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ABSTRACT
In sequence learning tasks such as language modelling, Recurrent

Neural Networks must learn relationships between input features

separated by time. State of the art models such as LSTM and Trans-

former are trained by backpropagation of losses into prior hidden

states and inputs held in memory. This allows gradients to flow

from present to past and effectively learn with perfect hindsight,

but at a significant memory cost. In this paper we show that it is

possible to train high performance recurrent networks using in-

formation that is local in time, and thereby achieve a significantly

reduced memory footprint. We describe a predictive autoencoder

called bRSM featuring recurrent connections, sparse activations,

and a boosting rule for improved cell utilization. The architecture

demonstrates near optimal performance on a non-deterministic

(stochastic) partially-observable sequence learning task consisting

of high-Markov-order sequences of MNIST digits. We find that

this model learns these sequences faster and more completely than

an LSTM, and offer several possible explanations why the LSTM

architecture might struggle with the partially observable sequence

structure in this task. We also apply our model to a next word

prediction task on the Penn Treebank (PTB) dataset. We show that

a ‘flattened’ RSM network, when paired with a modern semantic

word embedding and the addition of boosting, achieves 103.5 PPL (a

20-point improvement over the best N-gram models), beating ordi-

nary RNNs trained with BPTT and approaching the scores of early

LSTM implementations. This work provides encouraging evidence

that strong results on challenging tasks such as language modelling

may be possible using less memory intensive, biologically-plausible

training regimes.

1 INTRODUCTION
In the sequence learning domain, the challenge of modeling rela-

tionships between related elements separated by long temporal

distances is well known. Language modeling, the task of next char-

acter or next word prediction, is an extensively studied paradigm

that exhibits the need to capture such long-distance relationships

that are inherent to natural language. Historically, a variety of archi-

tectures have achieved excellent language modelling performance.

Although larger datasets and increased memory capacity have also

improved results, architectural changes have been associated with

more significant improvements on older benchmarks.

N-gram models are an intuitive baseline model and were devel-

oped early in this history. N-gram models learn a distribution over
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the corpus vocabulary conditioned on the n prior tokens, e.g. a

tri-gram (n = 3) model makes predictions based on the distribution:

P(xi |xt−3,xt−2,xt−1) = f (xt−3,xt−2,xt−1)
Among N-gram models, smoothed 5-gram models achieve mini-

mum perplexity on the Penn Treebank dataset [11], a result that

illustrates constraints on the value of increasingly long temporal

context.

More recent approaches have demonstrated the success of neural

models such as Recurrent Neural Networks applied to language

modeling. In 2011, Mikolov et al. presented a review of language

models on the Penn Tree-bank (PTB) corpus showing that recurrent

neural models at that time outperformed all other architectures

[15].

Ordinary RNNs are known to suffer from the vanishing gradi-

ent problem in which partial derivatives used to backpropagate

error signals across many layers approach zero. Hochreiter et al

introduced a novel multi-gate architecture called Long Short-Term

Memory (LSTM) as a potential solution [9]. Models featuring LSTM

have demonstrated state of the art results in language modeling,

demonstrating their ability to robustly learn long-range causal

structure in sequential input.

Though RNNs appear to be a natural fit for language modeling

due to the inherently sequential nature of the task, feed-forward

networks utilizing novel convolutional strategies have also been

competitive in recent years.WaveNet is a deep autoregressivemodel

using dilated causal convolutions in order to achieve long temporal

range receptive fields [17]. A recent review compared the wider fam-

ily of temporal convolutional networks (TCN)—of which WaveNet

is a member—with recurrent architectures such as LSTM and GRU,

finding that TCNs surpassed traditional recurrent models on a wide

range of sequence learning tasks [2].

Extending the concept of replacing recurrence with autoregres-

sive convolution, Vaswani et al. added attentional filtering to their

Transformer network [18]. The Transformer uses a deep encoder

and decoder each composed of multi-headed attention and feed-

forward layers. While the dilated convolutions of WaveNet allow it

to learn relationships across longer temporal windows, attention

allows the network to learn which parts of the input, as well as

intermediate hidden states, are most useful for the present output.

Current state-of-the-art results are achieved by GPT-2, a 1.5

billion parameter Transformer [5], which obtains 35.7 PPL on the

PTB task (see Table 2). The previous state of the art was an LSTM

with the addition of mutual gating of the current input and the

previous output reporting 44.8 PPL [12].
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Common to all the neural approaches reviewed here is the use

of some form of deep-backpropagation, either by unrolling through

time (see section 3.1.2 for more detail) or through a finite window of

recent inputs (WaveNet, Transformer). Since most of these models

also benefit from deep multilayer architectures, backpropagation

must flow across layers, and over time steps or input positions,

resulting in very large computational graphs across which gradients

much flow. By contrast, all other methods in the literature (such as

traditional feed-forward ANNs and N-gram models) are not known

to produce such good performance (i.e. none have surpassed 100

PPL on PTB).

1.1 Motivation
Despite the impressive successes of the recurrent, autoregressive,

and attention-based approaches reviewed above, the question re-

mains whether similar performance can be achieved by models

that do not depend on deep backpropagation. Models that avoid

backpropagation across many layers or time steps are interesting

for two reasons. First, computational efficiency is becoming an

increasingly important consideration in deep learning, both due

to the pragmatics of designing algorithms that must be trained in

resource constrained environments such as edge computing, and

as researchers begin to acknowledge the significant environmental

footprint of the hardware that drives machine learning at scale [6].

Second, to the extent that computational models may help us bet-

ter understand the dynamics and perhaps mechanisms underlying

our own cognitive abilities, architectures constrained by similar

principles as those that govern the brain may offer more credible

insights. Specifically, we are interested in models that lie within the

biologically plausible criteria outlined by Rawlinson et al.: 1) local

and immediate credit assignment, 2) no synaptic memory, and 3) no

time-traveling synapses [16]. Our goal, then, is to explore and push

the performance bounds of sequence learning models leveraging

dynamics consistent with these bio-plausibility constraints.

2 METHOD
2.1 Original RSM Model
We began with the Recurrent Sparse Memory (RSM) architecture

proposed by Rawlinson et al. [16]. RSM is a predictive recurrent

autoencoder that receives sequential inputs (e.g. images or word

tokens), and is trained to generate a prediction of the next item in

the sequence (see schematic in Figure 1). Like Hierarchical Temporal

Memory [7], the RSM memory is organized intom groups (or mini-

columns), each composed of n cells. Cells within each group share

a single set of weights from feed forward input, such that the feed-

forward contribution zA is anm-dimensional vector computed as:

zA = wAxA(t)
Each cell receives dense recurrent connections from all cells at

the previous time step, and the recurrent contribution zB is anm×n
matrix computed as:

zB = wBxB (t)
σi j is an m × n matrix holding the weighted sum combining

feed-forward and recurrent input to each cell j in group i , and is

given by:

σi j = zAi + z
B
i j

A top-k sparsity is used as per Makzhani and Frey [10]. RSM

implements this sparsity by computing two sparse binary masks,

Mπ
and Mλ

, which indicate the most active cell (one per group),

and most active group (k per layer), respectively. An inhibition

trace was used in the original model to encourage efficient resource

utilization during the sparsening step, but is replaced with boosting

in this work (see section 3.2.4 for discussion). The final output is

calculated by applying a tanh nonlinearity to the sparsened activity:

yi j = tanh(σi j ·Mλ
i ·Mπ

i j )
A memory traceψ(t) is maintained with an exponential decay

parameterized by ϵ , such thatψ(t) = max(ψ(t−1)·ϵ,y). Fromψ, the
recurrent input at the next time step is calculated by normalizing

with constant α , chosen such that the activity in xB sums to 1:

xB (t + 1) = α ·ψ(t)
Like other predictive autoencoders, RSM is trained to generate

the next input x̂A by “decoding” from the max of each group’s

sparse activity:

yλi = max(yi1, . . . ,yin )

The prediction is then computed as x̂A(t) = wDyλ , wherewD

is a weight matrix with dimension equal to the transpose ofwA
.

Finally, to read out labels or word distributions from the network,

RSM uses a simple classifier network composed of a 2-layer fully

connected ANN using leaky ReLU nonlinearities. The classifier

network is trained concurrently but independently to the RSM

network (not sharing gradients), and takes the RSM’s hidden state

as input.

2.2 Boosted RSM (bRSM)
We developed a variant of RSM that (among other architectural

changes) replaces cell-inhibitionwith a cell activity ‘boosting’ scheme.

For brevity, we refer to the modified algorithm as bRSM.

In an attempt to encourage better generalization, we explored a

number of adjustments to the original model described in section 2.1.

Additional model details and hyper-parameter settings for reported

experiments are included in Appendix B, and the full code for all

experiments is publicly accessible
1
.

We find that bRSM significantly improves performance on the

language modeling task. We review each of our adjustments in the

section below.

2.2.1 Flattened network. A fundamental dynamic of HTM-like ar-

chitectures is that each mini-column learns some spatial structure

in the input, and each cell within a mini-column learns a transi-

tion from a prior representation [8]. A potential limitation of this

architecture is that, while representations of the input via feed for-

ward connections benefit from spatial semantics (similar represen-

tations for similar inputs), the predictive representations developed

through recurrent connections lack this property: similar sequence

items in different sequential contexts are highly orthogonal [16].

1
The full code for the bRSM model and all experiments is available at https://github.

com/numenta/nupic.research/tree/master/projects/rsm

https://github.com/numenta/nupic.research/tree/master/projects/rsm
https://github.com/numenta/nupic.research/tree/master/projects/rsm


Long Distance Relationships without Time Travel: Boosting the Performance of a Sparse Predictive Autoencoder in Sequence Modeling

Figure 1: Schematic of original RSMarchitecture, shownpro-
cessing inputs from the stochastic sequential MNIST task
(see section 3.1.1). Note that, as per original paper, the RSM
network is trained only on the MSE loss, and is not affected
by gradients backpropagated from the classifier network.

To illustrate a potential inefficiency of this orthogonality, con-

sider a network trained on sequences where some set of similar

inputs A = {A1,A2,A3} predict both B and C at the next time step,

prompting cells in the representations of both B and C to activate

when exposed to inputs in A. These cells may contain nearly iden-

tical weights linked to a sparse representation generalizing across

patterns in A. Such a redundancy might be avoided if some sub-

set of cells having learned the transition from A could be shared

by both B and C . This line of reasoning motivated experiments in

which each group was set to have only one cell, thus removing

shared feed-forward weights from the model, and enabling decod-

ing from the full hidden state rather than a group-max bottleneck.

The flexibility of allowing predictive cells to participate in multiple

input representations may explain the improved performance of

this flattened architecture in the language modeling task, though

we suspect the grouped model may be beneficial on tasks with

higher-order compositionality in space or time.

2.2.2 Boosting. Sparse networks may learn locally optimal config-

urations in which only a small fraction of a layer’s representational

capacity is used. When this occurs, many units remain idle resulting

in inefficient resource usage and limited performance. The original

RSM model employs an inhibition strategy whereby a separate

exponentially decaying trace is used to discourage recently active

cells from re-activating.

An alternative strategy known as boosting has been proposed

to achieve the same goal but exhibits different properties from

inhibition. We used a boosted k-Winners algorithm suggested by

Cui et al. [1]. This algorithm tracks the duty cycle of each cell di ,
which captures the probability of recent activation (sparsened via

top-k masking):

di (t) = (1 − α) · di (t − 1) + α[i ∈ topIndices]
A per-cell boost term bi is then computed based on this duty

cycle, increasing the probability of less recently active cells from

firing, and inhibiting those more recently active:

bi (t) = eβ (â−di (t ))

where â is the expected layer sparseness defined as the number of

winners divided by the layer size,
k
mn , and β is the boost strength

hyper-parameter which can be optionally configured to remain

fixed or decay during training (see Appendix B). The per-cell weighted

sum σi j is then redefined as:

σi j = (zAi + z
B
i j ) · bi

2.2.3 Semantic embedding. Rawlinson et al. tested RSMwith a syn-

thetic binary word embedding (see Appendix C.1) with no semantic

properties in order to isolate the performance of the architecture

from that of the embedding. Since RSM was not specifically de-

signed to learn high quality language embeddings, we chose to

use a modern embedding leveraging sub-word semantics. We pre-

trained a 100-dimensional FastText [4] embedding on the training

corpus, and used this as input for all experiments (see Appendix

C.2 for generation details).

2.2.4 Trainable decay. In language modeling, some tokens may

provide useful context to word prediction many tokens in the fu-

ture (e.g. rare words unique to a particular topic), while others

may be necessary for next word prediction (e.g. tokens composing

multi-word proper nouns or phrases, or common words indicating

syntactic structure). In the original RSM model, the rate of decay

of the recurrent input is parameterized by a single scalar value ϵ ,
which is multiplied into the prior memory state on each time step.

While each cell participates in multiple input representations, it

may be possible to improve generalization performance by learning

a unique exponential decay scalar for each cell in the memory. We

implemented trainable decay as a single tensor ∆ of dimensionm∗n
(equivalent to justm in the flattened architecture), which we pass

through a Sigmoid before applying to the memory in the decay

step:

ψ(t + 1) =ψ(t) · σ (∆)
We found that applying a ceiling close to 1 to the σ (∆) term

helped to avoid volatility likely caused by the memory state retain-

ing too much history.

The benefit of moving to a trainable decay parameter requires

a nominal increase in parameters, and provides a consistent but

small improvement (~5 PPL on next word prediction).

2.2.5 Functional Partitioning. We found one final addition to be

significantly beneficial on the stochastic sequential MNIST task

(detailed in section 3.1.1). In this version of the model, the bRSM

memory is partitioned into either two or three blocks: one taking
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feed-forward input only, one taking recurrent input only, and one

integrating both input sources via addition. This third section is

equivalent to the full memory in the original RSM model. To ensure

utilization across all partitions while keeping target sparsity consis-

tent, we applied the top-k nonlinearity to each partition separately,

with partition winners kp proportional to partition cell countmp :

kp = k
mp

m

The motivation behind functional partitioning was an extension

of the logic behind the use of a flattened memory. To the extent

that it is useful for some cells to represent transitions from prior

input, and others to represent current input, we wondered if an

architecture in which these functional roles are enforced would

improve performance.

The partitioned model whose ssMNIST results appear in Figure

4 uses a memory with cells allocated as follows: 7% feed-forward,

85% recurrent, and 8% integrated. The resultant model contains

fewer parameters since a portion of cells are connected only to the

input, which has lower dimensionality than the full memory.

This partitioning method did not improve generalization on the

language modeling task hence these results are not reported.

3 EXPERIMENTS
3.1 Tasks & Datasets
We selected tasks anticipated to be difficult for RNNs and RSM in

particular, to enable empirical characterization of its limitations.

We tested bRSM on two tasks: a non-deterministic version of the

original partially-observable MNIST sequence task [16], as well as

next word prediction (language modeling) on the Penn Treebank

dataset.

3.1.1 Stochastic Sequential MNIST (ssMNIST). RSM was initially

tested on a partially observable sequence learning task in which

the network is exposed to higher-order sequences of randomly

chosen MNIST images drawn according to a predetermined list of

labels e.g. “0123 0123 0321”. It is then possible that algorithms could

learn to ignore the images and simply keep count to make accurate

predictions. A potential expansion to this task, then, is to require

memorization of repeatable sub-sequences (e.g. the 12 digit example

above) presented in a random order. This requires repeatable sub-

sequences to be learned, while also learning to ignore sub-sequence

order that has no predictive value. The image-observations and

transitions are then both partially non-deterministic, and the images

must be considered for optimal accuracy.

These randomly ordered sub-sequences can be described by a

grammar. The grammar generating process is configured to specify

m sub-sequences of length n digits each. Details of the grammar

generated are described in Appendix A.

Using a single fixed grammar we can construct an observation

generating process that randomly chooses between sub-sequences,

but then follows each sub-sequence deterministically, as follows:

(1) Select one sub-sequence from them specified uniformly at

random

(2) Select the first digit label in the sub-sequence

(3) Select a random MNIST digit according to the selected label

(4) Move through the sub-sequence, drawing random MNIST

digits for each label, until the end is reached

(5) Go to 1

We generated a test grammar composed of 8 sub-sequences of 9

MNIST digits each (dimension specified to minimize confusion, see

sample sequence and predicted outputs in Figure 2). This specific

“8x9” grammar for which we report results, along with a calcula-

tion for the theoretical limit on prediction accuracy, is included in

Appendix A.

Figure 2: High-order, partially observable stochastic se-
quence learning predictions. Rows alternate between actual
9-digit samples from the grammar, and bRSM predictions.
Sequences “6-4-1-3-9" and “3-4-1-3-1" (with common sub-
sequence “4-1-3" outlined) are predicted correctly.

To ensure that solving the task would require the successful

learning of higher order sequences, we confirmed that prediction of

at least some of the transitions in the resultant grammar required

knowledge of the sequence item two or more steps prior.

Unlike many RNN tasks, there is no flag or special token to

indicate sub-sequence boundaries or task reset. Without any priors

for the length or existence of sub-sequences, the ssMNIST task is

challenging even for humans.

3.1.2 Baseline: tBPTT trained LSTM. We chose to use an LSTM

as a ‘baseline’ algorithm to represent the deep-backpropagation

approach and compare to bRSM. Modern recurrent neural networks

such as LSTMs are trained using backpropagation through time

(BPTT), which conceptually unrolls the network’s computational

graph across multiple time steps resulting in a standard multi-layer

feed-forward network, and then backpropagating the loss from

one or more output layers (or heads) towards the shallower layers

representing earlier timesteps.

The LSTM was trained with Adam using a learning rate of 2 ×
10

−5
. We set the hidden size of the LSTM layer to produce networks

roughly consistent with the parameter count of bRSM. Results

reported below are for an LSTM with 450 hidden units (2.57M

parameters).

We implemented a training regime consistent with Williams and

Peng’s improved truncated-BPTT algorithm [19] which is parame-

terized by two integers determining the flow of gradients through

past states of the network. In tBPTT (k1,k2),k1 specifies the interval
at which to inject error from the last k1 outputs, while k2 specifies
the length of the history through which gradients should propa-

gate. We set k1 = 1 to match the online “one digit, one prediction”
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Table 1: ssMNIST results on 8x9 grammar. Accuracy is re-
ported as mean ± one standard deviation, and max over 5
runs to account for observed inter-run variance. Theoretical
ceiling on accuracy for this grammar is 88.8%.

Model Params Mean Acc Max Acc

LSTM (cont) 2.6M 80.0% ± 9.1 81.4%

LSTM (mbs=100) 2.6M 73.4% ± 18.2 82.7%

bRSM 2.5M 86.4% ± 0.3 86.8%

bRSM (partitioned) 1.8M 88.8% ± 0.1 88.9%

dynamic of the ssMNIST task. After disappointing initial results

with large k2 values, we experimented with a range of values to

empirically optimize LSTM performance (see schematic in Figure

3).

To confirm correctness of the LSTM baseline algorithm, we veri-

fied it is able to solve a simplified (fully observable) version of the

task where the same MNIST image is used at each occurrence of a

given label. Under these conditions, LSTM achieves the theoretical

accuracy limit comparatively quickly, though displays volatility

even after approaching this accuracy ceiling (see Figure 5). This

volatility in the fixed-image regime is likely an illustration of the

tendency for these sequence learning models attempting to ‘learn’

spurious higher order transitions between sub-sequences that are

not in fact predictable.

Figure 3: Schematic of truncated backpropagation through
time parameterization BPTT(k1, k2), with k1=1, k2=6 for sim-
ple grammar [{0123}, {0321}]. x , h and o represent input, hid-
den and output respectively.

A second option distinct from the tBPTT parameterization was

also observed to significantly impact LSTM performance. Maximum

digit prediction accuracy was achieved by adjusting the training

regime to periodically clear the LSTM’s memory cell state. In Figure

4, mbs indicates the number of time steps (and therefore mini-

batches) after which we cleared the LSTM module’s hidden and cell

state.

Together, optimization of the backpropagation window to small

finite values (k2) and state clearing interval (mbs) advantage the
LSTM with two sources of an implicit prior on the length of salient

Figure 4: LSTM and bRSM performance on ssMNIST. Mean
accuracy (line), standard error (shadow) and range (light
shadow) across repeated runs. Gray line is theoretical accu-
racy ceiling for the 8x9 grammar (see Appendix A).

Figure 5: LSTM and bRSM performance on ssMNIST when
using a constant image for each digit. The partially observ-
able aspect has been removed, and LSTM successfully solves
the sequence learning task. Mean accuracy and standard er-
ror shown across repeated runs.

temporal context. Intuitively, setting k2 ormbs below our gram-

mar’s sub-sequence length would make it impossible to learn high-

order relationships, and too large of a value might confound the

network by offering far more temporal context than is useful for

learning transitions within each sub-sequence. We anticipated and

confirmed that maximum accuracy would be achieved when both

parameters were tuned to convey a useful prior on context while
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supplying a sufficient history to robustly learn the higher-order

temporal relationships in the data. Results from experiments with

varying configurations of tBPTT and state clearing are shown in

Figure 4 and appear to support this understanding.

Across the variety of training regimes tested, LSTM with the

continuous configuration and k2 = 30 achieved the best mean

accuracy across runs of 80.0% (90.0% of the theoretical limit for

this grammar). The highest accuracy LSTM run was observed with

mbs = 100 and k2 = 30, reaching 82.7%, but inter-run variance was

significantly higher in this configuration. In comparison the non-

partitioned and partitioned variants of bRSM achieved 86.4% and

88.8% respectively, with very little inter-run variance. A summary

of results is shown in Table 1.

LSTM did not achieve the maximum achievable prediction accu-

racy even with the additional context-length clues implicitly pro-

vided by the training regime. LSTM showed slower convergence,

increased volatility and lower eventual accuracy without these

clues. The much better results using a constant image for each digit

suggest that the combination of partial observability, sequential

uncertainty and unmarked sub-sequence boundaries make this task

especially difficult for conventional recurrent models. In contrast,

bRSM was able to learn the partially observable sequence relation-

ships without the need to tune hyper-parameters in accordance

with the grammar’s true time horizon. Furthermore, as noted by

Rawlinson et al., by avoiding BPTT, RSM has an asymptotic memory

use ofO(c), where c is the number of cells in the hidden layer. This

is a significant reduction from deep backpropagation models which

require O(ct), where t is the time-horizon, even when both models

have the same number of parameters. For the empirically optimal

tBPTT parameterization used in this analysis t = k2 = 30, which

implies that 30× more memory is required. Overall, bRSM achieves

better sequence learning performance than an ordinary LSTM in

this partially observable condition, with less prior knowledge of

the task and significantly less memory requirement.

3.2 Language Modeling
3.2.1 Dataset. Consistent with the original RSM paper, we present

language modeling results using the Penn Treebank (PTB) dataset

with preprocessing as per Mikolov et al. [14]. RSM’s performance

on this language modeling task was the weakest result of those

originally reported, making it an ideal target to determine if the

observed limitations could be overcome. Model evaluation was

performed using the test corpus.

3.2.2 Training Regime. We observed that, consistent with previous

findings [16], the bRSM model overfits quickly to the PTB training

set, as illustrated by increasing volatility and ultimately a quick rise

in test loss after 40-60,000 mini-batches of training. To address this

dynamic, we found it useful to pause training of the core RSMmodel

prior to overfit, and allow the classifier network to continue training.

We noted that final test set perplexity was quite sensitive to the

time of pause. For the results shared here, pause epoch is considered

an additional hyper-parameter. A custom stopping criteria based

on the derivative of validation loss would allow for more flexible

experimentation, and is planned for future work.

Table 2: Language modeling results. bRSM variants with
each of 4 added feature ablated are shown. †: As reported
by Mikolov et al [13].

Model Test PPL No. of params

KN5 † 141.2 –

KN5 + cache † 125.7 –

Random Forest LM † 131.9 –

RNN LM (uses tBPTT) † 124.7 –

LSTM 78.9 13M

Mogrifier LSTM 50.1 24M

GPT-2 35.7 1500M

bRSM + cache 103.5 2.55M

· Non-semantic embedding 152.6 2.34M

· Inhibition instead of boosting 144.0 2.55M

· Non-flattened (m=800, n=3) 112.8 3.36M

· Without cache 112.0 2.55M

· Untrained decay rate 107.3 2.55M

3.2.3 Results. Towards our goal of exploring the performance

bounds of models under our bio-plausibility constraints, we present

results from experiments with bRSM on the PTB dataset. The low-

est test perplexity (103.5 PPL) was achieved using the first four

additions presented in section 2.2 (all but functional partitioning).

A 7% word cache was effective, but an ensemble of bRSM and KN5

did not significantly improve test performance. KN5 results are

shown to illustrate the performance of statistically defined n-gram

models.

Table 2 reports results for the final bRSM model as well as ver-

sions of this model with each added feature ablated. bRSM, with

and without the word cache, outperforms all early language model-

ing architectures, including ordinary (non-gated) recurrent neural

language models trained with BPTT. While these results are not yet

competitive with state-of-the-art deep models such as the Trans-

former, and modern LSTM-based approaches, they demonstrate a

significant step forward for resource efficient performance.

3.2.4 Resource Utilization (Boosting vs Inhibition). A possible ex-

planation for the difference in performance seen between boosting

and inhibition strategies involves the strength and temporal dy-

namics of each. Boosting integrates a moving average of individual

cell activity across hundreds of time steps, promoting the use of idle

cells. In contrast, inhibition produces a strong and immediate effect

where cells are fully inhibited from firing after a single activation.

Both strategies aim to improve resource utilization.

One way to compare the effect of these strategies is to quantify

the informational capacity of the RSM memory using layer entropy

(Hl ), which is calculated from the duty cycle as follows:

Hl =
∑
i
−di log2 di − (1 − di ) log2(1 − di )

We can compare layer entropy during training and at inference

time with the theoretical maximum binary entropy for an RSM

layer, which is a function only of layer sparseness (s = k
mn ):

Hl,max = −s log
2
(s) − (1 − s) log

2
(1 − s)
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In Figure 6, we compare the time course of binary entropy for

two RSM models differing only in resource utilization strategy.

As expected, both strategies have the effect of increasing layer

entropy compared to having no strategy to promote the use of

idle cells. We note that inhibition exhibits nearly identical entropy

dynamics across training and test sets—approximately 425 bits, or

93% of maximum entropy—while the boosted model’s test entropy

is reduced during exposure to unseen test sequences.

This observation supports a traditional bias-variance trade-off

based understanding of the relationship between encoding entropy

and generalization performance of sparse recurrent networks. In the

high entropy case using inhibition, similar sequences are encoded

in highly orthogonal patterns, which may support high capacity

memorization. This is helpful when there is an opportunity to learn

to interpret these patterns, but confounding when generalizing to

unseen sequences, because similar contexts are encoded in dissim-

ilar ways. This is consistent with our observation that inhibition

produces worse perplexity and higher entropy on the test corpus.

However, some recent work has questioned the notion that high

capacity function classes necessarily result in poor generalization

performance [3], and so alternative explanations can be consid-

ered as well. For example, the strong inhibition of recently active

cells may recruit arbitrary non-semantic encodings that struggle to

generalize without implicating excessive capacity. In either case,

encoding unseen sequences from the test corpus with relatively

lower entropy implies that fewer unique encodings are produced.

We hypothesize that the network falls back to known encodings

of similar contexts, which the classifier network is able to inter-

pret. Consequently, relatively better perplexity is observed from

the lower-entropy test-corpus encoding.

Figure 6: Layer entropy comparison of boosting vs inhibi-
tion strategy. Maximum possible layer entropy shown by
dashed gray line.

4 CONCLUSION
We presented results from a sparse predictive autoencoder with a

slim memory footprint, trained on a time-local error signal. As far

as we’re aware, this model demonstrates the best results to date on

the PTB language modeling task among models not relying upon

the use of memory-intensive deep backpropagation across many

layers and/or time steps. Neural language models with better perfor-

mance all use additional mechanisms to selectively filter and store

historical state (e.g. attention and gating in Transformer and LSTM

networks); our goal is not to beat them, but to show that learning

rules which are local in time and space could be competitive, given

further development. This work provides encouraging evidence

that strong results on challenging tasks such as language modelling

may be possible using less memory intensive, biologically-plausible

training regimes.

We also showed that on tasks with particular characteristics—

namely weak partial-observability and continual presentation of

randomly-ordered sub-sequences without boundary markers—our

approach outperformed the LSTM gated memory representation.

This result also merits further investigation to understand the rela-

tionship between these task characteristics and local versus deep

learning rules.
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A SSMNIST SEQUENCES
A.1 “8x9” sequence generation
A.1.1 Sub-sequences. The “8x9” grammar used in reported results

is composed of the following sub-sequences, shown in rows below:

2, 4, 0, 7, 8, 1, 6, 1, 8

2, 7, 4, 9, 5, 9, 3, 1, 0

5, 7, 3, 4, 1, 3, 1, 6, 4

1, 3, 7, 5, 2, 5, 5, 3, 4

2, 9, 1, 9, 2, 8, 3, 2, 7

1, 2, 6, 4, 8, 3, 5, 0, 3

3, 8, 0, 5, 6, 4, 1, 3, 9

4, 7, 5, 3, 7, 6, 7, 2, 4

Note that several two and three-digit transitions are shared be-

tween sub-sequences, but no two sub-sequences share the same

first two digits.

A.1.2 “8x9” grammar accuracy ceiling calculation. Given the semi-

deterministic nature of the sample generating process and grammar

defined, we can calculate the theoretical limit on prediction accu-

racy as follows.

1st digit: predict 2 at P=3/8.
2nd digit:

Following 2: predict {4, 7, 9} uniformly

Following 1: predict {2, 3} uniformly

All remaining deterministic

P = (3/8 ∗ 1/3) + (2/8 ∗ 1/2) + (3/8 ∗ 1)

Remaining digits: deterministic conditioned on first 2 digits.

Correct predictions per sequence: (3/8+ [(3/8 ∗ 1/3)+ (2/8 ∗ 1/2)+
(3/8 ∗ 1)] + 7) = 8

Accuracy ceiling: 8/9 = 88.88%

B MODEL DETAILS
B.1 Description of hyper-parameters
Probability of forgetting is a parameter used to expose the net-

work to novel sequences by clearing the memory state at random-

ized intervals. This is parameterized by µ, the probability at each

time step, and for each training sequence, of clearing the hidden

state.

Boost strength controls the influence of the per-cell boost com-

putation within the top-k algorithm. It is a non-negative parameter,

and disables boosting when set to 0.

Boost strength factor allows an exponential decay of boost

strength, which has been show to stabilize training.

Uniform mass weight controls the interpolation of a uniform

distribution with the output of the main model. The final distribu-

tion used to compute loss is calculated as a weighted average of

each interpolated model distribution.

Word cache weight controls the interpolation of the simple

word cache used in some experiments.

Word cache decay rate controls the decay of the word cache,

which is implemented as a tensor with dimension equivalent to

the size of the corpus vocabulary. After each token is observed, its

index in the cache is set to 1. The cache is decayed according to

this parameter on each step.

B.2 Hyper-parameters used
Tables 3 and 4 list the configurations for hyper-parameters for the

language modeling and ssMNIST experiments respectively.

Table 3: Hyper-parameters used (language modeling)

Description Symbol Value

Batch size – 300

Probability of forgetting µ 0.025

Decoder L2 regularization – 0.00001

No. of groups / mini-columns m 1500

No. of cells per group n 1

Number of winning groups / cells k 80

Boost strength β 1.2

Boost strength factor – 0.85

Predictor hidden size – 1200

Uniform mass weight – 0.01

Word cache weight – 0.07

Word cache decay rate – 0.99

Table 4: Hyper-parameters used (ssMNIST)

Description Symbol Value

Batch size – 300

Decoder L2 regularization – 0.0

No. of groups / mini-columns m 1000

No. of cells per group n 1

Number of winning groups / cells k 120

Boost strength β 1.2

Boost strength factor – 0.85

Predictor hidden size – 1200

C WORD EMBEDDINGS
C.1 Synthetic Embedding
The synthetic embedding was constructed as per the original RSM

work as follows:

For each ith word in the corpus, a 28-dimensional binary em-

bedding is generated. The binary vector is constructed as the 14-bit

left-filled binary encoding of the vocabulary index i , concatenated
with its inverse.

For example, the second word in the corpus, vocab[1], would be

embedded as 0000000000000111111111111110, and the 100
th

words

in the corpus, vocab[99], would be embedded as

0000000110001111111110011100.
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C.2 FastText Embedding
We used FastText’s unsupervised training method

2
to generate a

single fixed embedding vector for each word in the PTB vocabulary.

We used the skipgram model with learning rate (lr ) of 0.1, a vec-
tor dimension (dim) of 100, minimal number of word occurrences

(minCount ) of 1, softmax loss (loss), and trained for 5 epochs (epoch).
Embeddings were stored in a static dictionary once generated and

treated as inputs to the RSM network.

2
Code for generating FastText embeddings on custom corpora is available at https:

//github.com/facebookresearch/fastText

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText
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