
Named Entity Disambiguation at Scale

Ahmad Aghaebrahimian and Mark Cieliebak

Institute of Applied Information Technology
Zurich University of Applied Sciences ZHAW

Winterthur, Switzerland
{agha,ciel}@zhaw.ch

Abstract. Named Entity Disambiguation (NED) is a crucial task in many Natural
Language Processing applications such as entity linking, record linkage, knowl-
edge base construction, or relation extraction, to name a few. The task in NED is
to map textual variations of a named entity to its formal name. It has been shown
that parameter-less models for NED do not generalize to other domains very well.
On the other hand, parametric learning models do not scale well when the number
of formal names expands above the order of thousands or more. To tackle this
problem, we propose a deep architecture with superior performance on NED and
introduce a strategy to scale it to hundreds of thousands of formal names. Our
experiments on several datasets for alias detection demonstrate that our system
is capable of obtaining superior results with a large margin compared to other
state-of-the-art systems.

Keywords: Named Entity Disambiguation · Alias Detection · Deep Learning.

1 Introduction

Named Entity Disambiguation (NED) [14, 27] is the task of linking textual variations
of Named Entities (NE)1 to their target names, which are usually provided as a list of
formal names. For instance, while recognizing “Philip Morris” as an NE is the job of a
Named Entity Recognition (NER) system, associating it to “Philip Morris International
Inc (PMI)” in a list of formal names as a means of disambiguation is performed via
NED. The list of formal names often contains many other names such as “Phil Moors,
Morris Industries, ...” which are very similar to the correct formal name and should not
be mistaken with it. The number of formal names, which may go to several hundred
thousands or even millions, makes NED a challenging task. Character shift, abbreviation,
word shift, typos, and use of nicknames are other challenges in NED.

There are two broad categories of approaches to address NED, namely classic and
modern. The classic or parameter-less approach [17, 21] is simply a textual similarly
function such as the Levenshtein distance, Cosine similarity, or longest common sub-
sequent [10] that computes the pairwise similarity score for all available formal names
given each source name.

The time complexity of these models are mostly of the order of O(f(mn)), m and
n being the number of the source and formal names, respectively, and f(.) being a

1 Named Entities are well-known places, people, organizations, ...



2 A. Aghaebrahimian and M. Cieliebak

linear function, which makes them quite fast. Moreover, they are highly parallelizable
since computing the score of a batch does not affect the next batch scores. However, the
performance of these models severely suffers when porting to new domains [6, 3, 28].

The modern or parametric learning models have better performance in working
across domains through fine-tuning or transfer learning and are of the same order of
complexity except for f(.), which is often a more complex function. In real-life NED
systems, the number of formal names exceeds hundreds of thousands or even million
names, which makes a parametric pairwise comparison difficult if not infeasible.

To address these issues, we integrate a deep learning model with a parameter-less
method of similarity assignment to break the limit on recognizing new domains and
simultaneously scaling the system to millions of names. To this end, we train a term
frequency-inverse document frequency (tf-idf) model on a range of character n-grams
of all names. The tf-idf model has two tasks; to generate feature vectors for the deep
learning model and to set a threshold for limiting the formal names when using the
system at inference time. We test the system on four datasets for alias detection [27] and
compare the results with several baselines as well as a state-of-the-art NED system.

The motivation for this work for us is to solve a business need with a scalable and
efficient solution based on deep neural networks. Our business partner harvests around
100k news articles per day. They want to recognize company names in the news and to
link each of them to its formal name available in a proprietary knowledge base which
contains almost 80k formal names. The variance between formal names and their usage
in the news and the number of formal names in addition to the sheer amount of news
articles per day ask for an efficient and scalable system for performing the task.

The main contributions of this work are a deep architecture for scoring entity names
and a strategy for leveraging this architecture to a large list of source and/or formal
names.

2 Related Work

Before the advent of modern and neural learning models, parameter-less computation of
string similarity such as the Cosine similarity, the Levenshtein distance, and the scores
proposed by [24] were popular means of scoring formal names given source names.
Many of these works use a sort of word-level or character-level n-gram features [20],
syntactic features [7], or alignment features [25].

The earliest modern models of NED are based on feature engineering on a classifier
such as Support Vector Machines (SVM) [4] coupled with a sequence decoder such as
Conditional Random Fields (CRF) [9].

Most advanced neural models today use CRFs for making inference but instead of
doing feature engineering manually, they use a form of Deep Neural Network (DNN)
such as Long Short Term Memory (LSTM), Convolutional Neural Network (CNN), or
Gated Recurrent Unit (GRU) for automatic feature learning [2, 18].

Designing a NED system by feature engineering is a highly time-consuming process,
hence end-to-end neural systems capable of learning the features on their own [16, 29]
are more approachable systems. All of these models use a form of neural similarity
function on top of the entity embeddings, mostly on the token-level and in some studies



Named Entity Disambiguation at Scale 3

on character-level [12]. However, the inference module in these models is usually a
pairwise scoring method [1] against all formal entities given each source entity, which
makes the inference unpractical for applications with a large number of formal names.

NED can be performed jointly with NER in a way that the errors generated by NER
are recovered by NED. A common approach for jointly training NED with NER is to
use a NER system to extract entity mentions and use feature engineering in a shared
space to map the source entities to their formal names [23, 19]. The number of formal
names is a limiting factor for these systems, too.

When the number of formal names is limited, NED is usually done as a single NER
process. State-of-the-art NER systems [11] use a form of pre-trained embeddings that is
fed into a form of Recurrent Neural Network (RNN). The resulting representations are
used to form a trellis for a Conditional Random Field (CRF) [15] decoder which extracts
the beginning and the end tokens of named entities. However, when the number of formal
names increases, besides the lack of enough training data, the CRF turns intractable.

Finally, [22] proposed an architecture using a Multi-Layered Perceptron (MLP)
to recognize toponyms, and similar neural network architecture is used by [27] for
entity linking. Our work is similar to these two last studies, but our pair-wise ranking
architecture is coupled with a strategy that allows us to leverage the disambiguation to
millions of source and formal names by filtering irrelevant formal names out.

3 Model Description

We model text similarity as a softly constrained pair-wise ranking problem. Figure 1
schematically represents the model.

Source Name

BiLSTM BiLSTM

Pooling

Attention

Pooling

Attention

Pooling

Attention

BiLSTM

Score

True Target Name False Target Name+Score -Score

Fig. 1: The system architecture. The loss accepts two scores and three vectors to compute
the difference between true and false distance given a source name.

True Target Name, Source Name, and False Target Name are character-level embed-
ding layers for true, source, and false entity inputs. In the preprocessing step, +Score is
computed as the cosine of the angle between source and true name vectors. Similarly,



4 A. Aghaebrahimian and M. Cieliebak

-Score is the cosine of the angle between source and false name vectors. In this step, these
two features are generated as tf-idf vectors of the most frequent n-grams of characters in
their strings. The n-grams are limited to bi-, tri-, and four-grams.

As we observe in our experiments (see e.g. Table 2), these two scores have a sig-
nificant impact on the performance of the network. For instance, take the source name
“president Reagan” as the true match for “Ronald Reagan”. Simply depending on charac-
ter representations would make “Nancy Reagan” a good match for “president Reagan”,
too, which would be wrong. However, injecting the high cosine similarity of president
Reagan and Ronald Reagan into the model as a signal instructs it to weigh the importance
of similarities in a more elaborate way.

Character-level tf-idf vectors of source, true and false names are used as the inputs
to the next layer, the BiLSTM modules for computing the string-level representations
over which a column-wise max-pooling layer is applied. Then, an attention layer similar
to [30] is used to help the model concentrate on more discriminating features.

The resulting vectors of the attention layers, as well as the scores, are inputs to the
loss function (Equation 1). The loss function decreases the cost when the vectors of true
matches get similar to the vectors of ground truths and vice versa.

L = max{0,m− Score ∗F (S,T+)

+ Score ∗F (S,T−)}
(1)

F =
1

1 + exp (−(v1 · v2)) ∗
1

1 + ‖v1,v2‖
(2)

Computing the similarity between two string at test time is done simply by using the
same network parameters to represent the source and all formal names and computing
their pair-wise similarities using F function (Equation 2). However, computing the F
for all possible permutations of source vectors and formal vectors is infeasible when one
or both of the lists are big. Our strategy for scaling up the NED is to use a window of the
highest cosine scored formal names instead of using all of them. Our experiment on 1000
random samples with unlimited and limited formal names showed that the difference in
none of the datasets is statistically significant (Table 2).

4 Experimental Results

We trained and evaluated our system on four publicly available datasets [27] compiled
for alias detection. We refer to the datasets as Wiki, Wiki-people, Artists, and Patent
Assignee. The Wiki dataset is compiled by assigning the hyperlinked string in Wikipedia
pages to the page they are pointing to, assuming that Wikipedia pages are entities. The
Wiki-people dataset is a subset of Wiki, which contains only entities with the type
“person” in the Freebase [5] knowledge graph. The Artists dataset contains alternative
names for music artists extracted from MusicBrains [26]. Finally, the Patent Assignee
dataset contains the aliases of assignees in patent documents2. Table 1 displays some
statistics of these datasets.

2 There is a fifth dataset called “disease” which is compiled by the authors of [27]. This dataset
was not publicly available at the time of authoring this work.



Named Entity Disambiguation at Scale 5

Dataset Strings Entities Mentions Train Val. Test

Wiki-people 1880000 1160000 1.83 51842 298 3946
Wiki 9320000 4640000 2.54 64341 288 3802
Artists 1830000 1160000 1.69 11566 265 3665
Patent Assignee 330000 227000 1.50 14365 290 3746

Table 1: Number of strings, number of entities, the average number of mentions per
entity, and number of samples in the train, validation and test sets

All entities in the training data including true and false names are used to generate a
list of most frequent n-gram characters limited to bi-, tri-, and four-grams. The list is
used to encode the strings into their tf-idf feature vectors. The feature vectors are used
for computing the cosine similarity, which is used as a feature in the neural network
as well as a means to generate windows of false entities. False entities are sampled
either randomly or from the window with the highest cosine scores. As an ablation study,
several window sizes for false entities are selected to assess the impact of increasing
false samples on the system performance.

We use BiLSTM modules with 128 units with Adam [13] as the optimizer and
all dropouts set to 0.5. Since some source names may have more than one true and
false answers, the Mean Average Precision (MAP) is used as the evaluation metric. We
compare our system with two baselines, namely the plain Levenshtein and Jaro-Winkler
distances and a state-of-the-art alias detection system proposed by [27]. The results of
these experiments are reported in Table 2. The results show that our system outperforms
the baselines by a large margin on three out of four datasets.

5 Ablation

To investigate different aspects of the system we performed an ablation study on several
components of the system with the following variations. CW stands for Current Work.

– CW-XN-ordered
To assess the impact of the window size or the number of false samples per true one,
we define three window sizes shown as 1N, 2N, and 5N in Table 2. For instance
’CW-5N-ordered’ means that for each true name we include 5 false names to train
the system. At the inference time, there is no constraint on the number of false or
true entities.

– CW-2N-random
False names are selected either randomly or from a list of highest similar names. We
make sure that the list does not contain any true target name. The distinction between
these two experiments is shown by the suffix ’-random’ or ’-ordered’, respectively.
The similarity scores used in this experiment are computed in the preprocessing step
and are the same scores as used as a feature for training the model.

– CW-2N-no-score
An additional experiment is conducted by removing the scores from the objective
function to show the gain of this parameter in the network performance.



6 A. Aghaebrahimian and M. Cieliebak

– CW-2N-cosine
An experiment is conducted to assess the difference on the system performance by
replacing the GESD [8] as the F in the objective function with cosine.

– CW-2N-full-target
Finally, an experiment is performed to observe the impact of our filtering strategy
on system performance. To make this experiment timely feasible, we randomly
selected 1000 test samples and used the best performing model to disambiguate the
samples. The results should be compared to the CW-2N-ordered experiment, which
has exactly the same configuration but is applied on a limited window of 20 best
scored formal names.

Model
Dataset

Wiki Wiki-people Artists Patent Assignee

Levenshtein 23.8 24.6 29.6 72.0
Jaro-Winkler 29.7 28.3 32.8 85.0
Tam et al. [27] 41.6 59.4 59.7 90.6
CW-1N-ordered 61.4 71.1 70.2 88.9
CW-2N-ordered 61.7 71.3 70.4 89.7
CW-5N-ordered 61.5 71.2 70.1 88.6
CW-2N-random 57.2 69.3 68.4 86.3
CW-2N-no-score 56.4 65.3 67.2 84.8
CW-2N-cosine 60.5 70.4 69.9 87.1
CW-2N-full-target 61.8 71.2 70.5 89.4

Table 2: The baselines and the results of several experiments conducted on different
configurations of this work are reported using the Mean of Average Precision (MAP)
metric. CW stands for Current Work. All models except CW-2N-cosine use GESD [8]
for F . Scores are all in percent.

As Table 2 shows, all variants of CW-1N-ordered, CW-2N-ordered, and CW-5N-
ordered perform on par with each other, while CW-2N-ordered yields the best results.
The gap between CW-2N-no-score and CW-2N-ordered signifies the importance of
integrating source similarity scores as a soft constraint in the objective function.

Although the gap between CW-2N-full-target and CW-2N-ordered is not noticeable,
the first model requires much more time at the inference step since it computes the
similarity for all formal names while CW-2N-ordered computes it only for a limited
number of formal names. This strategy for filtering formal names is crucial to make the
disambiguation feasible when the number of formal names exceeds several thousand
names. This experiment shows that the introduced strategy is effective to make large
scale NED manageable while getting the same performance.

Comparing the results on CW-2N-ordered versus CW-2N-random shows that choos-
ing false samples from instances with high similarity with the ground truth names
enhances the performance of the model. Finally, compared to its counterpart with GESD,
CW-2N-cosine performs poorly which suggests that better similarity functions can
improve the network even more.



Named Entity Disambiguation at Scale 7

6 Conclusion

NED is an integral component in many NLP applications such as record linking, entity
linking, or relation extraction. Large scale NED is particularly challenging due to the
time it takes to extract the correct match among hundreds of thousands of formal names,
given each source name.

We proposed a state-of-the-art system for large-scale NED. Our system consists of a
deep architecture for pair-wise candidate ranking and a filtering scheme that allows the
network to scale up to hundreds of thousands of formal names. We tested our system on
four publicly available datasets and obtained superior results with large margins on three
of them.

Ideally, including contextual data should improve the performance of a NED system.
However, since neither of our datasets contains contextual data there is no way to assess
the impact of providing contextual data on the system performance. Nevertheless, the
proposed architecture is capable of modeling contextual data by concatenating them with
its input vectors. In our future work, we would like to integrate formal names metadata
as well as their surrounding context into the model to further improve the performance.

References

1. Aghaebrahimian, A.: Deep neural networks at the service of multilingual parallel sentence
extraction. In: Proceedings of the International Conference on Computational Linguistics
(CoLing). pp. 1372–1383 (2018)

2. Aghaebrahimian, A., Cieliebak, M.: Towards integration of statistical hypothesis tests into
deep neural networks. In: Proceedings of the Association for Computational Linguistics
(ACL). pp. 5551–5557 (2019)

3. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms.
In: Proceedings Seventh International Symposium on String Processing and Information
Retrieval (SPIRE). pp. 39–48 (2000)

4. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string similarity
measures. In: Proceedings of the Ninth International Conference on Knowledge Discovery
and Data Mining. pp. 39–48 (2003)

5. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created
graph database for structuring human knowledge. In: Proceedings of the conference of ACM
Special Interest Group on Management of Data (SIGMOD). pp. 1247–1250 (2008)

6. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for matching names
and records. In: Proceedings of the Workshop on Data Cleaning and Object Consolidation
(2003)

7. Das, D., Smith, N.A.: Paraphrase identification as probabilistic quasi-synchronous recognition.
In: Proceedings of the Association for Computational Linguistics (ACL). pp. 468–476 (2009)

