Skip to main content

Learning to Improve Efficiency for Adaptation Paths

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12311))

Included in the following conference series:

Abstract

The ability of case-based reasoning systems to deal with new problems depends on the effectiveness of their case adaptation. One approach to increasing flexibility for novel problems is to perform adaptations by using adaptation paths—chains of adaptations—to address differences beyond those addressable by applying single adaptation rules. A recent approach to adaptation path generation, ROAD, proposes building adaptation paths using heuristic search guided by similarity, with a “reset” mechanism for recovering when similarity fails to predict adaptability. The ROAD approach is beneficial when similarity and adaptability are well aligned, but can make poor choices when similarity and adaptability diverge, increasing adaptation cost. This paper presents methods for increasing adaptation efficiency by maintenance exploiting information from adaptation path generation. The methods improve the similarity measure to better reflect adaptability and condense the adaptation rule set. Experimental evaluation supports the benefits for improving adaptation efficiency while preserving accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aha, D.W., Goldstone, R.L.: Concept learning and flexible weighting. In: Proceedings of the 14th Annual Conference of the Cognitive Science Society, pp. 534–539. Erlbaum (1992)

    Google Scholar 

  2. Badra, F., Cordier, A., Lieber, J.: Opportunistic adaptation knowledge discovery. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS (LNAI), vol. 5650, pp. 60–74. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02998-1_6

    Chapter  Google Scholar 

  3. Bonzano, A., Cunningham, P., Smyth, B.: Using introspective learning to improve retrieval in CBR: a case study in air traffic control. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 291–302. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63233-6_500

    Chapter  Google Scholar 

  4. D’Aquin, M., Lieber, J., Napoli, A.: Adaptation knowledge acquisition: a case study for case-based decision support in oncology. Comput. Intell. 22(3/4), 161–176 (2006)

    Article  MathSciNet  Google Scholar 

  5. Friedman, J.H.: Flexible metric nearest neighbor classification. Technical report, Stanford University (1994)

    Google Scholar 

  6. Hammond, K.: Case-Based Planning: Viewing Planning as a Memory Task. Academic Press, San Diego (1989)

    Book  Google Scholar 

  7. Hanney, K., Keane, M.T.: Learning adaptation rules from a case-base. In: Smith, I., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 179–192. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020610

    Chapter  Google Scholar 

  8. Hanney, K., Keane, M., Smyth, B., Cunningham, P.: What kind of adaptation do CBR systems need? A review of current practice. In: Proceedings of the Fall Symposium on Adaptation of Knowledge for Reuse. AAAI (1995)

    Google Scholar 

  9. Jalali, V., Leake, D.: On retention of adaptation rules. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS (LNAI), vol. 8765, pp. 200–214. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11209-1_15

    Chapter  Google Scholar 

  10. Kaggle: Automobile Dataset. Kaggle (2017). https://www.kaggle.com/toramky/automobile-dataset

  11. Leake, D., Dial, S.A.: Using case provenance to propagate feedback to cases and adaptations. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 255–268. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85502-6_17

    Chapter  Google Scholar 

  12. Leake, D., Schack, B.: Exploration vs. exploitation in case-base maintenance: leveraging competence-based deletion with ghost cases. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 202–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_14

    Chapter  Google Scholar 

  13. Leake, D., Whitehead, M.: Case provenance: the value of remembering case sources. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 194–208. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74141-1_14

    Chapter  Google Scholar 

  14. Leake, D., Ye, X.: On combining case adaptation rules. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 204–218. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_14

    Chapter  Google Scholar 

  15. Li, H., Hu, D., Hao, T., Wenyin, L., Chen, X.: Adaptation rule learning for case-based reasoning. In: 3rd International Conference on Semantics, Knowledge and Grid, pp. 44–49 (2007)

    Google Scholar 

  16. López de Mántaras, R., et al.: Retrieval, reuse, revision, and retention in CBR. Knowl. Eng. Rev. 20(3), 215–240 (2005)

    Google Scholar 

  17. Mathew, D., Chakraborti, S.: Competence guided model for casebase maintenance. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI, pp. 4904–4908 (2017)

    Google Scholar 

  18. Mathisen, B.M., Aamodt, A., Bach, K., Langseth, H.: Learning similarity measures from data. Prog. Artif. Intell. 9, 129–143 (2019). https://doi.org/10.1007/s13748-019-00201-2

    Article  Google Scholar 

  19. Smyth, B., Keane, M.: Adaptation-guided retrieval: questioning the similarity assumption in reasoning. Artif. Intell. 102(2), 249–293 (1998)

    Article  Google Scholar 

  20. Wettschereck, D., Aha, D., Mohri, T.: A review and empirical evaluation of feature-weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11(1–5), 273–314 (1997). https://doi.org/10.1023/A:1006593614256

    Article  Google Scholar 

  21. Wilson, D., Leake, D.: Maintaining case-based reasoners: dimensions and directions. Comput. Intell. 17(2), 196–213 (2001)

    Article  Google Scholar 

  22. Xiong, N., Funk, P.: Building similarity metrics reflecting utility in case-based reasoning. J. Intell. Fuzzy Syst. 17(4), 407–416 (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Leake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leake, D., Ye, X. (2020). Learning to Improve Efficiency for Adaptation Paths. In: Watson, I., Weber, R. (eds) Case-Based Reasoning Research and Development. ICCBR 2020. Lecture Notes in Computer Science(), vol 12311. Springer, Cham. https://doi.org/10.1007/978-3-030-58342-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58342-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58341-5

  • Online ISBN: 978-3-030-58342-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics