BatchNorm [15], and Dropout [16] layers 

which we call the head (layer group 4, Table 1). The 

rectified linear unit (ReLU) was used as the activation 

function.  

3.4 Finding the optimal learning rate for 

superconvergence 

The ability of an architecture to converge towards global 

minima on the loss function topology is an active area of 

research and is guided by hyperparameters like learning 

rate, batch size, momentum, and weight decay. 

Optimizers like Adam, AdaGrad, AdaDelta, and Nesterov momentum use 

piecewise constant learning rate, starting with a global learning rate while carefully 

reducing it on test set reaching a plateau [17]. Such strategies do not have a 

mechanism to automatically choose large learning rates that may help the network 

converge faster. We unfreeze the weights of the head (layer group 4, Table 1) and 

Fig. 5. SqueezeNet Macro 

architecture 
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make them learnable while freezing the rest of the layers and fine-tune for two 

epochs. Next, we unfreeze the entire network and test its ability to superconverge 

[18].  

 
Fig. 6. Learning Rate Range Test – Training the entire network over a range of learning 

rates. The red markers define boundary values for a learning rate range where the network 

is still learning. 

We run a learning rate (LR) range test [19], a mock training on the network on a 

large range of learning rates for 100 batches and generate a loss vs learning curve 

as given in Figure 6. This gives us an idea of the maximum learning rate (Lmax) up 

to which the model converges, beyond that the test or validation loss starts 

increasing leading to overfitting and poor accuracy. Learning rates between 0.0001 

and 0.01 prove to reduce the loss, whereas beyond 0.01 the network starts to unlearn.   

3.5  Discriminative fine-tuning with One-cycle-policy 

Instead of using a global learning rate and monotonically decreasing it, we 

implement one cycle policy (cyclical learning rate) [20] with decoupled weight 

decay (AdamW – beta1 = 0.9 and beta2 = 0.99) [21] that lets the learning rate 

cyclically vary between reasonable boundary values. This lets the network to 

converge faster and attain improved accuracy. Learning rate slightly lesser than Lmax 

as the maximum bound, and 10 times less to the maximum bound as the lower bound 

we train the network by starting at the lower bound and linearly increasing the 

learning rate up to maximum bound. At the same time momentum is decreased from 

0.95 to 0.85 linearly. Then we perform cosine-annealing on learning rate up to 0 

while applying symmetric cosine annealing on momentum from 0.85 to 0.95 as 

shown in Figure 7 [22]. 

 
Pretrained architectures exhibit different levels of information in their layers, 

starting from initial layers learning generic features to the final layer learning task-

specific high-level features. Hence, different layers require different learning rates 

when being fine-tuned for a new task [23]. As shown in Table 1, the network is 

divided into 4 layer groups. The maximum bound learning rate discovered using the 

LR range test is assigned to the final (4th) layer group and the preceding layers are 
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assigned with evenly spaced decreasing learning rates up to boundary value marked 

by red. Each layer then undergoes one-cycle-policy with new maximum and 

minimum bounds.  

 

Fig. 7. Progression of  a) learning rate and b) momentum during one cycle training policy.  

4 Visual explanation using Gradient-based localization 

 
Fig. 8. Raw image vs Predicted heatmap. a) Tumour epithelium b) Simple stroma c) Complex 

stroma d) Immune cell e) Debris f) Mucosal glands g) Adipose tissue h) Background (no 

tissue). The brighter parts in the heatmap represent network’s attention leading to correct 

prediction.  

Making deep learning models transparent and explainable helps in understanding 

the failure modes as well as establishing trust and confidence in its users.  But de-

composing deep neural networks into intuitive and interpretable components is dif-

ficult.  A technique known as Class Activation Map (CAM) is very popular for 

interpreting the decisions made by deep learning models [24] but is limited to ar-

chitectures with feature maps directly preceding the softmax layers. Hence, we pro-

vide visual explanations of texture detection by the networks using a generalization 

of CAM known as Grad-CAM [25]. Similar to CAM, Grad-CAM generates a 

weighted combination of feature maps but followed by a ReLU. Grad-CAM extracts 

gradients from a CNN’s final convolutional layer and uses this information to high-

light regions most responsible for the prediction. 

 

The images in Figure 8 demonstrate the original image of the tissue and the same 

image with a superimposed attention map created using Grad-CAM. Such visuali-

zations could be very much useful in medical diagnosis since it reflects which parts 

of the tissue is affecting the model’s predictions most. Possibly, this information 

can guide the practitioner in CRC biopsies to confirm the suspected diagnosis. 
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5  Results 

The dataset is shuffled and randomly stratified sampled into 3 sets, train, validation 

and test of 60:20:20. We conducted different experiments related to the use of pre-

trained network SqueezeNet and optimizer with one cycle policy. In Table 2 we 

compare the results of Squeezenet architecture trained with and without the pre-

trained weights. Also, the difference in the results is analyzed when traditional 

piecewise constant learning rate scheduler optimizer like Adam is used. 

 
Table 2. Comparison of one cycle policy with Adam optimizer 

Squeezenet 

Pretrained weights 

Optimizer Validation set(%) Test set(%) 

True One cycle policy 

with AdamW 

97.4 96.2 

False One cycle policy 

with AdamW 

80.1 75.6 

True Adam 71.5 64.8 

 

It is realized that while training the network with Adam [17] and pre-trained weights 

as true, the network achieves below par accuracy. One cycle policy and AdamW 

without using the pre-trained weights performs better than Adam, and with weights, 

we achieve the state of the art results of 97.4% and 96.2% on the validation and test 

set respectively. These experiments were carried out using fastai [26] and 

Tensorflow [27] frameworks. We computed the receiver operating characteristic 

(ROC) curves (Figure 9) for each of the classes based on different threshold settings 

and generated the area under the curve (AUC) plots. The ROC curve is a plot of the 

true positive rate (TPR) against the false positive rate (FPR) at various threshold 

settings. An AUC of 1 is a perfect scenario of the model predicting every class 

correctly in the test set. With the SqueezeNet architecture, by computing average 

ROC the overall sensitivity and specificity is approximately 99%. 
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Fig. 9. ROC curves for the test set using SqueezeNet's fine-tuned architecture. 

 
 

 

 

 

 

Fig. 10. a) Train and validation loss, b) error rate, and c) batch inference time vs batch size 

Figure 10 represents 14 epochs of converging a) training and validation loss curves 

and b) accuracy (1-error rate) curve, when trained with a batch size of 32 and one 

threshold setting. The network saturated at an accuracy of 97.4% on the validation 

set, giving 96.2% on the test set. 
The final model is serialized and made ready for deployment. We tested the model's 

performance in terms of inference time vs batch size (Figure 10, c) on a 640 cores 

Quadro M2000M GPU.  
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6 Conclusion 

 
In this paper, we achieve state-of-the-art results in texture classification in human 

colorectal cancer using transfer learning with superconvergence. The work also 

takes into consideration deployment friendly DL model and network visualization 

to make neural networks decision making more transparent and explainable. 

Squeezenet, a model of very small size (4.8 MB) is used to demonstrate the results. 

Various data augmentation techniques and structure preserving colour 

normalization were also used to boost the results. For future work, we aim to 

investigate tumour progression from the learned network using a similar dataset. 
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