8. Feng, M., Xiang, B., Glass, M.R., Wang, L., Zhou, B.: Applying deep learning to answer
selection: A study and an open task. In: Proceedings of the workshop of Automatic Speech
Recognition and Understanding (ASRU). pp. 33–40 (2015)

9. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information
extraction systems by Gibbs sampling. In: Proceedings of the Association for Computational
Linguistics (ACL). pp. 363–370 (2005)

10. Gan, Z., Singh, P., Joshi, A., He, X., Chen, J., Gao, J., Deng, l.: Character-level deep conflation
for business data analytics. arXiv:1702.02640 (2017)



8 A. Aghaebrahimian and M. Cieliebak

11. Güngör, O., Üsküdarli, S., Güngör, T.: Improving named entity recognition by jointly learning
to disambiguate morphological tags. In: Proceedings of the International Conference on
Computational Linguistics (CoLing). pp. 2082–2092 (2018)

12. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language models. In:
Proceedings of the 30th AAAI Conference on Artificial Intelligence. pp. 2741–2749 (2016)

13. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)
14. Kolitsas, N., Ganea, O.E., Hofmann, T.: End-to-end neural entity linking. In: Proceedings of

the conference on Computational Natural Language Learning (CoNLL). pp. 519–529 (2018)
15. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models

for segmenting and labeling sequence data. In: Proceedings of the International Conference
on Machine Learning (ICML). pp. 282–289 (2001)

16. Le, P., Titov, I.: Improving entity linking by modeling latent relations between mentions. In:
Proceedings of the Association for Computational Linguistics (ACL). pp. 1595–1604 (2018)

17. Li, P., Dong, X.L., Guo, S., Maurino, A., Srivastava, D.: Robust group linkage. In: Proceedings
of the 24th International Conference on World Wide Web. pp. 647–657 (2015)

18. Liu, L., Shang, J., Xu, F.F., Ren, X., Gui, H., Peng, J., Han, J.: Empower sequence labeling
with task-aware neural language model. arXiv:1709.04109 (2017)

19. Luo, G., Huang, X., Lin, C.Y., Nie, Z.: Joint entity recognition and disambiguation. In: Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).
pp. 879–888 (2015)

20. Madnani, N., Tetreault, J., Chodorow, M.: Re-examining machine translation metrics for
paraphrase identification. In: Proceedings of the Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL). pp. 182–190 (2012)

21. McCallum, A., Bellare, K., Pereira, F.: A conditional random field for discriminatively-trained
finite-state string edit distance. In: Proceedings of the Twenty-First Conference on Uncertainty
in Artificial Intelligence. pp. 388–395 (2005)

22. Santos, R., Murrieta-Flores, P., Calado, P., Martins, B.: Toponym matching through deep
neural networks. International Journal of Geographical Information Science 32, 1–25 (2017)

23. Sil, A., Yates, A.: Re-ranking for joint named-entity recognition and linking. In: Proceedings
of the International Conference on Information & Knowledge Management (CIKM). pp.
2369–2374 (2013)

24. Smith, T., Waterman, M.: Identification of common molecular subsequences. Journal of
Molecular Biology 147, 195 – 197 (1981)

25. Sultan, M.A., Bethard, S., Sumner, T.: DLS@CU: Sentence similarity from word alignment
and semantic vector composition. In: Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEval 2015). pp. 148–153 (2015)

26. Swartz, A.: Musicbrainz: a semantic web service. IEEE Intelligent Systems 17, 76–77 (2002)
27. Tam, D., Monath, N., Kobren, A., Traylor, A., Das, R., McCallum, A.: Optimal transport-

based alignment of learned character representations for string similarity. In: Proceedings of
the Association for Computational Linguistics (ACL). pp. 5907–5917 (2019)

28. Winkler, W.: The state of record linkage and current research problems. Statist. Med. (1999)
29. Yamada, I., Shindo, H., Takeda, H., Takefuji, Y.: Joint learning of the embedding of words and

entities for named entity disambiguation. In: Proceedings of the Conference on Computational
Natural Language Learning (CoNLL). pp. 250–259 (2016)

30. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for
document classification. In: Proceedings of the Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL). pp. 1480–1489 (2016)


